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Hyperelastic material models

S=20W[/0C
C=F'F
F=0x/0X X = original, X = current position of material point
S = 2" Piola-Kirchhoff Cc = FSFT /J, J =detF
stress,

T = JO6 = Kirchhoff stress

WZW(]Z) or WIW(&)

]l_ — Invariants of C
L =tuC, [,= [(trC)2 -trCZJ/2, [, =detC, higher
1, 1,, 1, needed forisotropy

12 — eigenvalues of C




Hypoelastic material models

o
t=H(t):d
where o0 denotes a frame indifferent (objective) rate.

T = Kirchoffstress, T = JoG
d = Rate of deformation = (l + lT) /2 l=0v/0ox

Velocity gradient

T, d are functions of the current geometry X and time (Eulerian framework),
whereas for hyperelastic models,

S, C are functions of the original geometry X and time (Lagrangean framework)



Hyperelastic models:

- consistent with reversible thermodynamics
 naturally objective

Hypoelastic models:

e simple, ideally suited for incremental solutions

 direct relation to actual physical stress makes modeling more
physically motivated

Yet, several problems identified with hypoelastic models:

e spurious shear oscillations

 residual elastic stress in closed elastic loading path

e unconditionally (exactly) integrable only if the logarithmic (D)
rate of stress is used



Rate form hyperelastic model

Theorem: An Eulerian rate model of the form
J J
t=H(b):b

J
in WhICh J denotes the Jaumann objectlve rate, T = T+TW— WT,
(l 1’ )/2 and b =FF"

a) is a hypoelastic material model, i.e., linear in the rate of deformation
tensor (.

b) is exactly integrable to yield T = W(b) iff H(b) =V l//(b).

c) isintegrable to yield a hyperelastic material if, in addition, it satisfies the
following integrability condition:

-1 -1 _1.-1 -1
bks H slpg + bls H skpg bps H sqkl + bqs H spkl




Deviatoric-volumetric decomposition

F =J"°F J=dV1dv, B

F describes isochoric deformation (detF =1)

W = W(]_l)-I—U(J) ]_l = invariants of C = F'F

The hyperelastic model becomes

=720 FLF | dev()=()-2t(n
oJ oC 3

and in rate form is

J _ L
devt =H(/,,b):Db,



Construction

For any hyperelastic model S = 20W [ 0C, compute T = FSF !

and write it in the representation form
1b)=pl+pb+ob’, o =0ll)

In isotropy, this is always possible according to the representation theory of Truesdell &

Noll, others. Then T is of the form T = W(b) and H(b) =V W(b)
Example: 2 term Mooney-Rivlin hyperelastic material

W =Cyy(I,-3)+Cy (I, -3)+ (-1} /D

Hijkl ([1’ 1y, B): 2[(C10 T C01]—1 )5y'5k1 - Cmgzj&kz]

_g[Clol—l + 2C01 (]—15k1 _ Ekl )]511



Examples

C,, =163MPa C,, =12.5MPa D =0.0026MPa™
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2. Four-step closed path loading
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A paradigm for viscoelasticity:
Generalized Maxwell model

A multiplicative decomposition of the deformation is assumed for each Maxwell

element in parallel PR,
Fa o FaFa



Thermodynamic basis

Free energy (purely mechanical)
N
7(b,b* )= (b)+ > ¥ (b))
a=1

T 1 T
where bz = Fa (F; F;) Fa follows from the kinematic decomposition

N
- V
T=1T + E T,
a=1

eq neq e
. owib) , owr(p:)
T = : Ta — .
ob ob¢
In accordance with previous theorem, we write in Eulerian form

J J J
T =H(b):b, T = H(b"):b*




Strain-based constitutive model
(Given F, v=>b= FFT, d= VSV, update the stress)

J J
T =H(b):b
J J
v =H(b)):b
1 J
b =F, (F;TF;;) F,” =b: =b(d—-d.)+(d—da. )b
General non-Newtonian fluid flow:

d IM(TV):TV e.g., d =—1"

104 104 a




Shear Stress [psi]

Shear Stress [psi]

Stress- strain curves

150
! 100
05 _ 50
g
&
0 o
& 0
@
2
-0.5 0 50
K -100
_1(? L 1 | 1 1 1 | L 1 _150 1 1 | 1 1 1 1 L 1
-0.01 -0.008 -0006 -0.004 -0.002 0 0.002 0.004 0006 0.008 0.01 -1 -08 -0.6 -0.4 -0.2 0 02 0.4 0.6 08 1
Engineering Shear Strain Engineering Shear Strain
500 :
4)(10
400
3,
300
200 2r
100 E s
w
0 o 0
&
-100 8
< -1
®
-200
ok
-300
-3
-400¢;
i 4 1 I I 1 | 1 1 I 1
500 1 ! 1 ! I -5 -4 3 -2 -1 0 1 2 3 4
-2 -15 -1 -05 0 05 1 15 2 Engineering Shear Strain

Engineering Shear Strain



Multi step relaxation in isochoric stretching

5 parameter Mooney-Rivlin strain energy function

C,0=0.2362 psi Cy;=0.0493 psi C,,=0.0014 psi

C,,=-0.0123 psi  C,,=0.0022 psi

n, =6psis, n, =2psis



Multi step relaxation in isochoric stretching
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Kirchhoff stress relaxation under multistep relaxation loading



Stress relaxation under simple shear motion

Applied shear linearly increases to 7., =8 over 2 s, then remains constant for 48 s.
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Effect of nonlinear viscoelasticity
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A finite linear viscoelastic model
based on Simo (1987), Holzapfel (1996 & subsequent)

eq eq
T:J(%U 1+ dev 85” ~S” |F’
oJ o0C

Suppose g evolves according to the following fractional order DE
corresponding to the fractional Zener model:

— _ eq
D'S' + s =175 | Figev| 2F L7 [F
/ T

T T'B

The above equations (stress-strain and evolution) combine to

deVT:devj;G(t-t’)i[ F 'dev ( _agy(:qF ] 1T]dt

dt’

B
where G(t) =+ (]__ g)Eﬁ(_ (ij j is the relaxation function of the
T

fractional Zener model

Papoulia & Kelly (1997)




Fractional derivative models of linear
viscoelasticity

o Fit data over a large range of frequencies with a minimal set of parameters
O Are hard to integrate

Rheological approximation (Papoulia et al., Rheol. Acta, 2010)

10°




Other related topics

Are neurons fibers?
Answer: Is brain rubber?

0
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Traditional fiber modeling:

Select a cubical sample of the matrix and insert
fibers using a random number generator, i.e., center
and orientation chosen uniformly at random

Finite element mesh is generated after the fibers
are placed.

The finite element mesh is not easy to generate and
is huge
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Pinwheel tiling

Pinwheel tilings (Radin, 1994
& Conway) can geometrically
represent all possible curves

Three levels of pinwheel subdivision

subdivided into five mutually
congruent smaller 1:2 right

in the limit. (“Isoperimetry”)
triangles.

Isotropic pinwheel meshes
(Ganguly et al., SIAM J. Sci

Comp, 2006)

e Tiling is obtained by using this
rule recursively

e A1:2righttriangle can be

0.5

This color scheme developed by F. Gaehler



Isoperimetry

 Any line segment L contained in the initial triangle has an
approximation L in the level-n pinwheel tiling (using only tile
edges) such that L L and length(L,) ->length(L) as n > .

e More formal statement: for any line segment (p,g) and for any
e>0, there exists a refinement T of the pinwheel tiling such that
the shortest (p,q) path using only mesh edges of T has length ||p-

q ||+€.

* This result follows because the pinwheel tiling has an
infinite number of angles represented in the neighborhood
of any point in the limit n >« (unique property of these
geometries.)



We explore the possibility of fibers selected as
randomly chosen edges of the matrix tetrahedra.

Number of fibers Resulting number of tetrahedral

elements in mesh

QMG
(Vavasis, 1997)

Isoperimetric

200
2000 2,990,404 65,536
20000 30,953,434 524,288

* The fibers can be selected as randomly chosen edges of isoperimetric tetrahedra
or prisms.

* Preceding theorem guarantees isotropy of fiber orientations in the limit

* We first generate the mesh and then insert the fibers



Other related topics
State of stress at “tip” and propagation of “crack”
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Conclusions

A rate form hyperelastic model is a good candidate for the simulation of
brain tissue at finite strains

The model is exactly integrable and free of spurious oscillations.
Difficulty in incorporating material anisotropy.

A thermodynamic framework will prove useful in modeling the multi-
physics processes in the brain

Finite linear models are extensively used but will fail to model mechanical
response at large amplitudes and high frequencies.

Fractional derivative models predict response to mechanical loads well over
a large range of frequencies with a minimal number of parameters

Rheological approximations to FD models maintain the number of
parameters while able to be calibrated to the desired range of frequencies

Isoperimetric grids do well in modeling random orientation of 1D
microstructures as well as the evolution of fracture paths.



