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1684: Newton’s law of universal attraction




The Newton equations for point masses

r; = 2;(t) € R®, mass m;, i=1..N
Zlfz = — Z mj VW(CI?Z — ZIZj)
J71
g L .
Wix) = Newton (gravitational) potential
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The Newton equations for point masses

r; = x;(t) € R%, mass m;, i=1...N
ZIZZ = — Z my VW(CI?Z — Clﬁj)
JF1
g o .
Wix) = Newton (gravitational) potential
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What do trajectories look like as t — o077



Jupiter &= o LU «——Pluto




Kolmogorov—Arnold—Moser theorem

e Let Hy be a completely integrable Hamiltonian

(e.g. independent periodic trajectories of planets
interacting with only the Sun)

e Perturb it into Hy+cH
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Kolmogorov—Arnold—Moser theorem

e Let Hy be a completely integrable Hamiltonian

(e.g. independent periodic trajectories of planets
interacting with only the Sun)

e Perturb it into Hy+<cH — with probability > 0.99,
system remains stable for all times

even though conservation laws do not prevent erratic or
catastrophic behavior

Epistemologic paradox

The K-A-M Theorem “never” applies to real systems
(planets are not small enough!)

Still has been a revolution in classical mechanics, for
mathematicians and physicists.



Another approximation of interest

So many particles that the system looks continuous!

Let us enjoy again a numerical simulation by Dubinski.






The mean field approximation

N > 10'% simple equations

for positions x; and velocities v;

J/N—>oo

one (complicated) equation

for p;(dx dv)

ug|Al: fraction of mass at time ¢ within A
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The mean field approximation

N > 10'% simple equations

for positions x; and velocities v;

lN—>oo

one (complicated) equation

for p;(dx dv)

ue|Al: fraction of mass at time ¢ within A

Z m; W (z;(t) —x) — /W(:z:’ — ) pe(dax’ dv’)



The Vlasov equation

u; is preserved by the flow (conservation of mass)
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The Vlasov equation

u; is preserved by the flow (conservation of mass)

vol is preserved by the flow (Liouville theorem)

e (dz dv)
vol (dx dv)

is also preserved:

— f(t,z,v) =

(%0 4 X() - V.f + X(0)- ) (1. X (0, X (1)) = 0

ot
%H-vaF(t,x)-vvf:o

F =—-VWW xp, p(t,x) = /f(t,x,v) dv

NB: Rigorous justification is still open for singular
interactions (gravitation/electric: W ~ +1/r in d = 3)

Best result so far: Hauray—Jabin (2007): W ~ log1/r...



Boltzmann and Vlasov equations: pillars of kinetic theory
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Qualitative behavior??

Boltzmann Vlasov
Time-irreversible Time-reversible
Energy is constant Energy is constant
Entropy increases Entropy is constant
(Boltzmann’s H Theorem) | (from Liouville’s Theorem)
Gaussian equilibria Infinite-dim space of equilibria
pe /T Ex. any f(v)




1946: Landau’s “amazing discovery”

Landau linearizes the Vlasov equation around f°(v): for
entire (analytic) data, force damps to 0 with rate A\, =

inf inf {7265; —4r? [k W (k) / FO(v) e 2mktv 278t ¢ 1t dy = 1}
0 Rd

Ex: f°(v) = e II": Coulomb interaction A, > 0;

Newton interaction, A;, > 0 only for scales < L



Long-time behavior of Vlasov equation

e Landau damping: perturbations may damp away
spontaneously, in an apparently irreversible way
(approach to equilibrium)

e Since then the large-time behavior of Vlasov has been
much much discussed. “Well-accepted” and observed e.g.
in astrophysics: relaxation in a “short” time, before
entropy increases. Fundamental!

e Static approaches: Lynden-Bell, Robert, Miller... But
no one has any theoretical explanation based on

dynamics

. except for the Landau damping perturbative effect.



But ... Is the linearization reasonable?? f = f' 4 h

Oh ;

r v Vah+ Flh]. ( SOV, h)_o (NLin V)
Oh

Sr v Voh+ PR - (Vof°+ 0 ) =0 (Lin V)
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But ... Is the linearization reasonable?? f = f’ 4 h

h
%ﬂw¢Vh+FH-6hﬁ+Vm):O (NLin V)

Oh ; |
aﬂw»Vh+F[](Uf+ 0 )=0  (LinV)
o OKif |V, h| < |V,f°, but [V,h(t, )| > et — +o0

“destroying the validity of the linear theory” (Backus 1960)

e Natural nonlinear time scale = 1/4/¢  (O’Neil 1965)

e Neglected term V,h is dominant-order!

e Linearization removes entropy conservation

e Isichenko 1997: approach to equilibrium is only O(1/t)
e C(aglioti-Maffei (1998): at least some nontrivial

solutions decay exponentially fast
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What theorem??

Confinement crucial; comes from container or dynamics

To simplify take x € T¢ = R*/Z* (d > 1)

Theorem (Mouhot—V)
o Let W =W(x), ﬁ/\(k) = O(1/|k|?)

o Let f= f°4v)= some linearly stable homogeneous
equilibrium, analytic in a strip of width )y around R<.

o Let f; = f;(x,v)= initial data, analytic in a strip of
width \; around RY, s.t. |f; — | = O(e), ek 1

o Let f = f(t,z,v) be the solution of the Vlasov eq.
with interaction W and f(0,-) = f;, then
F[f](t,z) = O(e 2™, VA < min(Ag, Aj, A\r)



Mathematical comments

e One also proves: f(t,-) — foo = foo(v) AS t — 0

e (Quantitative estimate.
e Besides confinement and mixing, a key is regularity

e Extends to some Gevrey regularity, but lose
exponential convergence (as expected)



Mathematical comments

e One also proves: f(t,-) — foo = foo(v) AS t — 0

e (Quantitative estimate.
e Besides confinement and mixing, a key is regularity

e Extends to some Gevrey regularity, but lose
exponential convergence (as expected)

Physical comments

Information goes to small velocity scales (invisible!)

. vanishes into thin air (# radiation!)

Lynden-Bell: “A [galactic/ system whose density has
achieved a steady state will have information about its

birth still stored in the peculiar velocities of its stars”



Numerical i1llustration
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Kinetic Fourier analysis

J?(]fﬂ?) = // e TR mHTNY f (2 ) da dv

Sol. of free transport: f(¢, k,n) = f;(k,n+ kt)




Kinetic Fourier analysis

Flley = [ [ et 2o fa,) do do

Sol. of free transport: f(t,k,n) = f;(k,n+ kt)

Functional setting: wishlist

e (Quantify analytic regularity
e Good behavior wrt composition (by trajectories)

e Uniform bounds in spite of the fast oscillations

Naive analytic norm:

11| = sup | f(k,n)| 2™ 27kl is bad: unstable by
kim

composition or large-time limit
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Crucial twist: regularity interpretation

Instead of
F(t,-) — 0

t—00

prove

sup || f (¢, )] g < +00
t>0

Regularity exists!

It drives Landau damping, Cf. Riemann—Lebesgue lemma

—> It can be measured (in a way...)



A key step in the proof

Analyze the linear equation
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Analyze the linear equation

%+U Vof + F[f]-Vof =0

where f = f(t,z,v) is given, not stationary,

il supsg [F(1)]1z < C.
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A key step in the proof

Analyze the linear equation

v VS 4 Fl)- V=0

where f = f(t,x,v) is given, not stationary,

still sup,so 1f(8)]z, < C.

Equation on ||p(?)||? looks like

()] < S(t) /K ) ()|l dr

. So [|p(t)]| = O(exp ct?)...... very bad estimate!!



Refined analysis of the time-response kernel

For a correct choice of parameters,

K(t,m) = (1+7) sup [W(k— )¢l el
(#£KkH#0

Coupling of (k, ¢) stronger if W more singular!

exactt=100 — —
approx t=100 -+~

exact t=1000 ——
approx t=1000 -+~

‘J\ | i )‘J‘. Hx
0.3 0.4 0.5 0.6 0.7 0.8 0.9

... Ast — oo, K concentrates on discrete times 7
(compensation by oscillations — except if “resonance”)

As in the plasma echo experiment (Malmberg 1967)
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FIG. 1. Approximate variation of the principal Four-
ier coefficients of the self-consistent field for the case
k3= k= 3k,. Upper line: response to the first pulse;
middle line: response to the second pulse; lower line:
echo.

where

tané=y(k1)(k3—k1)/wp(k3+k1)

and

tan6’ =y(k3)(k1—k3)/o.)p(k1 +k3).

It is interesting to note that the echo is not sym-
metric in that it grows up at the rate exp[y(k,)k./
k,(7'=t)] and damps away at the rate exply (%)

X (t-1")).

The results of both the first- and second-or-
der calculations are summarized in Fig. 1.

The exponentials written in this figure indicate
the general dependence of the envelopes of the
oscillating curves, which have actually been
drawn for the case where &, ~k,.

The above calculation was based on the col-
lisonless Boltzmann equation and is invalidat-
ed if collisions are strong enough to destroy
the phase information before the echo can appear.
Small angle Coulomb collisions are particular-
ly effective in this regard, since the Fokker-
Planck operator representing these collisions
enhances the collision rate by a factor (277)?

o (wp T)? when operating on a perturbation of

the form et*V7, By working in a marginal range,
one might be able to use this effect as a tool

to measure the Coulomb collision rate, even
though the neutral collision rate is somewhat
higher.

We have considered several variations on
the above calculation. Although in this paper
we have discussed explicitly only second-or-
der echoes, higher order echoes are also pos-
sible. For example, a third-order echo is
produced when the velocity space perturbation
from the first pulse is modulated by a spatial
harmonic of the electric field from the second
pulse. The echo then occurs at t =72k,/(2k,
—k,) or t =27 when k,=k,. This result is more
closely related to echoes of other types® which
are also third order for small amplitudes.

It is possible also to have spatial echoes,
and these will probably be easier to observe
experimentally than the temporal echoes de-
scribed above. If an electric field of frequen-
cy w, is continuously excited at one point in
a plasma and an electric field of frequency
w, >w, is continuously excited at a distance
! from this point, then a spatial echo of frequen-
cy w,—w, will appear at a distance lw,/(w,~w,)
from the point where the second field is excited.

Finally, although our discussion has been
entirely in terms of electron wave echoes, it
is clear that the above treatment can be extend-
ed in a straightforward manner to include ion
dynamics, and this leads to temporal as well
as spatial ion wave echoes.

An observation of plasma echoes would be
of fundamental interest, since it would exper-
imentally verify the reversible nature of colli-
sionless damping. The analogy with spin echoes®
strongly suggests the possible use of the ehco
technique as a means for studying collisional
relaxation phenoma in plasmas.

*This research was sponsored in part by the Office
of Naval Research under Contract No. Nonr-220(50),
and in part by the Defense Atomic Support Agency un-
der Contract No. DA-49-146-XZ-486.
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delta functions.
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Stabilizing effect due to delay: baby models
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Stabilizing effect due to delay: baby models

.« olt) < / ro(r) dr = o(t) = O(c)

o () < / o(r) dr = (t) = O(e")

e ot) <ty (%) — p(t) = O(tlogt)

Baby model for gravitation interaction
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Stabilizing effect due to delay: baby models

. < [ ' o(r)dr — o(t) = O(e")

.« olt) < / o(7) dr = () = O(e)

t

o o(t) <ty (5) = p(t) = O(tlogt)

Baby model for gravitation interaction

ct kt
o) S alk) + 55 oo (og)  KEN

= wi(t) S alkt) exp((ckt)"?)

Loss of time-decay, superpolynomial but sub-exponential
—> can be compensated by the linear exponential decay
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Similar estimates established on the true model, via
technical exponential moment bounds

Overcome the loss

Loss of regularity in a perturbative regime is often
curable by the Newton scheme (Kolmogorov, Nash ...)

The Newton scheme to solve ®(x) =0

r = lim z,, O(z,) + DP(x,) - (ry41 —x,) =0

=N\

?

Ex: ®(z) = 2° — a, get © = y/a, “Babylonian algorithm’

The Newton scheme converges tremendously fast: O(g?")



Newton scheme for the Vlasov equation

Y = f°(v) (homogeneous stationary state)
fr=f0+h+. . +hA"

Oht +v -V ,h' + F[h']-V,f' =0

hHO, ) = fi — f°

r@thn+1 + -V, A 4 F[fn] .V R+ F[hn—}—l] VY, f"

0, ) = 0.



Long-time estimates along the Newton scheme

o fr=f'4+hl+. .. +A"

e C(Control simultaneously density function + trajectories
Sty = (X, V) = (X, V), in the force field F'[f"]

Q). = Sp o (SP,)"" (“scattering”)

e Propagate a bunch of controls including

/hfﬁ dv

sup th_ O Qf_1||z>\k(1+b),uk;1 < Op, b(t) =

<5k

AL,
ZTk K

sup
720

B

t>7>0 S 141




At each stage, in Z norms...

1) Estimate Q™ — Id (uniformly in n) and VQ™ — I
21) Estimate Q" — QF (k < n — 1; small when k& — o0)
3") Estimate (%)~ o Q"

4) Estimate h%, VhE, V2hE (k < n) along QF

5*) Estimate [h"!dv

6) Deduce an estimate on F[h"11]

7*) Estimate h"*! o Q"

8) Estimate VA" ! o Q"

9) Show (VA" 1) o Q" ~ V(A" 0 Q")

T by classical fixed point * Using the equation

Use the amazingly fast convergence of the Newton scheme (O(g2"))

to absorb the very large constants



Mathematical conclusions

o Get the desired regularity: sup ||f(%)|| sru1 < +o0
t>0 t

e It all works well in first place because linearized
Vlasov is a completely integrable system!

= Unexpected analogy with KAM: Use a Newton scheme
to overcome a loss of “regularity” in the perturbation of
a completely integrable Hamiltonian system

e Note: We use more than the super-geometric
convergence of Newton: here it is really useful to know
that error < exp(—n?)

e Accordingly, there is no C* version to be seen so far
(“KA rather than M”): new open problem among many
other (extension to nonhomogeneous equilibria, etc.)



Physical conclusions

Landau meets Kolmogorov

Three of the most famous paradoxes of modern classical

physics are related:

KAM Theorem

plasma echoes
Landau damping

.... but only in the nonlinear regime!



Physical conclusions

Landau meets Kolmogorov

Three of the most famous paradoxes of modern classical
physics are related:

KAM Theorem
plasma echoes
Landau damping

.... but only in the nonlinear regime!

Nature of Landau damping

Relaxation from regularity, driven by confined mixing.

First steps in a virgin territory? Universal problem of
constant-entropy relaxation in particle systems






