Montreal-Toronto Workshop

 on
Hilbert Modular Varieties

Henri Darmon

Fields Institute, Toronto
April 2011

Algebraic Cycles on Hilbert modular varieties

Cycles on Hilbert modular varieties

Cycles on Hilbert modular surfaces

This is partly a survey of joint work with

Pierre Charollois (Paris),

Adam Logan (Ottawa),
Victor Rotger (Barcelona),

Algebraic Cycles on Hilbert modular varieties

Cycles on Hilbert modular varieties

This is partly a survey of joint work with
Pierre Charollois (Paris),
Adam Logan (Ottawa),
Victor Rotger (Barcelona),

Algebraic Cycles on Hilbert modular varieties

Cycles on Hilbert modular varieties
Cycles on Hilbert modular surfaces

This is partly a survey of joint work with
Pierre Charollois (Paris),
Adam Logan (Ottawa),
Victor Rotger (Barcelona),

Algebraic Cycles on Hilbert modular varieties

Cycles on Hilbert modular varieties

Cycles on Hilbert modular surfaces

This is partly a survey of joint work with
Pierre Charollois (Paris),
Adam Logan (Ottawa),
Victor Rotger (Barcelona),
Yu Zhao (Montreal).

Special cycles on modular curves

Modular curves (and Shimura curves) are equipped with a rich supply of arithmetically interesting topological cycles.

Special cycles on modular curves

Modular curves (and Shimura curves) are equipped with a rich supply of arithmetically interesting topological cycles.

Let $X_{0}(N)=$ modular curve of level N,

$$
X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \mathcal{H}^{*}
$$

Quadratic embeddings

The cycles are naturally indexed by embeddings

$$
\Psi: K \longrightarrow M_{2}(\mathbb{Q})
$$

where K is a commutative (quadratic) subring of \mathbb{C}.

$$
\Sigma:=\left\{\Psi: K \longrightarrow M_{2}(\mathbb{Q})\right\} / \Gamma_{0}(N) .
$$

$\operatorname{Disc}(\Psi)=\operatorname{Disc}\left(\Psi(K) \cap M_{0}(N)\right)$.
Let D be a discriminant (not necessarily fundamenta!)

$$
\Sigma_{D}:=\{\Psi \in \Sigma: \operatorname{Disc}(\Psi)=D\} .
$$

Quadratic embeddings

The cycles are naturally indexed by embeddings

$$
\Psi: K \longrightarrow M_{2}(\mathbb{Q})
$$

where K is a commutative (quadratic) subring of \mathbb{C}.

$$
\Sigma:=\left\{\Psi: K \longrightarrow M_{2}(\mathbb{Q})\right\} / \Gamma_{0}(N) .
$$

$\operatorname{Disc}(\Psi)=\operatorname{Disc}\left(\Psi(K) \cap M_{0}(N)\right)$.
Let D be a discriminant (not necessarily fundamental):

$$
\Sigma_{D}:=\{\Psi \in \Sigma: \operatorname{Disc}(\Psi)=D\} .
$$

Quadratic embeddings

The cycles are naturally indexed by embeddings

$$
\Psi: K \longrightarrow M_{2}(\mathbb{Q})
$$

where K is a commutative (quadratic) subring of \mathbb{C}.

$$
\Sigma:=\left\{\Psi: K \longrightarrow M_{2}(\mathbb{Q})\right\} / \Gamma_{0}(N) .
$$

$$
\operatorname{Disc}(\Psi)=\operatorname{Disc}\left(\Psi(K) \cap M_{0}(N)\right)
$$

Let D be a discriminant (not necessarily fundamental):

$$
\Sigma_{D}:=\{\Psi \in \Sigma: \operatorname{Disc}(\Psi)=D\} .
$$

Quadratic embeddings

The cycles are naturally indexed by embeddings

$$
\Psi: K \longrightarrow M_{2}(\mathbb{Q})
$$

where K is a commutative (quadratic) subring of \mathbb{C}.

$$
\Sigma:=\left\{\Psi: K \longrightarrow M_{2}(\mathbb{Q})\right\} / \Gamma_{0}(N) .
$$

$$
\operatorname{Disc}(\Psi)=\operatorname{Disc}\left(\Psi(K) \cap M_{0}(N)\right)
$$

Let D be a discriminant (not necessarily fundamental):

$$
\Sigma_{D}:=\{\Psi \in \Sigma: \operatorname{Disc}(\Psi)=D\}
$$

Some Key Facts

(1) The (narrow) class group $G_{D}=\mathrm{cl}(D)$ acts naturally on Σ_{D}, without fixed points.
(2) $\# \Sigma_{D}=\# G_{D} \cdot \#\left\{I \triangleleft \mathcal{O}_{D}: \mathcal{O}_{D} / I \simeq \mathbb{Z} / N \mathbb{Z}\right\}$

Goal: Associate to each $\Psi \in \Sigma$ a (topological) cycle

Some Key Facts

(1) The (narrow) class group $G_{D}=\mathrm{cl}(D)$ acts naturally on Σ_{D}, without fixed points.
(2) $\# \Sigma_{D}=\# G_{D} \cdot \#\left\{I \triangleleft \mathcal{O}_{D}: \mathcal{O}_{D} / I \simeq \mathbb{Z} / N \mathbb{Z}\right\}$.

Goal: Associate to each $\Psi \in \Sigma$ a (topological) cycle

Some Key Facts

(1) The (narrow) class group $G_{D}=\mathrm{cl}(D)$ acts naturally on Σ_{D}, without fixed points.
(2) $\# \Sigma_{D}=\# G_{D} \cdot \#\left\{I \triangleleft \mathcal{O}_{D}: \mathcal{O}_{D} / I \simeq \mathbb{Z} / N \mathbb{Z}\right\}$.

Goal: Associate to each $\Psi \in \Sigma$ a (topological) cycle

$$
\Delta_{\psi} \subset X_{0}(N)(\mathbb{C})
$$

The cycle Δ_{ψ} when $D<0$: CM points.

The rational torus

$$
\Psi\left(K^{\times}\right) \subset \mathbf{G L}_{2}(\mathbb{Q}) \circlearrowleft \mathcal{H}
$$

has a unique fixed point $\tau_{\Psi} \in \mathcal{H}$. We set

$$
\Delta_{\psi}:=\left\{\tau_{\psi}\right\}
$$

The point τ_{Ψ} is a CM point on $X_{0}(N)$ (of discriminant D).

The cycle Δ_{ψ} when $D<0$: CM points.

The rational torus

$$
\Psi\left(K^{\times}\right) \subset \mathbf{G L}_{2}(\mathbb{Q}) \circlearrowleft \mathcal{H}
$$

has a unique fixed point $\tau_{\Psi} \in \mathcal{H}$. We set

$$
\Delta_{\Psi}:=\left\{\tau_{\psi}\right\}
$$

The point τ_{ψ} is a CM point on $X_{0}(N)$ (of discriminant $\left.D\right)$.

The cycle Δ_{ψ} when $D<0$: CM points.

The rational torus

$$
\Psi\left(K^{\times}\right) \subset \mathbf{G L}_{2}(\mathbb{Q}) \circlearrowleft \mathcal{H}
$$

has a unique fixed point $\tau_{\Psi} \in \mathcal{H}$. We set

$$
\Delta_{\Psi}:=\left\{\tau_{\psi}\right\}
$$

The point τ_{ψ} is a $C M$ point on $X_{0}(N)$ (of discriminant D).

The cycle Δ_{ψ} when $D=m^{2}$: modular symbols.

When $D=m^{2}$, the \mathbb{Q}-split torus $\Psi\left(K^{\times}\right)$has two fixed points τ_{ψ} and τ_{ψ}^{\prime} in $\mathbb{P}_{1}(\mathbb{Q}) \subset \mathcal{H}^{*}$.

$\Delta_{\psi}:=$ Geodesic joining τ_{ψ} to τ_{ψ}^{\prime}.

The cycle $\Delta_{\Psi} \subset X_{0}(N)(\mathbb{C})$ of real dimension one is called a modular symbol (of conductor m).

The cycle Δ_{ψ} when $D=m^{2}$: modular symbols.

When $D=m^{2}$, the \mathbb{Q}-split torus $\Psi\left(K^{\times}\right)$has two fixed points τ_{ψ} and τ_{Ψ}^{\prime} in $\mathbb{P}_{1}(\mathbb{Q}) \subset \mathcal{H}^{*}$.

$$
\Delta_{\psi}:=\text { Geodesic joining } \tau_{\psi} \text { to } \tau_{\psi}^{\prime}
$$

The cycle $\Delta_{\psi} \subset X_{0}(N)(\mathbb{C})$ of real dimension one is called a modular symbol (of conductor m).

The cycle Δ_{ψ} when $D=m^{2}$: modular symbols.

When $D=m^{2}$, the \mathbb{Q}-split torus $\Psi\left(K^{\times}\right)$has two fixed points τ_{Ψ} and τ_{Ψ}^{\prime} in $\mathbb{P}_{1}(\mathbb{Q}) \subset \mathcal{H}^{*}$.

$$
\Delta_{\psi}:=\text { Geodesic joining } \tau_{\Psi} \text { to } \tau_{\psi}^{\prime}
$$

The cycle $\Delta_{\psi} \subset X_{0}(N)(\mathbb{C})$ of real dimension one is called a modular symbol (of conductor m).

The cycle Δ_{ψ} when $D>0, D \neq m^{2}$: Shintani cycles.

In the remaining cases where $D>0$, the torus $\Psi\left(K^{\times}\right)$has two fixed points $\tau_{\Psi}, \tau_{\psi}^{\prime}$ in $\mathbb{P}_{1}(\mathbb{R})-\mathbb{P}_{1}(\mathbb{Q})$.

$$
\Delta_{\psi}:=\text { Image of geodesic joining } \tau_{\psi} \text { to } \tau_{\psi}^{\prime} \text {. }
$$

The cycle $\Delta_{\psi} \subset X_{0}(N)(\mathbb{C})$ is closed, of real dimension one.

The cycle Δ_{ψ} when $D>0, D \neq m^{2}$: Shintani cycles.

In the remaining cases where $D>0$, the torus $\Psi\left(K^{\times}\right)$has two fixed points $\tau_{\Psi}, \tau_{\psi}^{\prime}$ in $\mathbb{P}_{1}(\mathbb{R})-\mathbb{P}_{1}(\mathbb{Q})$.

$$
\Delta_{\psi}:=\text { Image of geodesic joining } \tau_{\psi} \text { to } \tau_{\psi}^{\prime}
$$

$$
\text { The cycle } \Delta_{\psi} \subset X_{0}(N)(\mathbb{C}) \text { is closed, of real dimension one. }
$$

It is called a Shintani cycle (of discriminant D).

The cycle Δ_{ψ} when $D>0, D \neq m^{2}$: Shintani cycles.

In the remaining cases where $D>0$, the torus $\Psi\left(K^{\times}\right)$has two fixed points $\tau_{\Psi}, \tau_{\psi}^{\prime}$ in $\mathbb{P}_{1}(\mathbb{R})-\mathbb{P}_{1}(\mathbb{Q})$.

$$
\Delta_{\psi}:=\text { Image of geodesic joining } \tau_{\psi} \text { to } \tau_{\psi}^{\prime}
$$

The cycle $\Delta_{\psi} \subset X_{0}(N)(\mathbb{C})$ is closed, of real dimension one.
It is called a Shintani cycle (of discriminant D).

Some more definitions

Let $\chi: G_{D} \longrightarrow \mathbb{C}^{\times}$be a (not necessarily quadratic!) character.

$$
\Delta_{D, \chi}:= \begin{cases}0 & \text { if } \Sigma_{D}=\emptyset \\ \sum_{\sigma \in G_{D}} \chi(\sigma) \Delta_{\psi^{\sigma}} & \text { with } \psi \in \Sigma_{D}\end{cases}
$$

Important special case: χ is quadratic, i.e., a genus character. It cuts out a bi-quadratic extension $\mathbb{Q}\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ where $D=D_{1} D_{2}$.

$$
\Delta_{D_{1}, D_{2}}:=\Delta_{D, \chi}
$$

Some more definitions

Let $\chi: G_{D} \longrightarrow \mathbb{C}^{\times}$be a (not necessarily quadratic!) character.

$$
\Delta_{D, \chi}:= \begin{cases}0 & \text { if } \Sigma_{D}=\emptyset \\ \sum_{\sigma \in G_{D}} \chi(\sigma) \Delta_{\psi^{\sigma}} & \text { with } \psi \in \Sigma_{D}\end{cases}
$$

Important special case: χ is quadratic, i.e., a genus character. It cuts out a bi-quadratic extension $\mathbb{Q}\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ where $D=D_{1} D_{2}$.

$$
\Delta_{D_{1}, D_{2}}:=\Delta_{D, \chi}
$$

Periods attached to $\Delta_{D, \chi}$ when $D>0$

Let $f \in S_{2}\left(\Gamma_{0}(N)\right)$ be a newform of weight two.

$$
\omega_{f}:=2 \pi i f(z) d z=f(q) \frac{d q}{q} \in \Omega^{1}\left(X_{0}(N) / K_{f}\right)
$$

We attach to f and the cycle $\Delta_{D, \chi}$ a period

Let $L\left(f / K_{D}, \chi, s\right)=$ Hasse-Weil L-series attached to f and $\chi \in G_{D}^{V}$
Convention: if $D=m^{2}$ we set

$$
L\left(f / K_{D}, \chi, s\right)=L(f, \chi, s) L(f, \bar{\chi}, s) .
$$

Periods attached to $\Delta_{D, \chi}$ when $D>0$

Let $f \in S_{2}\left(\Gamma_{0}(N)\right)$ be a newform of weight two.

$$
\omega_{f}:=2 \pi i f(z) d z=f(q) \frac{d q}{q} \in \Omega^{1}\left(X_{0}(N) / K_{f}\right)
$$

We attach to f and the cycle $\Delta_{D, \chi}$ a period

$$
\int_{\Delta_{D, \chi}} \omega_{f} \in \Lambda_{f, \chi}
$$

Let $L\left(f / K_{D}, \chi, s\right)=$ Hasse-Weil L-series attached to f and $\chi \in G_{D}^{V}$.
Convention: if $D=m^{2}$ we set

$$
L\left(f / K_{D}, \chi, s\right)=L(f, \chi, s) L(f, \bar{\chi}, s) .
$$

Periods attached to $\Delta_{D, \chi}$ when $D>0$

Let $f \in S_{2}\left(\Gamma_{0}(N)\right)$ be a newform of weight two.

$$
\omega_{f}:=2 \pi i f(z) d z=f(q) \frac{d q}{q} \in \Omega^{1}\left(X_{0}(N) / K_{f}\right)
$$

We attach to f and the cycle $\Delta_{D, \chi}$ a period

$$
\int_{\Delta_{D, \chi}} \omega_{f} \in \Lambda_{f, \chi}
$$

Let $L\left(f / K_{D}, \chi, s\right)=$ Hasse-Weil L-series attached to f and $\chi \in G_{D}^{\vee}$.
Convention: if $D=m^{2}$ we set

Periods attached to $\Delta_{D, \chi}$ when $D>0$

Let $f \in S_{2}\left(\Gamma_{0}(N)\right)$ be a newform of weight two.

$$
\omega_{f}:=2 \pi i f(z) d z=f(q) \frac{d q}{q} \in \Omega^{1}\left(X_{0}(N) / K_{f}\right)
$$

We attach to f and the cycle $\Delta_{D, \chi}$ a period

$$
\int_{\Delta_{D, \chi}} \omega_{f} \in \Lambda_{f, \chi}
$$

Let $L\left(f / K_{D}, \chi, s\right)=$ Hasse-Weil L-series attached to f and $\chi \in G_{D}^{\vee}$.
Convention: if $D=m^{2}$ we set

$$
L\left(f / K_{D}, \chi, s\right)=L(f, \chi, s) L(f, \bar{\chi}, s)
$$

Relation with special values of L-series (the case $D>0$).

Theorem

Let D be a positive discriminant.
(1) If $\Sigma_{D} \neq \emptyset$, then $L\left(f / K_{D}, \chi, s\right)$ vanishes to even order at $s=1$ for all $\chi \in G_{D}^{\vee}$.
(2) In that case,

$$
\left|\int_{\Delta_{D, \chi}} \omega_{f}\right|^{2}=L\left(f / K_{D}, \chi, 1\right) \quad\left(\bmod \left(K_{f} K_{\chi}\right)^{\times}\right)
$$

Heegner points attached to $\Delta_{D, \chi}$ when $D<0$

The zero-dimensional cycles $\Delta_{D, \chi}$ are homologically trivial when $\chi \neq 1$.

Assume for simplicity that $K_{f}=\mathbb{Q}$. Then f corresponds to a modular elliptic curve E_{f} / \mathbb{Q} and $\mathbb{C} / \Lambda_{f} \sim E_{f}(\mathbb{C})$. We can view $J_{D, \chi}$ as a point, denoted $P_{D, \chi}$, in $E_{f}(\mathbb{C}) \otimes z \mathbb{Z}[\chi]$.

Theory of complex multiplication \Rightarrow the point $P_{D, \chi}$ belongs to $E_{f}\left(H_{D}\right) \otimes \mathbb{Z}[\chi]$.

Heegner points attached to $\Delta_{D, \chi}$ when $D<0$

The zero-dimensional cycles $\Delta_{D, \chi}$ are homologically trivial when $\chi \neq 1$.

$$
J_{D, \chi}:=\operatorname{AJ}\left(\Delta_{D, \chi}\right)=\int_{\partial^{-1}\left(\Delta_{D, \chi}\right)} \omega_{f} \in \mathbb{C} /\left(\Lambda_{f} \otimes \mathbb{Z}(\chi)\right)
$$

Assume for simplicity that $K_{f}=\mathbb{Q}$. Then f corresponds to a modular elliptic curve E_{f} / \mathbb{Q} and $\mathbb{C} / \Lambda_{f} \sim E_{f}(\mathbb{C})$. We can view $J_{D, \chi}$ as a point, denoted $P_{D, \chi}$, in $E_{f}(\mathbb{C}) \otimes z \mathbb{Z}[\chi]$.

Theory of complex multiplication \Rightarrow the point $P_{D, \chi}$ belongs to $E_{f}\left(H_{D}\right) \otimes \mathbb{Z}[\chi]$.

Heegner points attached to $\Delta_{D, \chi}$ when $D<0$

The zero-dimensional cycles $\Delta_{D, \chi}$ are homologically trivial when $\chi \neq 1$.

$$
J_{D, \chi}:=\operatorname{AJ}\left(\Delta_{D, \chi}\right)=\int_{\partial^{-1}\left(\Delta_{D, \chi}\right)} \omega_{f} \in \mathbb{C} /\left(\Lambda_{f} \otimes \mathbb{Z}(\chi)\right)
$$

Assume for simplicity that $K_{f}=\mathbb{Q}$. Then f corresponds to a modular elliptic curve E_{f} / \mathbb{Q} and $\mathbb{C} / \Lambda_{f} \sim E_{f}(\mathbb{C})$.
as a point, denoted $P_{D, \chi}$, in $E_{f}(\mathbb{C}) \otimes z \mathbb{Z}[\chi]$
Theory of complex multiplication \Rightarrow the point $P_{D, \chi}$ belongs to $E_{f}\left(H_{D}\right) \otimes \mathbb{Z}[\chi]$.

Heegner points attached to $\Delta_{D, \chi}$ when $D<0$

The zero-dimensional cycles $\Delta_{D, \chi}$ are homologically trivial when $\chi \neq 1$.

$$
J_{D, \chi}:=\operatorname{AJ}\left(\Delta_{D, \chi}\right)=\int_{\partial^{-1}\left(\Delta_{D, \chi}\right)} \omega_{f} \in \mathbb{C} /\left(\Lambda_{f} \otimes \mathbb{Z}(\chi)\right)
$$

Assume for simplicity that $K_{f}=\mathbb{Q}$. Then f corresponds to a modular elliptic curve E_{f} / \mathbb{Q} and $\mathbb{C} / \Lambda_{f} \sim E_{f}(\mathbb{C})$. We can view $J_{D, \chi}$ as a point, denoted $P_{D, \chi}$, in $E_{f}(\mathbb{C}) \otimes_{Z} \mathbb{Z}[\chi]$.

Theory of complex multiplication \Rightarrow the point $P_{D, \chi}$ belongs to $E_{f}\left(H_{D}\right) \otimes \mathbb{Z}[\chi]$.

Heegner points attached to $\Delta_{D, \chi}$ when $D<0$

The zero-dimensional cycles $\Delta_{D, \chi}$ are homologically trivial when $\chi \neq 1$.

$$
J_{D, \chi}:=\operatorname{AJ}\left(\Delta_{D, \chi}\right)=\int_{\partial^{-1}\left(\Delta_{D, \chi}\right)} \omega_{f} \in \mathbb{C} /\left(\Lambda_{f} \otimes \mathbb{Z}(\chi)\right)
$$

Assume for simplicity that $K_{f}=\mathbb{Q}$. Then f corresponds to a modular elliptic curve E_{f} / \mathbb{Q} and $\mathbb{C} / \Lambda_{f} \sim E_{f}(\mathbb{C})$. We can view $J_{D, \chi}$ as a point, denoted $P_{D, \chi}$, in $E_{f}(\mathbb{C}) \otimes_{z} \mathbb{Z}[\chi]$.

Theory of complex multiplication \Rightarrow the point $P_{D, \chi}$ belongs to $E_{f}\left(H_{D}\right) \otimes \mathbb{Z}[\chi]$.

Relation with derivatives of L-series (the case $D<0$).

Theorem (Gross-Zagier, Zhang)

Let D be a negative discriminant.
(1) If $\Sigma_{D} \neq \emptyset$, then $L\left(f / K_{D}, \chi, s\right)$ vanishes to odd order at $s=1$ for all $\chi \in G_{D}^{\vee}$.
(2) In that case,

$$
\left\langle P_{D, \chi}, P_{D, \bar{\chi}}\right\rangle=L^{\prime}\left(f / K_{D}, \chi, 1\right) \quad\left(\bmod \left(K_{f} K_{\chi}\right)^{\times}\right)
$$

Application to elliptic curves

Let E be a modular elliptic curve, attached to an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$.

Theorem (Kolyvagin)

Conclusion: Heegner points give us a tight control on the arithmetic of elliptic curves over class fields of imaginary quadratic fields.

Application to elliptic curves

Let E be a modular elliptic curve, attached to an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$.

Theorem (Kolyvagin)
Assume that $D<0$ and that $\Sigma_{D} \neq \emptyset$. If $P_{D, \chi} \neq 0$ in $E\left(H_{D}\right) \otimes \mathbb{Q}(\chi)$, then $\left(E\left(H_{D}\right) \otimes \mathbb{Q}(\chi)\right)^{\chi}$ is spanned by $P_{D, \chi}$ and the corresponding (χ part of) the Shafarevich-Tate group is finite.

Conclusion: Heegner points give us a tight control on the arithmetic of elliptic curves over class fields of imaginary quadratic fields.

Application to elliptic curves

Let E be a modular elliptic curve, attached to an eigenform $f \in S_{2}\left(\Gamma_{0}(N)\right)$.

Theorem (Kolyvagin)
Assume that $D<0$ and that $\Sigma_{D} \neq \emptyset$. If $P_{D, \chi} \neq 0$ in $E\left(H_{D}\right) \otimes \mathbb{Q}(\chi)$, then $\left(E\left(H_{D}\right) \otimes \mathbb{Q}(\chi)\right)^{\chi}$ is spanned by $P_{D, \chi}$ and the corresponding (χ part of) the Shafarevich-Tate group is finite.

Conclusion: Heegner points give us a tight control on the arithmetic of elliptic curves over class fields of imaginary quadratic fields.

A tantalising open question when $D>0$
Question

$$
\int_{\Delta_{D, \chi}} \omega_{f} \neq 0 \stackrel{?}{\Longrightarrow}\left(E\left(H_{D}\right) \otimes \mathbb{Z}[\chi]\right)^{\chi}, \mathbb{M}\left(E / H_{D}\right)^{\chi}<\infty .
$$

Possible strategy (ongoing work in progress with V. Rotger and I. Sols; cf. my AWS lectures) based on
(1) Diagonal "Gross-Kudla-Schoen" cycles on triple products of modular curves;
(2) p-adic deformations (à la Hida) of the images of these cycles under p-adic étale Abel-Jacobi maps.

To be discussed at next year's Toronto-Montreal meeting devoted to algebraic cycles!

A tantalising open question when $D>0$

Question

$$
\int_{\Delta_{D, \chi}} \omega_{f} \neq 0 \stackrel{?}{\Longrightarrow}\left(E\left(H_{D}\right) \otimes \mathbb{Z}[\chi]\right)^{\chi}, \Psi\left(E / H_{D}\right)^{\chi}<\infty .
$$

Possible strategy (ongoing work in progress with V. Rotger and I. Sols; cf. my AWS lectures) based on
(1) Diagonal "Gross-Kudla-Schoen" cycles on triple products of modular curves;
(2) p-adic deformations (à la Hida) of the images of these cycles under p-adic étale Abel-Jacobi maps.

To be discussed at next year's Toronto-Montreal meeting devoted to algebraic cycles!

A tantalising open question when $D>0$

Question

$$
\int_{\Delta_{D, \chi}} \omega_{f} \neq 0 \stackrel{?}{\Longrightarrow}\left(E\left(H_{D}\right) \otimes \mathbb{Z}[\chi]\right)^{\chi}, \Psi\left(E / H_{D}\right)^{\chi}<\infty .
$$

Possible strategy (ongoing work in progress with V. Rotger and I. Sols; cf. my AWS lectures) based on
(1) Diagonal "Gross-Kudla-Schoen" cycles on triple products of modular curves;
(2) p-adic deformations (à la Hida) of the images of these cycles under p-adic étale Abel-Jacobi maps.

To be discussed at next year's Toronto-Montreal meeting devoted to algebraic cycles!

A tantalising open question when $D>0$

Question

$$
\int_{\Delta_{D, \chi}} \omega_{f} \neq 0 \stackrel{?}{\Longrightarrow}\left(E\left(H_{D}\right) \otimes \mathbb{Z}[\chi]\right)^{\chi}, \mathbb{\Pi}\left(E / H_{D}\right)^{\chi}<\infty .
$$

Possible strategy (ongoing work in progress with V. Rotger and I. Sols; cf. my AWS lectures) based on
(1) Diagonal "Gross-Kudla-Schoen" cycles on triple products of modular curves;
(2) p-adic deformations (à la Hida) of the images of these cycles under p-adic étale Abel-Jacobi maps.

To be discussed at next year's Toronto-Montreal meeting devoted to algebraic cycles!

A tantalising open question when $D>0$

Question

$$
\int_{\Delta_{D, \chi}} \omega_{f} \neq 0 \stackrel{?}{\Longrightarrow}\left(E\left(H_{D}\right) \otimes \mathbb{Z}[\chi]\right)^{\chi}, \mathbb{\Pi}\left(E / H_{D}\right)^{\chi}<\infty .
$$

Possible strategy (ongoing work in progress with V. Rotger and I. Sols; cf. my AWS lectures) based on
(1) Diagonal "Gross-Kudla-Schoen" cycles on triple products of modular curves;
(2) p-adic deformations (à la Hida) of the images of these cycles under p-adic étale Abel-Jacobi maps.

To be discussed at next year's Toronto-Montreal meeting devoted to algebraic cycles!

Algebraic cycles on Hilbert modular surfaces

$F=$ real quadratic field. $v_{1}, v_{2}: F \longrightarrow \mathbb{R}$. Set $x_{j}:=v_{j}(x)$.
$X=$ associated Hilbert modular surface.

$$
X(\mathbb{C})=(\text { Compactification of }) \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right) \backslash \mathcal{H} \times \mathcal{H} .
$$

The surface X contains an interesting supply of algebraic cycles.
(1) Codimension 2: CM points.
(2) Codimension 1: Hirzebruch-Zagier divisors.

We will probably hear more about these in the lectures by Kumar and Steve tomorrow.

Algebraic cycles on Hilbert modular surfaces

$F=$ real quadratic field. $v_{1}, v_{2}: F \longrightarrow \mathbb{R}$. Set $x_{j}:=v_{j}(x)$.
$X=$ associated Hilbert modular surface.

$$
X(\mathbb{C})=(\text { Compactification of }) \mathbf{S L}_{2}\left(\mathcal{O}_{F}\right) \backslash \mathcal{H} \times \mathcal{H}
$$

The surface X contains an interesting supply of algebraic cycles.
(1) Codimension 2: CM points.
(2) Codimension 1: Hirzebruch-Zagier divisors.

We will probably hear more about these in the lectures by Kumar and Steve tomorrow.

Algebraic cycles on Hilbert modular surfaces

$F=$ real quadratic field. $v_{1}, v_{2}: F \longrightarrow \mathbb{R}$. Set $x_{j}:=v_{j}(x)$.
$X=$ associated Hilbert modular surface.

$$
X(\mathbb{C})=(\text { Compactification of }) \mathbf{S L}_{2}\left(\mathcal{O}_{F}\right) \backslash \mathcal{H} \times \mathcal{H}
$$

The surface X contains an interesting supply of algebraic cycles.
(1) Codimension 2: CM points.
(2) Codimension 1: Hirzebruch-Zagier divisors.

We will probably hear more about these in the lectures by Kumar and Steve tomorrow.

Algebraic cycles on Hilbert modular surfaces

$F=$ real quadratic field. $v_{1}, v_{2}: F \longrightarrow \mathbb{R}$. Set $x_{j}:=v_{j}(x)$.
$X=$ associated Hilbert modular surface.

$$
X(\mathbb{C})=(\text { Compactification of }) \mathbf{S L}_{2}\left(\mathcal{O}_{F}\right) \backslash \mathcal{H} \times \mathcal{H}
$$

The surface X contains an interesting supply of algebraic cycles.
(1) Codimension 2: CM points.
(2) Codimension 1: Hirzebruch-Zagier divisors.

We will probably hear more about these in the lectures by Kumar and Steve tomorrow.

Algebraic cycles on Hilbert modular surfaces

$F=$ real quadratic field. $v_{1}, v_{2}: F \longrightarrow \mathbb{R}$. Set $x_{j}:=v_{j}(x)$.
$X=$ associated Hilbert modular surface.

$$
X(\mathbb{C})=(\text { Compactification of }) \mathbf{S L}_{2}\left(\mathcal{O}_{F}\right) \backslash \mathcal{H} \times \mathcal{H}
$$

The surface X contains an interesting supply of algebraic cycles.
(1) Codimension 2: CM points.
(2) Codimension 1: Hirzebruch-Zagier divisors.

We will probably hear more about these in the lectures by Kumar and Steve tomorrow.

Cycles on Hilbert modular surfaces

I will focus on cycles that are very analogous to Shintani cycles, in the four-manifold $X(\mathbb{C})$. They are indexed by F-algebra embeddings

$$
\Psi: K \longrightarrow M_{2}(F)
$$

where $K=F(\sqrt{D})$ is a quadratic extension of F.
There are now three cases to consider.

1. $D_{1}, D_{2}>0$: the totally real case.
2. $D_{1}, D_{2}<0$: the complex multiplication (CM) case
3. $D_{1}<0, D_{2}>0$: the "almost totally real" (ATR) case.

Cycles on Hilbert modular surfaces

I will focus on cycles that are very analogous to Shintani cycles, in the four-manifold $X(\mathbb{C})$. They are indexed by F-algebra embeddings

$$
\Psi: K \longrightarrow M_{2}(F)
$$

where $K=F(\sqrt{D})$ is a quadratic extension of F.
There are now three cases to consider.

1. $D_{1}, D_{2}>0$: the totally real case.
2. $D_{1}, D_{2}<0$: the complex multiplication (CM) case.
3. $D_{1}<0, D_{2}>0$: the "almost totally real" (ATR) case.

Cycles on Hilbert modular surfaces

I will focus on cycles that are very analogous to Shintani cycles, in the four-manifold $X(\mathbb{C})$. They are indexed by F-algebra embeddings

$$
\Psi: K \longrightarrow M_{2}(F)
$$

where $K=F(\sqrt{D})$ is a quadratic extension of F.
There are now three cases to consider.

1. $D_{1}, D_{2}>0$: the totally real case.
2. $D_{1}, D_{2}<0$: the complex multiplication (CM) case.
3. $D_{1}<0, D_{2}>0$: the "almost totally real" (ATR) case.

Cycles on Hilbert modular surfaces

I will focus on cycles that are very analogous to Shintani cycles, in the four-manifold $X(\mathbb{C})$. They are indexed by F-algebra embeddings

$$
\Psi: K \longrightarrow M_{2}(F)
$$

where $K=F(\sqrt{D})$ is a quadratic extension of F.
There are now three cases to consider.

1. $D_{1}, D_{2}>0$: the totally real case.
2. $D_{1}, D_{2}<0$: the complex multiplication (CM) case.
3. $D_{1}<0, D_{2}>0$: the "almost totally real" (ATR) case.

Cycles on Hilbert modular surfaces

I will focus on cycles that are very analogous to Shintani cycles, in the four-manifold $X(\mathbb{C})$. They are indexed by F-algebra embeddings

$$
\Psi: K \longrightarrow M_{2}(F)
$$

where $K=F(\sqrt{D})$ is a quadratic extension of F.
There are now three cases to consider.

1. $D_{1}, D_{2}>0$: the totally real case.
2. $D_{1}, D_{2}<0$: the complex multiplication (CM) case.
3. $D_{1}<0, D_{2}>0$: the "almost totally real" (ATR) case.

The totally real case

For $j=1,2$,

$$
\Psi\left(K \otimes_{v_{j}} \mathbb{R}\right)^{\times} \text {has two fixed points } \tau_{j}, \tau_{j}^{\prime} \in \mathbb{R}
$$

Let $\Upsilon_{j}:=$ geodesic from τ_{j} to τ_{j}^{\prime}.

The totally real case

For $j=1,2$,

$$
\Psi\left(K \otimes_{v_{j}} \mathbb{R}\right)^{\times} \text {has two fixed points } \tau_{j}, \tau_{j}^{\prime} \in \mathbb{R} .
$$

Let $\Upsilon_{j}:=$ geodesic from τ_{j} to τ_{j}^{\prime}.

$$
\Delta_{\psi}:=\text { Image of } \Upsilon_{1} \times \Upsilon_{2} \text { in } X(\mathbb{C})
$$

The CM case

For $j=1,2$,
$\left(\Psi(K) \otimes_{v_{j}} \mathbb{R}\right)^{\times}$has a single fixed point $\tau_{j} \in \mathcal{H}$.
$\Delta_{\psi}:=\left\{\left(\tau_{1}, \tau_{2}\right)\right\}$

The CM case

For $j=1,2$,
$\left(\Psi(K) \otimes_{V_{j}} \mathbb{R}\right)^{\times}$has a single fixed point $\tau_{j} \in \mathcal{H}$.

$$
\Delta_{\psi}:=\left\{\left(\tau_{1}, \tau_{2}\right)\right\}
$$

- ${ }^{\tau_{1}}$
$\bullet^{\tau_{2}}$

The ATR case

$\tau_{1}:=$ fixed point of $\Psi\left(K^{\times}\right) \circlearrowleft \mathcal{H}_{1}$;
$\tau_{2}, \tau_{2}^{\prime}:=$ fixed points of $\Psi\left(K^{\times}\right) \circlearrowleft\left(\mathcal{H}_{2} \cup \mathbb{R}\right)$;

Key fact: The cycles $\Delta_{\Psi} \subset X(\mathbb{C})$ are null-homologous.

The ATR case

$\tau_{1}:=$ fixed point of $\Psi\left(K^{\times}\right) \circlearrowleft \mathcal{H}_{1}$;
$\tau_{2}, \tau_{2}^{\prime}:=$ fixed points of $\Psi\left(K^{\times}\right) \circlearrowleft\left(\mathcal{H}_{2} \cup \mathbb{R}\right) ;$

$$
\Delta_{\Psi}=\left\{\tau_{1}\right\} \times \operatorname{geodesic}\left(\tau_{2} \rightarrow \tau_{2}^{\prime}\right) .
$$

Key fact: The cycles $\Delta_{\Psi} \subset X(\mathbb{C})$ are null-homologous.

The ATR case

$\tau_{1}:=$ fixed point of $\Psi\left(K^{\times}\right) \circlearrowleft \mathcal{H}_{1}$;
$\tau_{2}, \tau_{2}^{\prime}:=$ fixed points of $\Psi\left(K^{\times}\right) \circlearrowleft\left(\mathcal{H}_{2} \cup \mathbb{R}\right) ;$

$$
\Delta_{\psi}=\left\{\tau_{1}\right\} \times \operatorname{geodesic}\left(\tau_{2} \rightarrow \tau_{2}^{\prime}\right) .
$$

Key fact: The cycles $\Delta_{\Psi} \subset X(\mathbb{C})$ are null-homologous.

Elliptic curves

Let E be an elliptic curve over F, of conductor 1 .

Simplifying Assumptions: $h^{+}(F)=1, N=1$.

Counting points mod \mathfrak{p} yields $\mathfrak{n} \mapsto a(\mathfrak{n}) \in \mathbb{Z}$, on the integral ideals of \mathcal{O}_{F}.

Generating series

$$
G\left(z_{1}, z_{2}\right):=\sum_{n \gg 0} a((n)) e^{2 \pi i\left(\frac{n_{1}}{d_{1}} z_{1}+\frac{n_{2}}{d_{2}} z_{2}\right)}
$$

where $d:=$ totally positive generator of the different of F

Elliptic curves

Let E be an elliptic curve over F, of conductor 1 . Simplifying Assumptions: $h^{+}(F)=1, N=1$.

Counting points mod \mathfrak{p} yields $\mathfrak{n} \longmapsto a(\mathfrak{n}) \in \mathbb{Z}$, on the integral ideals of \mathcal{O}_{F}.

Generating series

where $d:=$ totally positive generator of the different of F

Elliptic curves

Let E be an elliptic curve over F, of conductor 1 .
Simplifying Assumptions: $h^{+}(F)=1, N=1$.
Counting points mod \mathfrak{p} yields $\mathfrak{n} \mapsto a(\mathfrak{n}) \in \mathbb{Z}$, on the integral ideals of \mathcal{O}_{F}.

Generating series
where $d:=$ totally positive generator of the different of F

Elliptic curves

Let E be an elliptic curve over F, of conductor 1 .
Simplifying Assumptions: $h^{+}(F)=1, N=1$.
Counting points mod \mathfrak{p} yields $\mathfrak{n} \mapsto a(\mathfrak{n}) \in \mathbb{Z}$, on the integral ideals of \mathcal{O}_{F}.

Generating series

$$
G\left(z_{1}, z_{2}\right):=\sum_{n \gg 0} a((n)) e^{2 \pi i\left(\frac{n_{1}}{d_{1}} z_{1}+\frac{n_{2}}{d_{2}} z_{2}\right)}
$$

where $d:=$ totally positive generator of the different of F.

Modularity

Definition

The elliptic curve E is said to be modular if G is a Hilbert modular form of weight $(2,2)$:

$$
G\left(\gamma_{1} z_{1}, \gamma_{2} z_{2}\right)=\left(c_{1} z_{1}+d_{2}\right)^{2}\left(c_{2} z_{2}+d_{2}\right)^{2} G\left(z_{1}, z_{2}\right)
$$

for all

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbf{S L}_{2}\left(\mathcal{O}_{F}\right)
$$

We will assume that E is modular in this sense. (This is known to be true, in many cases.)

Modularity

Definition

The elliptic curve E is said to be modular if G is a Hilbert modular form of weight $(2,2)$:

$$
G\left(\gamma_{1} z_{1}, \gamma_{2} z_{2}\right)=\left(c_{1} z_{1}+d_{2}\right)^{2}\left(c_{2} z_{2}+d_{2}\right)^{2} G\left(z_{1}, z_{2}\right)
$$

for all

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbf{S L}_{2}\left(\mathcal{O}_{F}\right)
$$

We will assume that E is modular in this sense. (This is known to be true, in many cases.)

Geometric formulation of modularity

The differential form

$$
\alpha_{G}:=G\left(z_{1}, z_{2}\right) d z_{1} d z_{2}
$$

is a holomorphic (hence closed) 2-form on

$$
X(\mathbb{C}):=\mathbf{S L}_{2}\left(\mathcal{O}_{F}\right) \backslash(\mathcal{H} \times \mathcal{H})
$$

We will also work with the harmonic form

$$
\omega_{G}:=G\left(z_{1}, z_{2}\right) d z_{1} d z_{2}+G\left(\epsilon_{1} z_{1}, \epsilon_{2} \bar{z}_{2}\right) d z_{1} d \bar{z}_{2},
$$

where $\epsilon \in \mathcal{O}_{F}^{\times}$satisfies $\epsilon_{1}>0, \epsilon_{2}<0$.
Claim: The periods of ω_{G} against the cycles Δ_{Ψ} encode
information about the arithmetic of E.

Geometric formulation of modularity

The differential form

$$
\alpha_{G}:=G\left(z_{1}, z_{2}\right) d z_{1} d z_{2}
$$

is a holomorphic (hence closed) 2-form on

$$
X(\mathbb{C}):=\mathbf{S L}_{2}\left(\mathcal{O}_{F}\right) \backslash(\mathcal{H} \times \mathcal{H})
$$

We will also work with the harmonic form

$$
\omega_{G}:=G\left(z_{1}, z_{2}\right) d z_{1} d z_{2}+G\left(\epsilon_{1} z_{1}, \epsilon_{2} \bar{z}_{2}\right) d z_{1} d \overline{z_{2}}
$$

where $\epsilon \in \mathcal{O}_{F}^{\times}$satisfies $\epsilon_{1}>0, \epsilon_{2}<0$.
Claim: The periods of ω_{G} against the cycles Δ_{ψ} encode
information about the arithmetic of E.

Geometric formulation of modularity

The differential form

$$
\alpha_{G}:=G\left(z_{1}, z_{2}\right) d z_{1} d z_{2}
$$

is a holomorphic (hence closed) 2-form on

$$
X(\mathbb{C}):=\mathbf{S L}_{2}\left(\mathcal{O}_{F}\right) \backslash(\mathcal{H} \times \mathcal{H})
$$

We will also work with the harmonic form

$$
\omega_{G}:=G\left(z_{1}, z_{2}\right) d z_{1} d z_{2}+G\left(\epsilon_{1} z_{1}, \epsilon_{2} \bar{z}_{2}\right) d z_{1} d \bar{z}_{2}
$$

where $\epsilon \in \mathcal{O}_{F}^{\times}$satisfies $\epsilon_{1}>0, \epsilon_{2}<0$.
Claim: The periods of ω_{G} against the cycles Δ_{ψ} encode information about the arithmetic of E.

Periods of ω_{G} : the totally real case.

Theorem

$$
\left|\int_{\Delta_{D \cdot \chi}} \omega_{G}\right|^{2}=L(E / K, \chi, 1) \quad\left(\bmod K(\chi)^{\times}\right) .
$$

Shimura-Oda period relations: It is conjectured that

is a lattice in \mathbb{C} which is commensurable with the Weierstrass lattice of E

Periods of ω_{G} : the totally real case.

Theorem

$$
\left|\int_{\Delta_{D \cdot \chi}} \omega_{G}\right|^{2}=L(E / K, \chi, 1) \quad\left(\bmod K(\chi)^{\times}\right) .
$$

Shimura-Oda period relations: It is conjectured that

$$
\Lambda_{G}:=\left\langle\int_{\Delta_{\psi}} \omega_{G}, \quad \Psi \in \Sigma_{D} \text { with } D \gg 0\right\rangle \subset \mathbb{C}
$$

is a lattice in \mathbb{C} which is commensurable with the Weierstrass lattice of E.

Periods of ω_{G} : the $C M$ case

Since $\Delta_{D, \chi}$ is 0 -dimensional, expressions like

$$
\int_{\Delta_{D, \chi}} \omega_{G}, \quad \int_{\partial^{-1} \Delta_{D, \chi}} \omega_{G}
$$

do not make sense!
Question: Can CM cycles on X be used to construct points on E ?
Related Question (Eyal Goren's thesis). Can CM cycles on X be used to construct canonical units in abelian extensions of CM fields, generalising elliptic units?

Answer: For elliptic curves, probably not...

Periods of ω_{G} : the $C M$ case

Since $\Delta_{D, \chi}$ is 0 -dimensional, expressions like

$$
\int_{\Delta_{D, \chi}} \omega_{G}, \quad \int_{\partial^{-1} \Delta_{D, \chi}} \omega_{G}
$$

do not make sense!
Question: Can CM cycles on X be used to construct points on E ?
Related Question (Eyal Goren's thesis). Can CM cycles on X be
used to construct canonical units in abelian extensions of CM
fields, generalising elliptic units?
Answer: For elliptic curves, probably not.

Periods of ω_{G} : the CM case

Since $\Delta_{D, \chi}$ is 0 -dimensional, expressions like

$$
\int_{\Delta_{D, \chi}} \omega_{G}, \quad \int_{\partial^{-1} \Delta_{D, \chi}} \omega_{G}
$$

do not make sense!
Question: Can CM cycles on X be used to construct points on E ?
Related Question (Eyal Goren's thesis). Can CM cycles on X be used to construct canonical units in abelian extensions of CM fields, generalising elliptic units?

Answer: For elliptic curves, probably not.

Periods of ω_{G} : the CM case

Since $\Delta_{D, \chi}$ is 0 -dimensional, expressions like

$$
\int_{\Delta_{D, \chi}} \omega_{G}, \quad \int_{\partial^{-1} \Delta_{D, \chi}} \omega_{G}
$$

do not make sense!
Question: Can CM cycles on X be used to construct points on E ?
Related Question (Eyal Goren's thesis). Can CM cycles on X be used to construct canonical units in abelian extensions of CM fields, generalising elliptic units?

Answer: For elliptic curves, probably not...

Elliptic curves of conductor 1 and the BSD conjecture

Consider the twist E_{K} of E by a quadratic extension K / F.

Proposition

(1) If K is totally real or $C M$, then E_{K} has even analytic rank.
(2) If K is an ATR (Almost Totally Real) extension, then E_{K} has odd analytic rank.

In particular, we do not expect points in $E(K)$ when K is CM ...
Suggestion: ATR cycles on Hilbert modular surfaces are a more appropriate generalisation of CM cycles on modular curves.

Elliptic curves of conductor 1 and the BSD conjecture

Consider the twist E_{K} of E by a quadratic extension K / F.

Proposition

(1) If K is totally real or $C M$, then E_{K} has even analytic rank.
(2) If K is an ATR (Almost Totally Real) extension, then E_{K} has odd analytic rank.

In particular, we do not expect points in $E(K)$ when K is CM ...
Suggestion: ATR cycles on Hilbert modular surfaces are a more appropriate generalisation of CM cycles on modular curves.

Periods of ω_{G} : the ATR case

Recall: The cycles Δ_{ψ} are homologically trivial (after eventually tensoring with $\mathbb{Q})$, because $H_{1}(X(\mathbb{C}), \mathbb{Q})=0$.

$$
P_{\Psi}:=\int_{\partial^{-1} \Delta_{\Psi}} \omega_{G} \in \mathbb{C} / \Lambda_{G} \simeq E(\mathbb{C})
$$

Periods of ω_{G} : the ATR case

Recall: The cycles Δ_{ψ} are homologically trivial (after eventually tensoring with $\mathbb{Q})$, because $H_{1}(X(\mathbb{C}), \mathbb{Q})=0$.

$$
P_{\Psi}:=\int_{\partial^{-1} \Delta_{\psi}} \omega_{G} \in \mathbb{C} / \Lambda_{G} \simeq E(\mathbb{C})
$$

Conjecture (Adam Logan, D)

If $\Psi \in \Sigma_{D}$, then the point P_{Ψ} belongs to $E\left(H_{D}\right) \otimes \mathbb{Q}$, where H_{D} is the Hilbert class field of the ATR extension $K=F(\sqrt{D})$.

Elliptic units for totally real fields

Elliptic units: $\alpha \in \mathcal{O}_{Y_{0}(N)}^{\times}, \Delta$ a CM divisor $\Rightarrow \alpha(\Delta) \in \mathcal{O}_{H}^{\times}$.

where $E_{\alpha}=$ an Eisenstein series of weight two.
ATR units: Let $E=$ Eisenstein series of weight two on $S L_{2}\left(O_{F}\right)$,

$$
z_{\psi}=\int_{\partial^{-1} \Delta_{\Psi}} \omega_{E} \in \mathbb{C} /(2 \pi i \mathbb{Z})
$$

Conjecture (Pierre Charollois,D)
If $\Psi \in \Sigma_{D}$ then $u_{W_{I}}=\exp \left(\tau_{W_{I}}\right)$ belongs to $O_{H_{D}}^{\times}$where H_{D} is the Hilbert class field of the ATR extension $K=F(\sqrt{D})$

Elliptic units for totally real fields

Elliptic units: $\alpha \in \mathcal{O}_{Y_{0}(N)}^{\times}, \Delta$ a CM divisor $\Rightarrow \alpha(\Delta) \in \mathcal{O}_{H}^{\times}$.

$$
\log \alpha(\Delta)=\int_{\partial^{-1} \Delta} \frac{d \alpha}{\alpha}=\int_{\partial^{-1} \Delta} \omega_{E_{\alpha}},
$$

where $E_{\alpha}=$ an Eisenstein series of weight two.
ATR units: Let $E=$ Eisenstein series of weight two on $\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)$,

Conjecture (Pierre Charollois,D)
If $\Psi \in \Sigma_{D}$, then $u_{\|}=\exp \left(\tau_{I I}\right)$ belongs to $O_{H_{D}}^{\times}$. where H_{D} is the
Hilbert class field of the ATR extension $K=F(\sqrt{D})$

Elliptic units for totally real fields

Elliptic units: $\alpha \in \mathcal{O}_{Y_{0}(N)}^{\times}, \Delta$ a CM divisor $\Rightarrow \alpha(\Delta) \in \mathcal{O}_{H}^{\times}$.

$$
\log \alpha(\Delta)=\int_{\partial^{-1} \Delta} \frac{d \alpha}{\alpha}=\int_{\partial^{-1} \Delta} \omega_{E_{\alpha}},
$$

where $E_{\alpha}=$ an Eisenstein series of weight two.
ATR units: Let $E=$ Eisenstein series of weight two on $\mathbf{S L}_{2}\left(\mathcal{O}_{F}\right)$,

$$
z_{\Psi}=\int_{\partial^{-1} \Delta_{\Psi}} \omega_{E} \in \mathbb{C} /(2 \pi i \mathbb{Z})
$$

Conjecture (Pierre Charollois, D)
If $\psi \in \Sigma_{D}$, then $u_{\psi}=\exp \left(z_{w}\right)$ belongs to $O_{H_{D}}^{\times}$. where H_{D} is the
Hilbert class field of the ATR extension $K=F(\sqrt{D})$

Elliptic units for totally real fields

Elliptic units: $\alpha \in \mathcal{O}_{Y_{0}(N)}^{\times}, \Delta$ a CM divisor $\Rightarrow \alpha(\Delta) \in \mathcal{O}_{H}^{\times}$.

$$
\log \alpha(\Delta)=\int_{\partial^{-1} \Delta} \frac{d \alpha}{\alpha}=\int_{\partial^{-1} \Delta} \omega_{E_{\alpha}},
$$

where $E_{\alpha}=$ an Eisenstein series of weight two.
ATR units: Let $E=$ Eisenstein series of weight two on $\mathbf{S L}_{2}\left(\mathcal{O}_{F}\right)$,

$$
z_{\Psi}=\int_{\partial^{-1} \Delta_{\Psi}} \omega_{E} \in \mathbb{C} /(2 \pi i \mathbb{Z})
$$

Conjecture (Pierre Charollois,D)

If $\Psi \in \Sigma_{D}$, then $u_{\Psi}=\exp \left(z_{\Psi}\right)$ belongs to $\mathcal{O}_{H_{D}}^{\times}$. where H_{D} is the Hilbert class field of the ATR extension $K=F(\sqrt{D})$.

The general question

Understand the process whereby ATR cycles on $X(\mathbb{C})$ lead to the construction of global invariants such as algebraic points on elliptic curves and Stark units.

Eventual applications:

a) Construction of Euler systems attached to elliptic curves.
b) "Explicit" construction of class fields.
c) Stark's conjectures for abelian extensions of ATR fields.

The general question

Understand the process whereby ATR cycles on $X(\mathbb{C})$ lead to the construction of global invariants such as algebraic points on elliptic curves and Stark units.

Eventual applications:
a) Construction of Euler systems attached to elliptic curves.
b) "Explicit" construction of class fields.
c) Stark's conjectures for abelian extensions of ATR fields.

The general question

Understand the process whereby ATR cycles on $X(\mathbb{C})$ lead to the construction of global invariants such as algebraic points on elliptic curves and Stark units.

Eventual applications:
a) Construction of Euler systems attached to elliptic curves.
b) "Explicit" construction of class fields.
c) Stark's conjectures for abelian extensions of ATR fields.

The general question

Understand the process whereby ATR cycles on $X(\mathbb{C})$ lead to the construction of global invariants such as algebraic points on elliptic curves and Stark units.

Eventual applications:
a) Construction of Euler systems attached to elliptic curves.
b) "Explicit" construction of class fields.
c) Stark's conjectures for abelian extensions of ATR fields.

The BSD conjecture for curves of conductor 1

Conjecture (on ATR twists)
Let K be an ATR extension of F and let E_{K} be the associated twist of E. If $L^{\prime}\left(E_{K} / F, 1\right) \neq 0$, then $E_{K}(F)$ has rank one and $Ш\left(E_{K} / F\right)<\infty$.

The BSD conjecture over totally real fields is very well understood in analytic rank ≤ 1, thanks mostly to the work of Zhang and his school.

Yet the conjecture on ATR twists continues to present a genuine

 mystery.Modest proposal: Exhibit settings where the mysterious ATR construction can be directly compared with a classical Heegner point construction.

The BSD conjecture for curves of conductor 1

Conjecture (on ATR twists)
Let K be an ATR extension of F and let E_{K} be the associated twist of E. If $L^{\prime}\left(E_{K} / F, 1\right) \neq 0$, then $E_{K}(F)$ has rank one and $Ш\left(E_{K} / F\right)<\infty$.

The BSD conjecture over totally real fields is very well understood in analytic rank ≤ 1, thanks mostly to the work of Zhang and his school.

> Yet the conjecture on ATR twists continues to present a genuine mystery.

> Modest proposal: Exhibit settings where the mysterious ATR construction can be directly compared with a classical Heegner point construction

The BSD conjecture for curves of conductor 1

Conjecture (on ATR twists)
Let K be an ATR extension of F and let E_{K} be the associated twist of E. If $L^{\prime}\left(E_{K} / F, 1\right) \neq 0$, then $E_{K}(F)$ has rank one and $\Pi\left(E_{K} / F\right)<\infty$.

The BSD conjecture over totally real fields is very well understood in analytic rank ≤ 1, thanks mostly to the work of Zhang and his school.

Yet the conjecture on ATR twists continues to present a genuine mystery.

Modest proposal: Exhibit settings where the mysterious ATR construction can be directly compared with a classical Heegner point construction

The BSD conjecture for curves of conductor 1

Conjecture (on ATR twists)
Let K be an ATR extension of F and let E_{K} be the associated twist of E. If $L^{\prime}\left(E_{K} / F, 1\right) \neq 0$, then $E_{K}(F)$ has rank one and $Ш\left(E_{K} / F\right)<\infty$.

The BSD conjecture over totally real fields is very well understood in analytic rank ≤ 1, thanks mostly to the work of Zhang and his school.

Yet the conjecture on ATR twists continues to present a genuine mystery.

Modest proposal: Exhibit settings where the mysterious ATR construction can be directly compared with a classical Heegner point construction.

\mathbb{Q}-curves

Definition

A \mathbb{Q}-curve over F is an elliptic curve E / F which is F-isogenous to its Galois conjugate.

Pinch, Cremona: For $N=\operatorname{disc}(F)$ prime and ≤ 1000, there are exactly 17 isogeny classes of elliptic curves of conductor 1 over $\mathbb{Q}(\sqrt{N})$,

$N=29,37,41,109,157,229,257,337,349$,

$397,461,509,509,877,733,881,997$.
All but two $(N=509,877)$ are \mathbb{Q}-curves.

\mathbb{Q}-curves

Definition

A \mathbb{Q}-curve over F is an elliptic curve E / F which is F-isogenous to its Galois conjugate.

Pinch, Cremona: For $N=\operatorname{disc}(F)$ prime and ≤ 1000, there are exactly 17 isogeny classes of elliptic curves of conductor 1 over $\mathbb{Q}(\sqrt{N})$,

$$
N=29,37,41,109,157,229,257,337,349
$$

$$
397,461,509,509,877,733,881,997 .
$$

All but two $(N=509,877)$ are \mathbb{Q}-curves.

\mathbb{Q}-curves and elliptic modular forms

Theorem (Ribet)

Let E be a \mathbb{Q}-curve of conductor 1 over $F=\mathbb{Q}(\sqrt{N})$. Then there is an elliptic modular form $f \in S_{2}\left(\Gamma_{1}(N), \varepsilon_{F}\right)$ with fourier coefficients in a quadratic (imaginary) field such that

$$
L(E / F, s)=L(f, s) L\left(f^{\sigma}, s\right)
$$

The Hilbert modular form G on $G L_{2}\left(\mathbb{A}_{F}\right)$ is the Doi-Naganuma lift of f. Modular parametrisation defined over F

\mathbb{Q}-curves and elliptic modular forms

Theorem (Ribet)

Let E be a \mathbb{Q}-curve of conductor 1 over $F=\mathbb{Q}(\sqrt{N})$. Then there is an elliptic modular form $f \in S_{2}\left(\Gamma_{1}(N), \varepsilon_{F}\right)$ with fourier coefficients in a quadratic (imaginary) field such that

$$
L(E / F, s)=L(f, s) L\left(f^{\sigma}, s\right)
$$

The Hilbert modular form G on $G L_{2}\left(\mathbb{A}_{F}\right)$ is the Doi-Naganuma lift of f. Modular parametrisation defined over F :

$$
J_{1}(N) \longrightarrow E
$$

Birch and Swinnerton-Dyer for \mathbb{Q}-curves

Theorem (Victor Rotger, Yu Zhao, D)
Let E be a \mathbb{Q}-curve of conductor 1 over a real quadratic field F, and let M / F be an $A T R$ extension of F. If $L^{\prime}\left(E_{M} / F, 1\right) \neq 0$, then $E_{M}(F)$ has rank one and $\Pi\left(E_{M} / F\right)$ is finite.

Caveat: Note the change in notation: the ATR extension is now denoted as M rather than K.

Birch and Swinnerton-Dyer for \mathbb{Q}-curves

Theorem (Victor Rotger, Yu Zhao, D)
Let E be a \mathbb{Q}-curve of conductor 1 over a real quadratic field F, and let M / F be an $A T R$ extension of F. If $L^{\prime}\left(E_{M} / F, 1\right) \neq 0$, then $E_{M}(F)$ has rank one and $\Pi\left(E_{M} / F\right)$ is finite.

Caveat: Note the change in notation: the ATR extension is now denoted as M rather than K.

Some Galois theory

Let $\mathcal{M}=$ Galois closure of M over \mathbb{Q}. Then $\operatorname{Gal}(\mathcal{M} / \mathbb{Q})=D_{8}$.
This group contains two copies of the Klein 4-group:

$$
V_{F}=\left\langle\tau_{M}, \tau_{M}^{\prime}\right\rangle, \quad V_{K}=\left\langle\tau_{L}, \tau_{L}^{\prime}\right\rangle
$$

Some Galois theory

Suppose that $\quad F=\mathcal{M}^{V_{F}} \quad M=\mathcal{M}^{\tau_{M}} \quad M^{\prime}=\mathcal{M}^{\tau_{M}^{\prime}}$, and set $\quad K=\mathcal{M}^{V_{K}} \quad L=\mathcal{M}^{\tau_{L}} \quad L^{\prime}=\mathcal{M}^{\tau_{L}^{\prime}}$.

Key facts about K and L

Let $\left\{\begin{array}{l}\chi_{M}: \mathbb{A}_{F}^{\times} \longrightarrow \pm 1 \text { be the quadratic character attached to } M / F \text {; } \\ \chi_{L}: \mathbb{A}_{K}^{\times} \longrightarrow \pm 1 \text { be the quadratic character attached to } L / K .\end{array}\right.$
(1) $K=\mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, and satisfies a suitable "Heegner hypothesis"
(2) The central character $\left.\chi_{L}\right|_{\mathbb{A}_{0}^{x}}$ is equal to ε_{F}.
(3) $\operatorname{Ind}_{F}^{\mathbb{Q}} \chi_{M}=\operatorname{Ind}_{K}^{\mathbb{Q}} \chi_{L}$;

Key facts about K and L

Let $\left\{\begin{array}{l}\chi_{M}: \mathbb{A}_{F}^{\times} \longrightarrow \pm 1 \text { be the quadratic character attached to } M / F \text {; } \\ \chi_{L}: \mathbb{A}_{K}^{\times} \longrightarrow \pm 1 \text { be the quadratic character attached to } L / K .\end{array}\right.$
(1) $K=\mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, and satisfies a suitable "Heegner hypothesis";
(2) The central character $\left.\chi_{L}\right|_{\mathbb{A}_{0}^{\times}}$is equal to ε_{F}
(3) $\operatorname{Ind}_{F}^{\mathbb{Q}} \chi_{M}=\operatorname{Ind}_{K}^{\mathbb{Q}} \chi_{L}$;

Key facts about K and L

Let $\left\{\begin{array}{l}\chi_{M}: \mathbb{A}_{F}^{\times} \longrightarrow \pm 1 \text { be the quadratic character attached to } M / F ; \\ \chi_{L}: \mathbb{A}_{K}^{\times} \longrightarrow \pm 1 \text { be the quadratic character attached to } L / K .\end{array}\right.$
(1) $K=\mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, and satisfies a suitable "Heegner hypothesis";
(2) The central character $\left.\chi_{L}\right|_{\mathbb{A}_{\mathbb{Q}}} \times$ is equal to ε_{F}.
(3) $\operatorname{lnd}_{F}^{\mathbb{E}} \chi_{M}=\operatorname{lnd}_{K}^{\mathbb{Q}} \chi_{L}$;

Key facts about K and L

Let $\left\{\begin{array}{l}\chi_{M}: \mathbb{A}_{F}^{\times} \longrightarrow \pm 1 \text { be the quadratic character attached to } M / F ; \\ \chi_{L}: \mathbb{A}_{K}^{\times} \longrightarrow \pm 1 \text { be the quadratic character attached to } L / K .\end{array}\right.$
(1) $K=\mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, and satisfies a suitable "Heegner hypothesis";
(2) The central character $\left.\chi_{L}\right|_{\mathbb{A}_{\mathbb{Q}}}$ is equal to ε_{F}.
(3) $\operatorname{Ind}_{F}^{\mathbb{Q}} \chi_{M}=\operatorname{Ind}_{K}^{\mathbb{Q}} \chi_{L}$;

The Artin formalism

Let $f \in S_{2}\left(\Gamma_{0}(N), \varepsilon_{F}\right)$ and let E / F be associated elliptic curve.

$$
\begin{aligned}
L\left(E_{M} / F, s\right) & =L\left(E / F, \chi_{M}, s\right) \\
& =L\left(f / F, \chi_{M}, s\right) \\
& =L\left(f \otimes \operatorname{lnd} \mathbb{Q}_{F}^{\mathbb{Q}} \chi_{M}, s\right) \\
& =L\left(f \otimes \operatorname{lnd} \mathbb{Q}_{K}^{\mathbb{Q}} \chi_{L}, s\right) \\
& =L\left(f / K, \chi_{L}, s\right)
\end{aligned}
$$

In particular, $L^{\prime}\left(E_{M} / F, 1\right) \neq 0$ implies that $L^{\prime}\left(f / K, \chi_{L}, 1\right) \neq 0$.

The Artin formalism

Let $f \in S_{2}\left(\Gamma_{0}(N), \varepsilon_{F}\right)$ and let E / F be associated elliptic curve.

$$
\begin{aligned}
L\left(E_{M} / F, s\right) & =L\left(E / F, \chi_{M}, s\right) \\
& =L\left(f / F, \chi_{M}, s\right) \\
& =L\left(f \otimes \operatorname{lnd}{ }_{F}^{\mathbb{Q}} \chi_{M}, s\right) \\
& =L\left(f \otimes \operatorname{lnd} \mathbb{Q}_{K}^{\mathbb{Q}} \chi_{L}, s\right) \\
& =L\left(f / K, \chi_{L}, s\right)
\end{aligned}
$$

The Artin formalism

Let $f \in S_{2}\left(\Gamma_{0}(N), \varepsilon_{F}\right)$ and let E / F be associated elliptic curve.

$$
\begin{aligned}
L\left(E_{M} / F, s\right) & =L\left(E / F, \chi_{M}, s\right) \\
& =L\left(f / F, \chi_{M}, s\right) \\
& =L\left(f \otimes \operatorname{lnd}{ }_{F}^{\mathbb{Q}} \chi_{M}, s\right) \\
& =L\left(f \otimes \operatorname{lnd}{ }_{K}^{\mathbb{Q}} \chi_{L}, s\right) \\
& =L\left(f / K, \chi_{L}, s\right)
\end{aligned}
$$

In particular, $L^{\prime}\left(E_{M} / F, 1\right) \neq 0$ implies that $L^{\prime}\left(f / K, \chi_{L}, 1\right) \neq 0$.

The work of Tian, Yuan, Zhang and Zhang

The following strikingly general theorem applies to forms on $\Gamma_{1}(N)$ with non-trivial nebentype character.

Furthermore $\mathbb{\Pi}\left(A_{f} / L\right)^{-}$is finite.

The work of Tian, Yuan, Zhang and Zhang

The following strikingly general theorem applies to forms on $\Gamma_{1}(N)$ with non-trivial nebentype character.

Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang)
If $L^{\prime}\left(f / K, \chi_{L}, 1\right) \neq 0$, then $A_{f}(L)^{-} \otimes \mathbb{Q}$ has dimension one over T_{f}, and therefore

$$
\operatorname{rank}\left(A_{f}(L)^{-}\right)=2
$$

Furthermore $\amalg\left(A_{f} / L\right)^{-}$is finite.

The work of Tian, Yuan, Zhang and Zhang

The following strikingly general theorem applies to forms on $\Gamma_{1}(N)$ with non-trivial nebentype character.

Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang) If $L^{\prime}\left(f / K, \chi_{L}, 1\right) \neq 0$, then $A_{f}(L)^{-} \otimes \mathbb{Q}$ has dimension one over T_{f}, and therefore

$$
\operatorname{rank}\left(A_{f}(L)^{-}\right)=2
$$

Furthermore $\amalg\left(A_{f} / L\right)^{-}$is finite.

$$
\operatorname{rank}\left(A_{f}(L)^{-}\right)=\operatorname{rank}\left(A_{f}(M)^{-}\right), \quad A_{f}(M)^{-}=E(M)^{-} \oplus E(M)^{-}
$$

The work of Tian, Yuan, Zhang and Zhang

The following strikingly general theorem applies to forms on $\Gamma_{1}(N)$ with non-trivial nebentype character.

Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang) If $L^{\prime}\left(f / K, \chi_{L}, 1\right) \neq 0$, then $A_{f}(L)^{-} \otimes \mathbb{Q}$ has dimension one over T_{f}, and therefore

$$
\operatorname{rank}\left(A_{f}(L)^{-}\right)=2
$$

Furthermore $\amalg\left(A_{f} / L\right)^{-}$is finite.
$\operatorname{rank}\left(A_{f}(L)^{-}\right)=\operatorname{rank}\left(A_{f}(M)^{-}\right), \quad A_{f}(M)^{-}=E(M)^{-} \oplus E(M)^{-}$.

Corollary

If $L^{\prime}\left(E_{M} / F, 1\right) \neq 0$, then $\operatorname{rank}\left(E_{M}(F)\right)=1$ and $\Pi\left(E_{M} / F\right)<\infty$.

A final question

In the setting of \mathbb{Q}-curves, we have two constructions of a point in $E_{M}(F)$, with $M=F(\sqrt{D})$ ATR:

(1) A "classical" Heegner point $P_{M}(f)$ attached to the elliptic cusp form $f \in S_{2}\left(\Gamma_{1}(N), \varepsilon_{N}\right)$.
(2) A conjectural ATR point $P_{M}^{?}(G)=P_{D, 1}\left(\omega_{G}\right)$ attached to the Hilbert modular form $G=D N(f)$.

Conjecture (Rotger, Zhao, D)
There exists a constant $\ell \in \mathbb{Q}^{\times}$, not depending on M, such that

$$
P_{M}(f)=P_{M}^{?}(G) .
$$

This statement relates Abel-Jacobi type invariants attached to an

A final question

In the setting of \mathbb{Q}-curves, we have two constructions of a point in $E_{M}(F)$, with $M=F(\sqrt{D})$ ATR:
(1) A "classical" Heegner point $P_{M}(f)$ attached to the elliptic cusp form $f \in S_{2}\left(\Gamma_{1}(N), \varepsilon_{N}\right)$.
(2) A conjectural ATR point $P_{M}(G)=P_{D, 1}\left(\omega_{G}\right)$ attached to the Hilbert modular form $G=D N(f)$.

Conjecture (Rotger, Zhao, D)
There exists a constant $\ell \in \mathbb{Q}^{\times}$, not depending on M, such that

This statement relates Abel-Jacobi type invariants attached to an elliptic cusp form, with those of its Doi-Naganuma

A final question

In the setting of \mathbb{Q}-curves, we have two constructions of a point in $E_{M}(F)$, with $M=F(\sqrt{D})$ ATR:
(1) A "classical" Heegner point $P_{M}(f)$ attached to the elliptic cusp form $f \in S_{2}\left(\Gamma_{1}(N), \varepsilon_{N}\right)$.
(2) A conjectural ATR point $P_{M}^{?}(G)=P_{D, 1}\left(\omega_{G}\right)$ attached to the Hilbert modular form $G=D N(f)$.

There exists a constant $\ell \in \mathbb{Q}^{\times}$, not depending on M, such that

This statement relates Abel-Jacobi type invariants attached to an elliptic cusp form, with those of its Doi-Naganuma

A final question

In the setting of \mathbb{Q}-curves, we have two constructions of a point in $E_{M}(F)$, with $M=F(\sqrt{D})$ ATR:
(1) A "classical" Heegner point $P_{M}(f)$ attached to the elliptic cusp form $f \in S_{2}\left(\Gamma_{1}(N), \varepsilon_{N}\right)$.
(2) A conjectural ATR point $P_{M}^{?}(G)=P_{D, 1}\left(\omega_{G}\right)$ attached to the Hilbert modular form $G=D N(f)$.

Conjecture (Rotger, Zhao, D)

There exists a constant $\ell \in \mathbb{Q}^{\times}$, not depending on M, such that

$$
P_{M}(f)=P_{M}^{?}(G)
$$

This statement relates Abel-Jacobi type invariants attached to an

A final question

In the setting of \mathbb{Q}-curves, we have two constructions of a point in $E_{M}(F)$, with $M=F(\sqrt{D})$ ATR:
(1) A "classical" Heegner point $P_{M}(f)$ attached to the elliptic cusp form $f \in S_{2}\left(\Gamma_{1}(N), \varepsilon_{N}\right)$.
(2) A conjectural ATR point $P_{M}^{?}(G)=P_{D, 1}\left(\omega_{G}\right)$ attached to the Hilbert modular form $G=D N(f)$.

Conjecture (Rotger, Zhao, D)

There exists a constant $\ell \in \mathbb{Q}^{\times}$, not depending on M, such that

$$
P_{M}(f)=P_{M}^{?}(G)
$$

This statement relates Abel-Jacobi type invariants attached to an elliptic cusp form, with those of its Doi-Naganuma lift.

A Big Thank You to

Eyal,

Steve,

