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The Algebraic Group

L totally real, [L : Q] = g ,

B = Hom(L,R) = {σ1, . . . , σg}.

G = ResL/QGL2. For any Q-algebra R:

G(R) = GL2(L⊗Q R).

In particular,

G(Q) = GL2(L), G(R) =
∏
σ∈B

GL2(R).

Here,
γ ∈ GL2(L) 7→ (σ(γ))σ∈B.

Similarly, we have
G′ = ResL/QSL2.
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Subgroups from lattices

Let a, b, be fractional ideals of L. Define the subgroup GL(a⊕ b)
of G(Q) as the matrices{(

a b
c d

)
: a, d ,∈ OL, b ∈ a−1b, c ∈ ab−1, ad − bc ∈ O×L

}
.

This group stabilizes the lattice a⊕ b in L⊕ L under right
multiplication. Similarly, for G′.

Let S = ResC/RGm. We have

h0 : S→ G, x + iy 7→
((

x −y
y x

)
, . . . ,

(
x −y
y x

))
.

The stabilizer of h0 under conjugation by G is the maximal
compact group

K∞ =
{((

xσ −yσ
yσ xσ

))
σ

: x2
σ + y 2

σ 6= 0,∀σ
}
.
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The symmetric space

G(R) ∼=
∏
σ∈B GL2(R) acts on the symmetric space (H±)g , where

H± = {z ∈ C : ±Im(z) > 0}. A component of which is

Hg = {(τ1, . . . , τg ) : Im(τi ) > 0}.

The action of G(Q) is by

γ ∗ (τ1, . . . , τg ) = (σ1(γ)τ1, . . . , σg (γ)τg )

(in each component it is the usual action by fractional linear
transformations). Note:

StabG(R)(i , . . . , i) = K∞, G(R)/K∞ ∼= (H±)g .

We can view this space also as the space of conjugates of h0 under
G(R); G is a reductive connected algebraic group over Q. This is
Deligne’s perspective.

7 / 72



The symmetric space

G(R) ∼=
∏
σ∈B GL2(R) acts on the symmetric space (H±)g , where

H± = {z ∈ C : ±Im(z) > 0}. A component of which is

Hg = {(τ1, . . . , τg ) : Im(τi ) > 0}.

The action of G(Q) is by

γ ∗ (τ1, . . . , τg ) = (σ1(γ)τ1, . . . , σg (γ)τg )

(in each component it is the usual action by fractional linear
transformations). Note:

StabG(R)(i , . . . , i) = K∞, G(R)/K∞ ∼= (H±)g .

We can view this space also as the space of conjugates of h0 under
G(R); G is a reductive connected algebraic group over Q. This is
Deligne’s perspective.

8 / 72



Adelic points

From Deligne’s perspective we care about

G(Q)\G(A)/K∞Kf
∼= G(Q)\(H±)g × G(Af )/Kf .

One can show:

G(Q)\G(A)/K∞Kf
∼= ∪m

j=1Γj\Hg ,

where, for suitable gj ∈ G(Af ),

G(A) = ∪m
j=1G(Q)gjG(R)0Kf , Γj = gjG(R)0Kf g−1

j ∩ G(Q).

For example, for Kf = G(Ẑ), we get⋃
[a]∈CL+(L)

GL(OL ⊕ a)+\Hg .
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Abelian varieties with RM

(A, ι, λ) � A g -dim’l AV over a base k (field, ring, scheme)

� ι : OL ↪→ Endk(A) ( ι∨ : OL ↪→ Endk(A∨))

� λ : A −→ A∨ an OL-equiv. polarization:
λ ◦ ι(a) = ι∨(a) ◦ λ; equivalently, the Rosati
involution acts trivially on OL.

The adelic description suggests a different definition. Fix a
fractional ideal a of L. Look at

(A, ι, λ),

where
λ : HomOL,k(A,A∨)symm ∼=−→ a,

is an isomorphism of OL-modules with a notion of positivity
(namely, identifies the cone of polarizations with a+). 12 / 72
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Analytic families of abelian varieties with RM

Let a, b be fractional ideals of L. For z ∈ Hg embed a⊕ b in Cg as
a lattice:

Λz = a · z + b · 1 = {(σi (a)zi + σi (b))i : a ∈ a, b ∈ b}.

A polarization on Az = Cg/Λz can be described by an alternating
pairing on a⊕ b:

Er ((x1, y1), (x2, y2)) = TrL/Q(r(x1y2 − x2y1)), r ∈ (DL/Qab)−1.

Have

HomOL
(Az ,A

∨
z )symm = (DL/Qab)−1, {Polarizations} ↔ (DL/Qab)−1,+.
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Analytic families (cont’d)

Theorem

SL(a⊕ b)\Hg parameterizes isomorphism classes of (A, ι, λ) with
λ : HomOL

(Az ,A
∨
z )symm → (DL/Qab)−1 an isomorphism, taking

the polarizations to the totally positive elements.

GL(a⊕ b)+\Hg parameterizes isomorphism classes of (A, ι) such
that there exists an isomorphism
λ : HomOL

(Az ,A
∨
z )symm → (DL/Qab)−1, taking the polarizations

to the totally positive elements.

From now on

We consider moduli of (A, ι, λ): abelian varieties with RM and a
principal OL-linear polarization λ. (Corresponds over C to
SL(D−1

L/Q ⊕OL).)
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Cusps and the compact dual

The groups GL2(L)+ acts on P1(L) and the orbits of GL(a⊕ b)+

(or SL(a⊕ b)) are in bijection with Cl(L). To a point
(α : β) ∈ P1(L) we associate the ideal class
(a, b) ·t (α, β) = αa⊕ βb.

The compact dual depends only of G′(R) =
∏
σ SL2(R). It is thus

equal to P1(C)g . The boundary of Hg is thus

∪g
i=1P1(C)i × P1(R)××P1(C)g−i−1,

but the rational boundary components for G′ are precisely

P1(L) ↪→ P1(Q)g .

The minimal (or Bailey-Borel-Satake) compactification of
SL(a⊕ b)\Hg is, set-theoretically,

SL(a⊕ b)\
(
Hg ∪ P1(L)

)
. 20 / 72
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Factors of automorphy

For each k = (k1, . . . , kg ) ∈ Zg , γ ∈ SL2(L) and
z = (z1, . . . , zg ) ∈ Hg ,

jk(γ, z) :=

g∏
i=1

j(σi (γ), zi )
ki .

For f : Hg → C holomorphic, let

f |kγ = jk(γ, z)−1f (γz).

Let Γ ⊂ SL2(L) be a congruence subgroup. We say f is a weight k
modular form of level Γ if

f |kγ = f , ∀γ ∈ Γ.

(If g > 1 there is no need to require it is holomorphic at infinity
(Koecher’s principle).)
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Factors of automorphy (2)

The vector valued factor of automorphy

diag(j(σ1(γ), z1), . . . , j(σg (γ), zg )),

defines a vector bundle over Γ\Hg . It is easy to see from our
construction of analytic families π : (Au, ιu, λu)→ Γ\Hg that it is
the relative cotangent space at the identity (the Hodge bundle):

E = π∗(Ω1
(Au ,ιu ,λu)→Γ\Hg ).

We have
E = ⊕iLi ,

where Li is defined by the factor of automorphy jei (γ, z).
Bailey-Borel proved that their compactification is an algebraic
variety given as Proj(

∑∞
k=0 Γ(SL(a⊕ b)\Hg , det(E)k)).
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Fourier expansions

The group SL(a⊕ b) contains the subgroup{(
ε b
0 ε−1

)
: ε ∈ O×L , b ∈ a−1b

}
.

A modular form f of level SL(a⊕ b) has then a Fourier expansion

f (z1, . . . , zg ) =
∑

ν∈(a−1b)∨

a(ν)qν ,

(a−1b)∨ = D−1
L/Qab−1, qν = exp(2πi(σ1(ν)z1 + · · ·+ σg (ν)zg )).

• Holomorphic ⇒ ν � 0 or ν = 0.
• Action of O×L ⇒

a(ν) =
(∏

σi (ε)
−ki

)
· a(ε2ν), ε ∈ O×L .

(So if k1 = · · · = kg and are even a(ν) = a(ε2ν). Then, if the
strict class number of L is 1, a(ν) depends only on the ideal ν.)
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Moduli problems

Let n be an integral ideal of OL; (A, ι) an abelian variety with RM.
A Γ(1n)-level structure is a closed immersion α : OL/n ↪→ A.

Consider the moduli of A = (A, ι, λ, α), a principally polarized
abelian variety (A, λ) with RM ι, and a Γ(1n)-level structure α. If
n is large enough, this is representable by a scheme M (1n) that is
irreducible and smooth over Z[Norm(n)−1]. We have

M (1n)(C) ∼= Γ(1n)\Hg ,

where Γ(1n) are the matrices in SL(D−1
L/Q ⊕OL) that are upper

unipotent modulo n.
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Modular forms over any base

Let π : Au = (Au, ιu, λu, αu)→ Spec(Z[Norm(n)−1]) be the
universal object. Define the Hodge bundle

E = π∗(Ω1
Au/M (1n)).

This is a rank g vector bundle over M (1n), which is a rank 1
OL ⊗OM (1n) vector bundle. And (after base change to
OM [Nm(n)−1], M a normal closure of L in C)

E = ⊕g
i=1Li ,

a sum of line bundles such that over C the line bundle Li is
defined by the factor of automorphy jei (γ, z). A modular form of
weight k = (k1, . . . , kg ) and level M (1n), defined over a base S
(an OM [Nm(n)−1]-scheme), is an element in

Γ(M (1n)⊗OM [Nm(n)−1] S ,Lk1
1 ⊗ · · · ⊗ Lkg

g ).
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Modular forms over any base (2)

The q-expansion can be defined in this generality. If S is the
spectrum of a ring R then a modular form over S has q-expansion
in

Z[[qν : ν ∈ (a−1b)∨]]⊗ R.

The converse is also true. Further, a modular form is zero if and
only if its q-expansion is zero; the Galois action can be described
via the action on the Fourier coefficients.

In particular, if two modular forms over R, of the same weight,
have the same Fourier expansion then they are equal. In
characteristic zero something stronger is true: if two modular
forms over C have the same Fourier expansion then they are equal.
This is because the Fourier expansion converges and describes the form on an open neighborhood of the cusp (and

not just in its completed local ring). This is not the case over an arbitrary ring
and one arrives at the notion of congruence. But before that:
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Another view on modular forms and weights

One can also think about a Hilbert modular form f defined over R
of weight k and level Γ(1n) as a rule,

(A;ω) = (A, ι, λ, α;ω)/R1 7→ f (A, ω) ∈ R1,

for every R1-algebra (where ω is a generator over OL ⊗Z R1 of
Lie(A)), that depends only on the isomorphism class of (A, ω),
commutes with base-change, and satisfies

f (A, rω) = (χk1
1 · · ·χ

kg
g )(r) · f (A, rω), r ∈ (OL ⊗ R1)×

where χ1, . . . , χg are the characters of the torus ResOL/ZGm.
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Congruences

Let p be a prime that is unramified in L (for simplicity). Then,

B = ∪p|pBp, Bp = Hom(L, Lp) 	 φ, φ = Frobenius.

Consider modular forms and abelian varieties with RM over Fp.
Given such an abelian variety over Fp there is a duality between
H0(A,Ω1

A/Fp
) and H1(A,OA). A generator ω gives a basis for

H0(A,Ω1
A/Fp

) over Fp: {ωσ : σ ∈ B}, and a dual basis

{ησ : σ ∈ B} for H1(A,OA). We define a partial Hasse invariant

hσ(A, ω) = φ(ηφ−1◦σ)/ησ.

It is a modular form of weight χp
φ−1◦σχ

−1
σ and has q-expansion 1.

Theorem

The kernel of the q-expansion map on the graded ring
⊕kΓ(M (1n)⊗ Fp,Lk) is the ideal 〈hσ − 1 : σ ∈ B〉.
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p-adic Hilbert modular forms

One can develop a theory of p-adic Hilbert modular forms as a
uniform limit of q-expansions of Hilbert modular forms in the
p-adic metric, much as Serre had done for elliptic modular forms.

For example, for g = 1, if f ≡ f ′ (mod pr ) (integral, normalized)
then k ≡ k ′ (mod (p − 1)pr−1) and so a p-adic limit has weight in
the completion of the characters Z of Gm at the subgroups
(p − 1)prZ, which is Z/(p − 1)Z× Zp.

Similarly, for Hilbert modular forms, if f ≡ f ′ (mod pr ) (integral,
normalized) then k ≡ k ′ (mod W (r)), where W (r) are the
characters trivial on ResOL/ZGm(Z/pr ), and so a p-adic limit has

weight in the completion Ŵ of the characters X of ResL/QGm at
the subgroups W (r). (Example: if p is inert then
Ŵ = Z/(pg − 1)× Zg

p).
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Another view of p-adic modular forms

Let X be the rigid p-adic analytic space associated to M (1n), X its
mod p reduction (X = M (1n)⊗Fp) and Xord the ordinary locus of
X – points corresponding to ab. varieties with ordinary reduction.

One can view p-adic Hilbert modular forms as sections of line
bundles defined over Xord . One is interested in forms that are
sections over a larger region than Xord . These are called
overconvergent modular forms. For example, any classical modular
form is a section over the whole of X (and vice-versa, if the weight
is classical).

The definition of “regions” is via tubular neighborhoods of
X − X ord = ∪σ∈Bdiv(hα). This divisor is a reduced, regularly
crossing divisor. Moreover, at any point x ∈ X the forms
{hσ : hσ(x) = 0} can be taken as a part of a system of local
parameters.
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Classicality

A Γ(0p)-level structure on A (a principally polarized abelian variety
with real multiplication) is a subgroup H ⊆ A[p] that is OL

invariant and has rank pg ; it is automatically isotropic.

Call an overconvergent modular form of level Γ(1n, 0p) – that is,
both with a Γ(1n)-level and a Γ(0p)-level – and weight k ∈W
classical if it a modular form in the usual sense. If f is also a
generalized eigenform for the U operator,

(Up − λ)nf = 0, n� 0,

we say that f has slope α = valp(λ). For g = 1, the classical
forms have slope 0 ≤ α ≤ k − 1.
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Classicality (cont’d)

Theorem

For modular curves, or Shimura curves, if k > 0, 0 ≤ α < k − 1,
then f is classical. In particular, the space spanned by such forms
is finite dimensional.

The situation for Hilbert modular forms is still unknown in general.
One can deal with primes that completely split. Very recently the
case of g = 2, p inert, was apparently settled.

Theorem

For g = 2, p inert, if f is overconvergent and α < min{k1, k2} − 2
then f is classical.

(The 2 should be understood here as [OL/p : Z/p].)
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Galois representations

There is a notion of Hecke operators Tn for Hilbert modular forms,
associated to integral ideals. Assume for simplicity that L has strict
class number one. Then for a normalized cuspform

f =
∑

ν∈D−1,+
L

a(ν)qν ,

of parallel weight k , the coefficients a(ν) depend only on the
integral ideal (νD−1

L ) (and so we write a((νD−1
L )) instead of a(ν)).

We associate to f the L-function∑
m

a(m)Nm(m)−s =
∏
p

(1− a(p)Nm(p)−s + Nm(p)k−1−2s).

(Finitely many Euler factors need to be modified as a function of
the level.)
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Galois representations (2)
Theorem

Let f be a Hilbert newform of weight k and level n. Let Kf be the
field of coefficients of f . Let ` be a prime, λ a prime of Kf that
lies above `, and Kf ,λ the completion of Kf at λ. There is an
absolutely irreducible totally odd Galois representation

ρf ,λ : Gal(L/L)→ GL2(Kf ,λ),

unramified outside `n, such that for any prime p - `n
1 tr(ρf ,λ(Frobp)) = a(p).

2 det((ρf ,λ(Frobp)) = Nm(p)k−1.

Given a Galois representation with the properties of the
representation ρf ,λ one conjectures that it comes from a Hilbert
modular newform. Strategy: prove first that there is a p-adic
Hilbert modular form then prove it is in fact classical. 61 / 72
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The geometry of the Up-operator

Let (p, n) = 1. For simplicity p inert in L, pOL = p. Let X, Y, be
the completions of M (1n)⊗Qp and M (1n, 0p)⊗Qp, respectively,
along their special fibres X ,Y (so X = M (1n)⊗ Fp,
Y = M (1n, 0p)⊗ Fp). We have the following diagram

Yord � � //

π

��

Yan oo ///o/o/o

��

Y

π

��

Y?
_oo

π

��

Xord � � //

s=Frob

ZZ

Xan oo ///o/o/o X X?
_oo

s=Frob

\\

Note that X,Y are supported on X ,Y , and so it makes sense that
the geometry of X ,Y and the projection π plays a key role in the
study of π : X→ Y. This is based on the Raynaud-Berthelot
theory.
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The geometry of the Up-operator (cont’d)

The U operator is the trace of the operator sometimes called Frob.
It is defined on the ordinary locus Xord in terms of points:

x ↔ Ax 7→ Ax/s(x)↔ Frob(x).

The study of the U-operator on overconvergent modular forms
requires its extension outside the ordinary locus, which, in turn,
requires the extension of the section s.
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The geometry of X , Y (g = 1)
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The geometry of X , Y (g = 2, p inert)
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Humbert cycles

Let Hg be the Siegel upper half space
{τ ∈ Mg (C) : τ t = τ, Im(τ)� 0}. There is a natural morphism

SL(D−1
L ⊕OL)\Hg −→ Sp2g (Z)\Hg .

When g = 1 this is a triviality; when g = 3 this is (still) a mystery;
when g = 2 the image is called the Humbert surface H∆ where ∆
is the discriminant of L. One can similarly define Humbert surfaces
for every quadratic positive discriminant. For example, for ∆ = 1
this is the image of

SL2(Z⊕ Z)\H2 −→ Sp4(Z)\H2.

Theorem

Let G∆ =
∑

H∆/f 2 . The series
∑

∆≥0[G∆]q∆ is an elliptic
modular form of weight 5/2 valued in the second intersection
cohomology group of Sp4(Z)\H2 and of level Γ0(4). 70 / 72
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when g = 2 the image is called the Humbert surface H∆ where ∆
is the discriminant of L. One can similarly define Humbert surfaces
for every quadratic positive discriminant. For example, for ∆ = 1
this is the image of

SL2(Z⊕ Z)\H2 −→ Sp4(Z)\H2.

Theorem

Let G∆ =
∑

H∆/f 2 . The series
∑

∆≥0[G∆]q∆ is an elliptic
modular form of weight 5/2 valued in the second intersection
cohomology group of Sp4(Z)\H2 and of level Γ0(4). 75 / 72



Hirzebruch-Zagier cycles

There is a similar definition of cycles on a Hilbert modular surface,
the Hirzebruch-Zagier cycles. Like the Humbert cycles they are
images of lower-dimensional Shimura varieties (thus, curves). The
collection process into cycles is more sophisticated, though.

Theorem

Let Tn, n ≥ 0 be the Hirzebruch-Zagier cycles. Let dL is the
discriminant of L. The series

∑
n≥0[Tn]qn is an elliptic modular

form of weight 2, valued in the second intersection cohomology
group of SL2(OL)\H2 and of level Γ0(dL), and character χdL

.
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