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1684: Newton’s law of universal attraction

21/r



The Newton equations for point masses

xi = xi(t) ∈ R
3, mass mi, i = 1...N

ẍi = −
∑

j 6=i

mj ∇W (xi − xj)

W (x) = − G
4π |x| Newton (gravitational) potential
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What do trajectories look like as t → ∞??
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Epistemologic paradox

The K-A-M Theorem “never” applies to real systems

(planets are not small enough!)

Still has been a revolution in classical mechanics, for

mathematicians and physicists.



Another approximation of interest

So many particles that the system looks continuous!

Let us enjoy again a numerical simulation by Dubinski.





The mean field approximation

N ≥ 1012 simple equations

for positions xi and velocities vi

yN→∞

one (complicated) equation

for µt(dx dv)

µt[A]: fraction of mass at time t within A

∑

j

mj W
(
xj(t) − x

)
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∫

x′,v′

W (x′ − x) µt(dx′ dv′)
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F = −∇W ∗ ρ, ρ(t, x) =

∫
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NB: Rigorous justification is still open for singular

interactions (gravitation/electric: W ∼ ±1/r in d = 3)

Best result so far: Hauray–Jabin (2007): W ∼ log 1/r...



Boltzmann and Vlasov equations: pillars of kinetic theory
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1946: Landau’s “amazing discovery”

Landau linearizes the Vlasov equation around f 0(v): for

entire (analytic) data, force damps to 0 with rate λL =

inf
k

inf
{
Re ξ; −4π2 |k|2 Ŵ (k)

∫ ∞

0

∫

Rd

f 0(v) e−2iπkt·v e2πξt t dt dv = 1
}

Ex: f 0(v) = e−|v|2 : Coulomb interaction λL > 0;

Newton interaction, λL > 0 only for scales < LJ



Long-time behavior of Vlasov equation

• Landau damping: perturbations may damp away

spontaneously, in an apparently irreversible way

(approach to equilibrium)

• Since then the large-time behavior of Vlasov has been

much much discussed. “Well-accepted” and observed e.g.

in astrophysics: relaxation in a “short” time, before

entropy increases. Fundamental!

• Static approaches: Lynden-Bell, Robert, Miller... But

no one has any theoretical explanation based on

dynamics

... except for the Landau damping perturbative effect.
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∂h

∂t
+ v · ∇xh + F [h] ·

(
∇vf

0 + ∇vh
)

= 0 (NLin V)

∂h

∂t
+ v · ∇xh + F [h] ·

(
∇vf

0 + 0
)

= 0 (Lin V)

• OK if |∇vh| ≪ |∇vf
0|, but |∇vh(t, · )| ≥ ε t → +∞

“destroying the validity of the linear theory” (Backus 1960)

• Natural nonlinear time scale = 1/
√

ε (O’Neil 1965)

• Neglected term ∇vh is dominant-order!

• Linearization removes entropy conservation

• Isichenko 1997: approach to equilibrium is only O(1/t)

• Caglioti–Maffei (1998): at least some nontrivial

solutions decay exponentially fast
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• Let W = W (x), Ŵ (k) = O(1/|k|2)



What theorem??

Confinement crucial; comes from container or dynamics

To simplify take x ∈ T
d = R

d/Z
d (d ≥ 1)

Theorem (Mouhot–V)

• Let W = W (x), Ŵ (k) = O(1/|k|2)
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What theorem??

Confinement crucial; comes from container or dynamics

To simplify take x ∈ T
d = R

d/Z
d (d ≥ 1)

Theorem (Mouhot–V)

• Let W = W (x), Ŵ (k) = O(1/|k|2)
• Let f 0 = f 0(v)= some linearly stable homogeneous

equilibrium, analytic in a strip of width λ0 around R
d.

• Let fi = fi(x, v)= initial data, analytic in a strip of

width λi around R
d
v, s.t. |fi − f 0| = O(ε), ε ≪ 1

• Let f = f(t, x, v) be the solution of the Vlasov eq.

with interaction W and f(0, ·) = fi, then

F [f ](t, x) = O(e−2πλ|t|), ∀λ < min(λ0, λi, λL)



Mathematical comments

• One also proves: f(t, ·) −−−→
weak

f∞ = f∞(v) as t → ∞

• Quantitative estimate.

• Besides confinement and mixing, a key is regularity

• Extends to some Gevrey regularity, but lose

exponential convergence (as expected)
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• One also proves: f(t, ·) −−−→
weak

f∞ = f∞(v) as t → ∞

• Quantitative estimate.

• Besides confinement and mixing, a key is regularity

• Extends to some Gevrey regularity, but lose

exponential convergence (as expected)

Physical comments

Information goes to small velocity scales (invisible!)

.... vanishes into thin air (6= radiation!)

Lynden-Bell: “A [galactic] system whose density has

achieved a steady state will have information about its

birth still stored in the peculiar velocities of its stars”



Numerical illustration
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Kinetic Fourier analysis

f̃(k, η) =

∫∫
e−2iπk·x e−2iπη·v f(x, v) dx dv

Sol. of free transport: f̃(t, k, η) = f̃i(k, η + kt)
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e−2iπk·x e−2iπη·v f(x, v) dx dv

Sol. of free transport: f̃(t, k, η) = f̃i(k, η + kt)

Functional setting: wishlist

• Quantify analytic regularity

• Good behavior wrt composition (by trajectories)

• Uniform bounds in spite of the fast oscillations

Naive analytic norm:

‖f‖ = sup
k,η

|f̃(k, η)| e2πλ|η| e2πµ|k| is bad: unstable by

composition or large-time limit
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Crucial twist: regularity interpretation

Instead of

F (t, ·) −−−→
t→∞

0

prove

sup
t≥0

‖f(t, ·)‖Zλ,µ;1
t

< +∞

Regularity exists!

It drives Landau damping, Cf. Riemann–Lebesgue lemma

=⇒ It can be measured (in a way...)
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Analyze the linear equation

∂f

∂t
+ v · ∇xf + F [f ] · ∇vf = 0

where f = f(t, x, v) is given, not stationary,

still supt≥0 ‖f(t)‖Zt
≤ C.
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A key step in the proof

Analyze the linear equation

∂f

∂t
+ v · ∇xf + F [f ] · ∇vf = 0

where f = f(t, x, v) is given, not stationary,

still supt≥0 ‖f(t)‖Zt
≤ C.

Equation on ‖ρ(t)‖? looks like

‖ρ(t)‖ ≤ S(t) +

∫ t

0

K(t, τ) ‖ρ(τ)‖ dτ

K(t, τ) = O(τ),

∫ t

0

K dτ = O(t)....

... So ‖ρ(t)‖ = O(exp c t2)...... very bad estimate!!



Refined analysis of the time-response kernel

For a correct choice of parameters,

K(t, τ) ≃ (1 + τ) sup
ℓ6=k 6=0

|Ŵ (k − ℓ)| e−α |k(t−τ)+ℓτ | e−α |ℓ|

Coupling of (k, ℓ) stronger if W more singular!
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... As t → ∞, K concentrates on discrete times τ

(compensation by oscillations — except if “resonance”)

As in the plasma echo experiment (Malmberg 1967)
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• ϕ(t) ≤
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0

ϕ(τ) dτ =⇒ ϕ(t) = O(et)

• ϕ(t) ≤ t ϕ

(
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)
=⇒ ϕ(t) = O

(
t log t

)

Baby model for gravitation interaction

ϕk(t) ≤ a(kt) +
c t

k2
ϕk+1

(
kt

k + 1

)
k ∈ N

=⇒ ϕk(t) . a(kt) exp((ckt)1/3)

Loss of time-decay, superpolynomial but sub-exponential

=⇒ can be compensated by the linear exponential decay
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Similar estimates established on the true model, via

technical exponential moment bounds

Overcome the loss

Loss of regularity in a perturbative regime is often

curable by the Newton scheme (Kolmogorov, Nash ...)

The Newton scheme to solve Φ(x) = 0

x = lim xn, Φ(xn) + DΦ(xn) · (xn+1 − xn) = 0

xn

x
n+1

Ex: Φ(x) = x2 − α, get x =
√

α, “Babylonian algorithm”

The Newton scheme converges tremendously fast: O(ε2n

)



Newton scheme for the Vlasov equation

f 0 = f 0(v) (homogeneous stationary state)

fn = f 0 + h1 + . . . + hn





∂th
1 + v · ∇xh

1 + F [h1] · ∇vf
0 = 0

h1(0, · ) = fi − f 0





∂th
n+1 + v · ∇xh

n+1 + F [fn] · ∇vh
n+1 + F [hn+1] · ∇vf

n

= −F [hn] · ∇vh
n

hn+1(0, · ) = 0.



Long-time estimates along the Newton scheme

• fn = f 0 + h1 + . . . + hn

• Control simultaneously density function + trajectories

Sn
t,τ = (X,V )t 7−→ (X,V )τ in the force field F [fn]

Ωn
t,τ = Sn

t,τ ◦ (S0
t,τ )

−1 (“scattering”)

• Propagate a bunch of controls including

sup
τ≥0

∥∥∥∥
∫

hk
τ dv

∥∥∥∥
Z

λk,µk
τ

≤ δk

sup
t≥τ≥0

∥∥hk
τ ◦ Ωk−1

t,τ

∥∥
Z

λk(1+b),µk;1

τ− bt
1+b

≤ δk, b(t) =
B

1 + t



At each stage, in Z norms...

1†) Estimate Ωn − Id (uniformly in n) and ∇Ωn − I

2†) Estimate Ωn − Ωk (k ≤ n − 1; small when k → ∞)

3†) Estimate (Ωk)−1 ◦ Ωn

4) Estimate hk
τ , ∇hk

τ , ∇2hk
τ (k ≤ n) along Ωn

t,τ

5∗) Estimate
∫

hn+1 dv

6) Deduce an estimate on F [hn+1]

7∗) Estimate hn+1 ◦ Ωn

8) Estimate ∇hn+1 ◦ Ωn

9) Show (∇hn+1) ◦ Ωn ≃ ∇(hn+1 ◦ Ωn)

————————————————–

† by classical fixed point * Using the equation

Use the amazingly fast convergence of the Newton scheme (O(ε2
n

))

to absorb the very large constants



Mathematical conclusions

• Get the desired regularity: sup
t≥0

‖f(t)‖Zλ,µ;1
t

< +∞

• It all works well in first place because linearized

Vlasov is a completely integrable system!

⇒ Unexpected analogy with KAM: Use a Newton scheme

to overcome a loss of “regularity” in the perturbation of

a completely integrable Hamiltonian system

• Note: We use more than the super-geometric

convergence of Newton: here it is really useful to know

that error ≤ exp(−ns)

• Accordingly, there is no Ck version to be seen so far

(“KA rather than M”): new open problem among many

other (extension to nonhomogeneous equilibria, etc.)



Physical conclusions

Landau meets Kolmogorov

Three of the most famous paradoxes of modern classical

physics are related:




KAM Theorem

plasma echoes

Landau damping

.... but only in the nonlinear regime!
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Landau meets Kolmogorov

Three of the most famous paradoxes of modern classical

physics are related:




KAM Theorem

plasma echoes

Landau damping

.... but only in the nonlinear regime!

Nature of Landau damping

Relaxation from regularity, driven by confined mixing.

First steps in a virgin territory? Universal problem of

constant-entropy relaxation in particle systems




