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Special cycles on modular curves

Modular curves (and Shimura curves) are equipped with a rich
supply of arithmetically interesting topological cycles.

Let X0(N)= modular curve of level N,

X0(N)(C) = Γ0(N)\H∗.
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Quadratic embeddings

The cycles are naturally indexed by embeddings

Ψ : K −→ M2(Q),

where K is a commutative (quadratic) subring of C.

Σ := {Ψ : K −→ M2(Q)}/Γ0(N).

Disc(Ψ) = Disc(Ψ(K ) ∩M0(N)).

Let D be a discriminant (not necessarily fundamental):

ΣD := {Ψ ∈ Σ : Disc(Ψ) = D}.
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Some Key Facts

1 The (narrow) class group GD = cl(D) acts naturally on ΣD ,
without fixed points.

2 #ΣD = #GD ·#{I COD : OD/I ' Z/NZ}.

Goal: Associate to each Ψ ∈ Σ a (topological) cycle

∆Ψ ⊂ X0(N)(C).
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The cycle ∆Ψ when D < 0: CM points.

The rational torus

Ψ(K×) ⊂ GL2(Q) 	 H

has a unique fixed point τΨ ∈ H. We set

∆Ψ := {τΨ}.

•τΨ

The point τΨ is a CM point on X0(N) (of discriminant D).
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The cycle ∆Ψ when D = m2: modular symbols.

When D = m2, the Q-split torus Ψ(K×) has two fixed points τΨ

and τ ′Ψ in P1(Q) ⊂ H∗.

∆Ψ := Geodesic joining τΨ to τ ′Ψ.

τΨ τ ′Ψ
• •

The cycle ∆Ψ ⊂ X0(N)(C) of real dimension one is called a
modular symbol (of conductor m).
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The cycle ∆Ψ when D > 0, D 6= m2: Shintani cycles.

In the remaining cases where D > 0, the torus Ψ(K×) has two
fixed points τΨ, τ

′
Ψ in P1(R)− P1(Q).

∆Ψ := Image of geodesic joining τΨ to τ ′Ψ.

τΨ τ ′Ψ
• •

The cycle ∆Ψ ⊂ X0(N)(C) is closed, of real dimension one.

It is called a Shintani cycle (of discriminant D).
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Some more definitions

Let χ : GD −→ C× be a (not necessarily quadratic!) character.

∆D,χ :=

 0 if ΣD = ∅∑
σ∈GD

χ(σ)∆Ψσ with Ψ ∈ ΣD .

Important special case: χ is quadratic, i.e., a genus character. It
cuts out a bi-quadratic extension Q(

√
D1,
√

D2) where D = D1D2.

∆D1,D2 := ∆D,χ.
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Periods attached to ∆D,χ when D > 0

Let f ∈ S2(Γ0(N)) be a newform of weight two.

ωf := 2πif (z)dz = f (q)
dq

q
∈ Ω1(X0(N)/Kf ).

We attach to f and the cycle ∆D,χ a period∫
∆D,χ

ωf ∈ Λf ,χ.

Let L(f /KD , χ, s)= Hasse-Weil L-series attached to f and χ ∈ G∨D .

Convention: if D = m2 we set

L(f /KD , χ, s) = L(f , χ, s)L(f , χ̄, s).
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Relation with special values of L-series (the case D > 0).

Theorem

Let D be a positive discriminant.

1 If ΣD 6= ∅, then L(f /KD , χ, s) vanishes to even order at s = 1
for all χ ∈ G∨D .

2 In that case,∣∣∣∣∣
∫

∆D,χ

ωf

∣∣∣∣∣
2

= L(f /KD , χ, 1) (mod (Kf Kχ)×).



Heegner points attached to ∆D,χ when D < 0

The zero-dimensional cycles ∆D,χ are homologically trivial when
χ 6= 1.

JD,χ := AJ(∆D,χ) =

∫
∂−1(∆D,χ)

ωf ∈ C/(Λf ⊗ Z(χ)).

Assume for simplicity that Kf = Q. Then f corresponds to a
modular elliptic curve Ef /Q and C/Λf ∼ Ef (C). We can view JD,χ

as a point, denoted PD,χ, in Ef (C)⊗Z Z[χ].

Theory of complex multiplication ⇒ the point PD,χ belongs to
Ef (HD)⊗ Z[χ].
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Relation with derivatives of L-series (the case D < 0).

Theorem (Gross-Zagier, Zhang)

Let D be a negative discriminant.

1 If ΣD 6= ∅, then L(f /KD , χ, s) vanishes to odd order at s = 1
for all χ ∈ G∨D .

2 In that case,

〈PD,χ,PD,χ̄〉 = L′(f /KD , χ, 1) (mod (Kf Kχ)×).



Application to elliptic curves

Let E be a modular elliptic curve, attached to an eigenform
f ∈ S2(Γ0(N)).

Theorem (Kolyvagin)

Assume that D < 0 and that ΣD 6= ∅. If PD,χ 6= 0 in
E (HD)⊗Q(χ), then (E (HD)⊗Q(χ))χ is spanned by PD,χ and
the corresponding (χ part of) the Shafarevich-Tate group is finite.

Conclusion: Heegner points give us a tight control on the
arithmetic of elliptic curves over class fields of imaginary quadratic
fields.
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A tantalising open question when D > 0

Question∫
∆D,χ

ωf 6= 0
?

=⇒ (E (HD)⊗ Z[χ])χ, LLI (E/HD)χ <∞.

Possible strategy (ongoing work in progress with V. Rotger and I.
Sols; cf. my AWS lectures) based on

1 Diagonal “Gross-Kudla-Schoen” cycles on triple products of
modular curves;

2 p-adic deformations (à la Hida) of the images of these cycles
under p-adic étale Abel-Jacobi maps.

To be discussed at next year’s Toronto-Montreal meeting devoted
to algebraic cycles!
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Algebraic cycles on Hilbert modular surfaces

F = real quadratic field. v1, v2 : F −→ R. Set xj := vj(x).

X =associated Hilbert modular surface.

X (C) = (Compactification of) SL2(OF )\H ×H.

The surface X contains an interesting supply of algebraic cycles.

1 Codimension 2: CM points.

2 Codimension 1: Hirzebruch-Zagier divisors.

We will probably hear more about these in the lectures by Kumar
and Steve tomorrow.
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Cycles on Hilbert modular surfaces

I will focus on cycles that are very analogous to Shintani cycles, in
the four-manifold X (C). They are indexed by F -algebra
embeddings

Ψ : K −→ M2(F ),

where K = F (
√

D) is a quadratic extension of F .

There are now three cases to consider.

1. D1,D2 > 0: the totally real case.

2. D1,D2 < 0: the complex multiplication (CM) case.

3. D1 < 0,D2 > 0: the “almost totally real” (ATR) case.
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The totally real case

For j = 1, 2,

Ψ(K ⊗vj R)× has two fixed points τj , τ
′
j ∈ R.

Let Υj := geodesic from τj to τ ′j .

∆Ψ := Image of Υ1 × Υ2 in X (C).

τ1 τ ′1
• • × τ2 τ ′2

• •
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The ATR case

τ1 := fixed point of Ψ(K×) 	 H1;

τ2, τ
′
2 := fixed points of Ψ(K×) 	 (H2 ∪ R);

∆Ψ = {τ1} × geodesic(τ2 → τ ′2).

•τ1

× τ2 τ ′2
• •

Key fact: The cycles ∆Ψ ⊂ X (C) are null-homologous.



The ATR case

τ1 := fixed point of Ψ(K×) 	 H1;

τ2, τ
′
2 := fixed points of Ψ(K×) 	 (H2 ∪ R);

∆Ψ = {τ1} × geodesic(τ2 → τ ′2).

•τ1

× τ2 τ ′2
• •

Key fact: The cycles ∆Ψ ⊂ X (C) are null-homologous.



The ATR case

τ1 := fixed point of Ψ(K×) 	 H1;

τ2, τ
′
2 := fixed points of Ψ(K×) 	 (H2 ∪ R);

∆Ψ = {τ1} × geodesic(τ2 → τ ′2).

•τ1

× τ2 τ ′2
• •

Key fact: The cycles ∆Ψ ⊂ X (C) are null-homologous.



Elliptic curves

Let E be an elliptic curve over F , of conductor 1.

Simplifying Assumptions: h+(F ) = 1, N = 1.

Counting points mod p yields n 7→ a(n) ∈ Z, on the integral ideals
of OF .

Generating series

G (z1, z2) :=
∑

n>>0

a((n))e
2πi

“
n1
d1

z1+
n2
d2

z2

”
,

where d := totally positive generator of the different of F .
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Modularity

Definition

The elliptic curve E is said to be modular if G is a Hilbert modular
form of weight (2, 2):

G (γ1z1, γ2z2) = (c1z1 + d2)2(c2z2 + d2)2G (z1, z2),

for all

γ =

 a b

c d

 ∈ SL2(OF ).

We will assume that E is modular in this sense. (This is known to
be true, in many cases.)
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Geometric formulation of modularity

The differential form

αG := G (z1, z2)dz1dz2

is a holomorphic (hence closed) 2-form on

X (C) := SL2(OF )\(H×H).

We will also work with the harmonic form

ωG := G (z1, z2)dz1dz2 + G (ε1z1, ε2z̄2)dz1dz̄2,

where ε ∈ O×F satisfies ε1 > 0, ε2 < 0.

Claim: The periods of ωG against the cycles ∆Ψ encode
information about the arithmetic of E .
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Periods of ωG : the totally real case.

Theorem ∣∣∣∣∣
∫

∆D.χ

ωG

∣∣∣∣∣
2

= L(E/K , χ, 1) (mod K (χ)×).

Shimura-Oda period relations: It is conjectured that

ΛG :=

〈∫
∆Ψ

ωG , Ψ ∈ ΣD with D >> 0

〉
⊂ C

is a lattice in C which is commensurable with the Weierstrass
lattice of E .
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Periods of ωG : the CM case

Since ∆D,χ is 0-dimensional, expressions like∫
∆D,χ

ωG ,

∫
∂−1∆D,χ

ωG

do not make sense!

Question: Can CM cycles on X be used to construct points on E ?

Related Question (Eyal Goren’s thesis). Can CM cycles on X be
used to construct canonical units in abelian extensions of CM
fields, generalising elliptic units?

Answer: For elliptic curves, probably not...
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Elliptic curves of conductor 1 and the BSD conjecture

Consider the twist EK of E by a quadratic extension K/F .

Proposition

1 If K is totally real or CM, then EK has even analytic rank.

2 If K is an ATR (Almost Totally Real) extension, then EK has
odd analytic rank.

In particular, we do not expect points in E (K ) when K is CM...

Suggestion: ATR cycles on Hilbert modular surfaces are a more
appropriate generalisation of CM cycles on modular curves.
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Periods of ωG : the ATR case

Recall: The cycles ∆Ψ are homologically trivial (after eventually
tensoring with Q), because H1(X (C),Q) = 0.

PΨ :=

∫
∂−1∆Ψ

ωG ∈ C/ΛG ' E (C).

Conjecture (Adam Logan,D)

If Ψ ∈ ΣD , then the point PΨ belongs to E (HD)⊗Q, where HD is
the Hilbert class field of the ATR extension K = F (

√
D).
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Elliptic units for totally real fields

Elliptic units: α ∈ O×Y0(N), ∆ a CM divisor ⇒ α(∆) ∈ O×H .

logα(∆) =

∫
∂−1∆

dα

α
=

∫
∂−1∆

ωEα ,

where Eα = an Eisenstein series of weight two.

ATR units: Let E =Eisenstein series of weight two on SL2(OF ),

zΨ =

∫
∂−1∆Ψ

ωE ∈ C/(2πiZ)

Conjecture (Pierre Charollois,D)

If Ψ ∈ ΣD , then uΨ = exp(zΨ) belongs to O×HD
. where HD is the

Hilbert class field of the ATR extension K = F (
√

D).
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The general question

Understand the process whereby ATR cycles on X (C) lead to the
construction of global invariants such as algebraic points on elliptic
curves and Stark units.

Eventual applications:

a) Construction of Euler systems attached to elliptic curves.

b) “Explicit” construction of class fields.

c) Stark’s conjectures for abelian extensions of ATR fields.
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The BSD conjecture for curves of conductor 1

Conjecture (on ATR twists)

Let K be an ATR extension of F and let EK be the associated
twist of E . If L′(EK/F , 1) 6= 0, then EK (F ) has rank one and
LLI (EK/F ) <∞.

The BSD conjecture over totally real fields is very well understood
in analytic rank ≤ 1, thanks mostly to the work of Zhang and his
school.

Yet the conjecture on ATR twists continues to present a genuine
mystery.

Modest proposal: Exhibit settings where the mysterious ATR
construction can be directly compared with a classical Heegner
point construction.
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Q-curves

Definition

A Q-curve over F is an elliptic curve E/F which is F -isogenous to
its Galois conjugate.

Pinch, Cremona: For N = disc(F ) prime and ≤ 1000, there are
exactly 17 isogeny classes of elliptic curves of conductor 1 over
Q(
√

N),

N = 29, 37, 41, 109, 157, 229, 257, 337, 349,

397, 461, 509, 509, 877, 733, 881, 997.

All but two (N = 509, 877) are Q-curves.
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Q-curves and elliptic modular forms

Theorem (Ribet)

Let E be a Q-curve of conductor 1 over F = Q(
√

N). Then there
is an elliptic modular form f ∈ S2(Γ1(N), εF ) with fourier
coefficients in a quadratic (imaginary) field such that

L(E/F , s) = L(f , s)L(f σ, s).

The Hilbert modular form G on GL2(AF ) is the Doi-Naganuma lift
of f . Modular parametrisation defined over F :

J1(N) −→ E .
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Birch and Swinnerton-Dyer for Q-curves

Theorem (Victor Rotger, Yu Zhao, D)

Let E be a Q-curve of conductor 1 over a real quadratic field F ,
and let M/F be an ATR extension of F . If L′(EM/F , 1) 6= 0, then
EM(F ) has rank one and LLI (EM/F ) is finite.

Caveat: Note the change in notation: the ATR extension is now
denoted as M rather than K .
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Some Galois theory

Let M= Galois closure of M over Q. Then Gal(M/Q) = D8.

This group contains two copies of the Klein 4-group:

VF = 〈τM , τ ′M〉, VK = 〈τL, τ ′L〉.

τ ′M
�

τL

�

τM

	

• ◦ •

τ ′L	◦ ◦

• ◦ •



Some Galois theory

Suppose that F =MVF M =MτM M ′ =Mτ ′M ,

and set K =MVK L =MτL L′ =Mτ ′L .

M

M
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Key facts about K and L

Let

 χM : A×F −→ ±1 be the quadratic character attached to M/F ;

χL : A×K −→ ±1 be the quadratic character attached to L/K .

1 K = Q(
√
−d) is an imaginary quadratic field, and satisfies a

suitable “Heegner hypothesis”;

2 The central character χL|A×Q is equal to εF .

3 IndQ
F χM = IndQ

K χL;
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The Artin formalism

Let f ∈ S2(Γ0(N), εF ) and let E/F be associated elliptic curve.

L(EM/F , s) = L(E/F , χM , s)

= L(f /F , χM , s)

= L(f ⊗ IndQ
F χM , s)

= L(f ⊗ IndQ
K χL, s)

= L(f /K , χL, s)

In particular, L′(EM/F , 1) 6= 0 implies that L′(f /K , χL, 1) 6= 0.
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The work of Tian, Yuan, Zhang and Zhang

The following strikingly general theorem applies to forms on Γ1(N)
with non-trivial nebentype character.

Theorem (Ye Tian, Xinyi Yuan, Shou-Wu Zhang, Wei Zhang)

If L′(f /K , χL, 1) 6= 0, then Af (L)− ⊗Q has dimension one over
Tf , and therefore

rank(Af (L)−) = 2.

Furthermore LLI (Af /L)− is finite.

rank(Af (L)−) = rank(Af (M)−), Af (M)− = E (M)− ⊕ E (M)−.

Corollary

If L′(EM/F , 1) 6= 0, then rank(EM(F )) = 1 and LLI (EM/F ) <∞.
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A final question

In the setting of Q-curves, we have two constructions of a point in
EM(F ), with M = F (

√
D) ATR:

1 A “classical” Heegner point PM(f ) attached to the elliptic
cusp form f ∈ S2(Γ1(N), εN).

2 A conjectural ATR point P?
M(G ) = PD,1(ωG ) attached to the

Hilbert modular form G = DN(f ).

Conjecture (Rotger, Zhao, D)

There exists a constant ` ∈ Q×, not depending on M, such that

PM(f ) = P?
M(G ).

This statement relates Abel-Jacobi type invariants attached to an
elliptic cusp form, with those of its Doi-Naganuma lift.
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