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Introduction

This is the second part of my talk, which relates to THE SHAPE
OF INNER SPACE, a new book I've written with the science writer
Steve Nadis. At the heart of this book is a mathematical
conjecture, raised by the geometer Eugenio Calabi, which ties
topology to geometry in ways that many mathematicians
considered hard to believe. | was among them. My colleagues and
| believed the conjecture was “too good to be true,” and, for
several years, | tried very hard to prove it was wrong. In my abject
failure to do so, | realized that Calabi must have been right after
all. | then spent another several years amassing the tools | would
need to prove the conjecture, just as he stated it.



VI. A Proof at Long Last

| felt | was close to that point in May 1976. | had all the ducks
lined up, as they say. Perhaps my confidence in this problem had
something to do with the fact that my girlfriend and | got engaged
at that time, while | was visiting her in Princeton. In June, | drove
cross-country with my fiance and her parents from Princeton to Los
Angeles. It was a very enjoyable trip. But for me, it wasn’t strictly
for pleasure. Along the way, | was working behind the scenes.



As | drove and sightseed, | was thinking long and hard about
solving both the Poincare conjecture and the Calabi conjecture-two
of the biggest problems of the day. For the Poincare conjecture,|
was hoping to use the theory of minimal surfaces. My original
ideas did not quite work, but | could see that the potential was
there. | just needed some time and, hopefully, some inspiration.



As for the Calabi conjecture, | thought through the estimates that
were needed to solve the nonlinear differential equations-all this
while | was out enjoying the American countryside. (As a young
man, | didn't know much in those days. But | did know enough
not to tell my future wife what | was thinking about at the time.)
When we arrived in Los Angeles, my friends at UCLA were very
friendly. We found a temporary apartment, and | then went out to
buy my first house with my future wife.



We got married in early September and moved to a house in the
San Fernando Valley. | was given an office right next to Professor
Robert Greene. It was a small office but still very nice. Best of all,
| could talk with Robert and other faculty members about subjects
of mutual interest-of which there were many. Marriage proved to
be truly enjoyable, so much so that within a couple of weeks in this
new setting, | was able to put all my ideas together to assemble a
proof of the Calabi conjecture.



Life was good. The proof of the Calabi conjecture looked beautiful
to me, especially after such a long struggle. It was extremely
satisfying to be the first person to understand the argument | had
concocted, and | felt certain that it would eventually be important
in physics. There is a poem that conveys some of what | was
feeling:

In the spring, the flowers are falling while | was watching

alone. The pair of birds (swallows) were flying together

in the light rain.

| felt that | was truly mingled with nature.



But then | got practical. | remembered all of my earlier efforts to
disprove the Calabi conjecture. Each of the supposed
counterexamples | had gathered turned out to be actual theorems
for which | now had a proof. What’s more, many of these
statements turned out to be important.



In September of 1976, David Mumford gave a seminar talk at
UCLA on solitions. | attended that lecture and another lecture he
gave at UC Irvine. There he discussed a conjecture related to the
work of Bogomolov about some inequalities between topological
numbers of algebraic surfaces. After staring at it, | realized it was
an exact consequence of the Calabi conjecture. | had used that
same inequality about three years ago in my attempt to disprove
the conjecture. (This particular idea was inspired by works of
Hitchin and Grey.) So | told Mumford about it.



| double checked it at home and sent the details to Mumford a
week later. | was gratified that the expected inequality turned out
to be true. But | was also able to prove a further result that led to
a solution of the famous Severi conjecture, which concerns the
algebraic structure of the so-called “projective space.” This
conjecture can be viewed as the Poincare conjecture in an algebraic
setting.
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The math department at UCLA provided me with a comfortable
space to develop my thought. Within a month or so, | met Bill
Meeks, whom I'd known from graduate school. Meeks and |
immediately got involved in a major development on minimal
surfaces, which related geometry with topology. It was used to
solve the Smith conjecture later.

Hence, in the period of less than a year, | managed to solve several
major mathematical problems. Needless to say, it was the most
fruitful year in my career, both personally and professionally.
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VII. Enter Physics

Upon solving the Calabi conjecture, | had a strong sense that | had
hit upon a beautiful piece of mathematics. And as such, | felt it
must be relevant to physics and to our deepest understanding of
nature. However, | did not know exactly where these ideas might
fit in, as | didn't know much physics at the time.

Which isn't to say that | knew nothing about physics. For
example, | had been interested in general relativity for a while. In
1973, | was exposed to a problem in general relativity called the
positive mass conjecture, which the physicist Robert Geroch
discussed at a conference in Stanford-the same conference at
which | had tried to disprove the Calabi conjecture.
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| started working on this problem with my friend (and former
student) Richard Schoen. Expressed in simple terms, the conjecture
says that the mass or energy of our universe-or any other isolated
physical system-must be positive. OQur proof made use of the
Plateau problem that | mentioned in the first part of this talk. This
work, moreover, brought me closer to my colleagues in physics.

13



| ran a special year of geometry seminars at the Institute for
Advanced Study in Princeton in 1979, where quite a few physicists
participated. Subsequently | moved to the Institute for Advanced
Study in Princeton as a faculty member. There were many young
postdoctoral fellows at the institute. In 1981, | decided to offer
Gary Horowitz a postdoctoral fellowship with the intention of
studying questions with him in classical relativity.
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VIIIl. Close Encounters with String Theory

A couple of years later, in 1984 to be exact, | got several phone
calls. Horowitz and his colleague Andy Strominger said that they
were very excited about a model for describing the vacuum state of
the universe, based on a new theory called string theory.
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15



String theory is built on the assumption that particles, at their
most basic level, are made of vibrating bits of tiny strings. In order
for the theory to be consistent with quantum theory, spacetime has
a certain symmetry built into it called supersymmetry. Spacetime
is also assumed to be ten dimensional.
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Vibrating strings
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Horowitz and Strominger were interested in the multidimensional
spaces whose existence | proved, mathematically, in my
confirmation of the Calabi conjecture. They believed that these
spaces could play an important role in string theory, as they
seemed to be endowed with the right kind of supersymmetry —a
property deemed essential to their theory. They asked me if their
assessment of the situation was correct and, to their delight, | told
them that it was.
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Then | got a phone call from Ed Witten whom I'd met in
Princeton the year before. Witten told me that this was the one of
the most exciting eras in theoretical physics. It was just like the
time when quantum mechanics was being developed.

Witten
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He told me that everyone who made contributions to quantum
mechanics in early days left their name in the history of physics.
He said that the important discoveries of early string theorists,
such as Michael Green and John Schwarz, could lead to the grand
unification of all forces—the goal that Einstein had spent the last
30 years of his life working toward.
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Witten was now collaborating with Candelas, Horowitz, and
Strominger, trying to figure out the shape, or geometry, of the six
"extra” dimensions of string theory. The physicists believed these
six dimensions were curled up in a tiny space, which they called
Calabi-Yau space —the same family of spaces originally proposed
by Calabi and later proved by me.

With Candelas, 2001
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String theory, again, assumes that spacetime has 10 dimensions
overall. The three large spatial dimensions that we're familiar with,
plus time, make up the four-dimensional spacetime of Einstein's
theory. But there are also six additional dimensions hidden away in
Calabi-Yau space, and this invisible space exists at every point in
“real space,” according to the theory, even though we can't see it.
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The existence of this extra-dimensional space is fantastic on its
own, but string theory goes much farther. It says that the exact
shape, or geometry, of Calabi-Yau space dictates the properties of
our universe and the kind of physics we see. The shape of
Calabi-Yau space—or the "shape of inner space,” as we put it in
our book —determines the kinds of particles that exist, their
masses, the ways in which they interact, and maybe even the
constants of nature.
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While Einstein had said the phenomenon of gravity is really a
manifestation of geometry, string theorists boldly proclaimed that
the physics of our universe is a consequence of the geometry of
Calabi-Yau space. That's why string theorists were so anxious to
figure out the precise shape of this six—dimensional space—a
problem we're still working on today.
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Witten was eager to learn more about Calabi-Yau spaces. He flew
from Princeton to San Diego to talk with me about how to
construct them. He also wanted to know how many Calabi-Yau
spaces there were for physicists to choose among. Initially,
physicists thought there might only be a few examples—a few
basic topologies— which made the goal of determining the shape
that corresponds to our universe seem a lot more manageable. But
we soon realized there were many more examples of Calabi-Yau
spaces-many more possible topologies—than were originally
anticipated.
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The task of figuring out the shape of inner space suddenly seemed
more daunting, and perhaps even hopeless if the number of
possibilities turned out to be infinite. The latter question has yet
to be settled, although | have always thought that the number of
Calabi-Yau's is finite. That number is certain to be big, but |
believe it is bounded.
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The great excitement over Calabi-Yau space started in 1984, when
physicists first found out about them. That enthusiasm kept up for
a couple years, before waning. But the excitement picked up again
in the late 1980s, when Brian Greene, Ronen Plesser, Philip
Candelas, and others began exploring the notion of “mirror
symmetry.”

Greene
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The basic idea here was that two different Calabi-Yau spaces,
which had different topologies and seemed to have nothing in
common, nevertheless gave rise to the same physics. This
established a previously unknown kinship between so-called mirror
pairs of Calabi-Yau's.
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The connection uncovered through physics proved to be extremely
powerful in the hands of mathematicians. When they were
stumped trying to solve a problem involving one Calabi-Yau space,
they could try solving the same problem on its mirror pair. On
many occasions, this approach was successful. As a result,
problems that had defied resolution, sometimes for as long as a
century, were now being solved. And a branch of mathematics
called enumerative geometry was suddenly rejuvenated. These
advances gave mathematicians greater respect for physicists, as
well as greater respect for string theory itself.
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IX. Conclusion

Before we get too carried away, we should bear in mind that string
theory, as the name suggests, is just a theory. It has not been
confirmed by physical experiments, nor have any experiments yet
been designed that could put that theory to a definitive test. So
the jury is still out on the question of whether string theory
actually describes nature, which was the original intent.
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On the positive side of the ledger, some extremely intriguing, as
well as powerful, mathematics has been inspired by string theory.
Mathematical formulae developed through this connection have
proved to be correct independent of the scientific validity of string
theory. So far it stands as the only consistent theory that unifies
the different forces. And it is beautiful. Moreover, the effort to
unify the different forces of nature has unexpectedly led to the
unification of different areas mathematics that at one time seemed
unrelated.
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We still don’t know what the final word will be. In the past two
thousand years, the concept of geometry has evolved over several
important stages to the current state of modern geometry. Each
time geometry has been transformed in a major way, the new
version has incorporated our improved understanding of nature
arrived at through advances in theoretical physics. It seems likely
that we shall witness another major development in the 21st
century, the advent of quantum geometry —a geometry that can
incorporate quantum physics in the small and general relativity in
the large.
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The fact that abstract mathematics can reveal so much about
nature is something | find both mysterious and fascinating. This is
one of the ideas that my coauthor and | have tried to get across in
our book, The Shape of Inner Space. We also hope that the book
gives you a description of how mathematicians work. They are not
necessarily weird people, such as a janitor who solves centuries-old
math problems on the side while mopping and dusting floors, as
described in the movie “Good Will Hunting”. Nor does a brilliant
mathematician have to be mentally ill, or exhibit otherwise bizarre
behavior, as depicted in another popular movie and book.
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Mathematicians are just scientists who look at nature from a
different, more abstract point of view than the empiricists. But the
work mathematicians do is still based on the truth and beauty of
nature, the same as it is in physics. Our book tries to convey the
thrill of working at the interface between mathematics and physics,
showing how important ideas flow through different disciplines,
with the result being the birth of new and important subjects.
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In the case of string theory, geometry and physics have come
together to produce some beautiful mathematics, as well as some
very intriguing physics. The mathematics is so beautiful, in fact,
and it has branched out into so many different areas, that it makes
you wonder whether the physicists might be onto something after
all.

The story is still unfolding, to be sure, and | consider myself lucky
to have been part of it.
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