Introduction	Compartment Model	Poroelastic Model	Conclusions

Multi-fluid Poro-elastic Modelling of the CSF Infusion Test

Almut Eisenträger

Oxford University Mathematical Institute

Joint with I. Sobey, B. Wirth (Bonn) and M. Czosnyka (Cambridge)

CMM Brain Neuromechanics Workshop Toronto, 26-28 July 2010

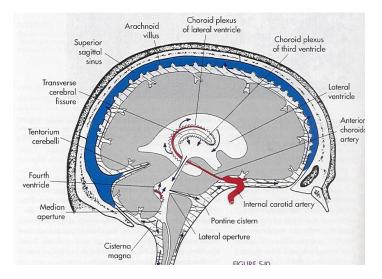
Introduct	

Outline

Introduction

- 2 Compartment Model
 - 3 Poroelastic Model

Cerebrospinal Fluid Flow Path

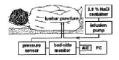


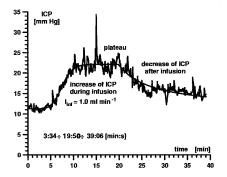
From: Nolte, The human brain: an introduction to its functional anatomy, 5th ed., p. 108

Compartment Mode

Poroelastic Model

Infusion Test

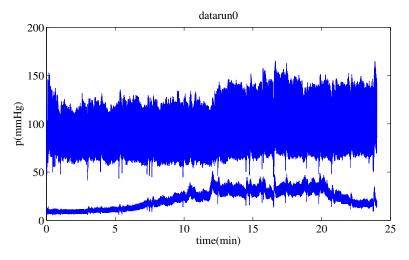




From Juniewicz et al.: Physiological Measurement 2005, pp1039-1048

Introduction	Compartment Model	Poroelastic Model	Conclusions
000			

Clinical Data



Arterial blood pressure (upper) and CSF pressure (lower)

Single Compartment Model (standard)

ODE for CSF pressure

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}p}\frac{\mathrm{d}p}{\mathrm{d}t} = C(p)\frac{\mathrm{d}p}{\mathrm{d}t} = \hat{Q} - \frac{p - p_{\mathsf{r}}}{R}$$

with compliance

$$C(p)=\frac{1}{E(p-p_{\rm r})},$$

resistance to outflow R, elasticity E, reference pressure p_r ,

and given step function for the inflow rate

$$\hat{Q} = egin{cases} Q_{ ext{prod}} & ext{before and after infusion} \ Q_{ ext{prod}} + Q_{ ext{inf}} & ext{during infusion} \end{cases}$$

Single Compartment Model (standard)

ODE for CSF pressure

$$C(p)\frac{\mathrm{d}p}{\mathrm{d}t} = Q - \frac{p - p_{\mathrm{b}}}{R}, \qquad p(0) = p_{b}$$

with compliance

$$C(p) = rac{1}{E(p-p_r)},$$

resistance to outflow *R*, elasticity *E*, reference pressure p_r , baseline pressure $p_b = RQ_{prod} + p_r$, and given step function for the infusion rate

$$Q = egin{cases} 0 & ext{before and after infusion} \ Q_{ ext{inf}} & ext{during infusion} \end{cases}$$

Single Compartment Model (extended)

ODE for CSF pressure

$$C(p) \frac{\mathrm{d}p}{\mathrm{d}t} = Q - \frac{p - p_{b}}{R}, \qquad p(0) = p_{b}$$

with compliance

$$C(p) = \frac{1}{\tilde{e}(p - p_{\rm r})^n} = \frac{1}{\tilde{e}(p - p_{\rm r})^{n-1}} \frac{1}{(p - p_{\rm r})} = \frac{1}{E(p)} \frac{1}{(p - p_{\rm r})},$$

resistance to outflow *R*, elasticity paramater \tilde{e} , reference pressure p_r , baseline pressure $p_b = RQ_{prod} + p_r$, and given step function for the infusion rate

$$Q = egin{cases} 0 & ext{before and after infusion} \ Q_{ ext{inf}} & ext{during infusion} \end{cases}$$

Solutions and Least Squares

Standard model (n = 1): Analytic solution

$$p(t) = p_{\rm r} + \frac{\left(p_{\rm b} - p_{\rm r}\right)\left(RQ_{\rm inf} + p_{\rm b} - p_{\rm r}\right)}{\left(p_{\rm b} - p_{\rm r}\right) + RQ_{\rm inf}\exp\left(-\frac{E}{R}\left(RQ_{\rm inf} + p_{\rm b} - p_{\rm r}\right)\left(t - t_{\rm 0}\right)\right)}$$

Extended model: Solve numerically (ode45) Use scaled parameters

$$x_1 = \frac{p_{\rm b}}{p_{\rm b}^{\rm g}}, \quad x_2 = \frac{\tilde{e}}{R} \frac{R^{\rm g}}{\tilde{e}^{\rm g}}, \quad x_3 = \frac{p_{\rm r}}{p_{\rm r}^{\rm g}}, \quad x_4 = \frac{RQ_{\rm inf} + p_{\rm b}}{R^{\rm g}Q_{\rm inf}^{\rm g} + p_{\rm b}^{\rm g}}, \quad x_5 = n.$$

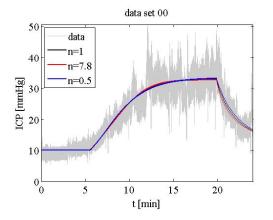
Least squares fit (fminsearch)

$$\min_{x \in \mathbb{R}^5} F(x) = \sum_{t \in \mathcal{T}} \left(p_x(t) - p_{\text{meas}}(t) \right)^2$$

with $|\mathcal{T}| \sim 50.000$

Introduction	Compartment Model	Poroelastic Model	Conclusions
	00000		

Results

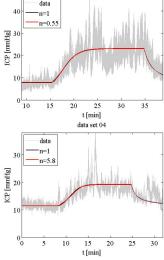


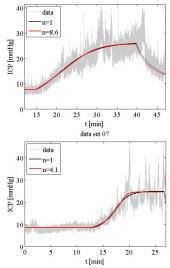
Parameter values:

n _{giv}	1	_	0.5
n _{fit}	_	7.8	—
ẽ	-	pprox 0	1.2
$E _{ ho_{ m b}}$	0.24	0.02	0.91
R	15.4	15.2	15.6
p_{b}	9.97	9.99	9.95
$p_{\rm r}$	2.1	-90	8.1
<i>Q</i> _{pr}	0.51	6.63	0.12
ΔV	5.7	5.5	5.8

$$[\tilde{e}] = rac{\mathsf{mmHg}^{1-n}}{\mathsf{ml}}, [E] = rac{\mathsf{m}}{\mathsf{m}}, [R] = rac{\mathsf{mmHg}}{\mathsf{ml}}, [P] = \mathsf{mmHg}, [\Omega_{\mathsf{pr}}] = rac{\mathsf{ml}}{\mathsf{min}}, [\Delta V] = \mathsf{ml}$$

oco	Compartment Model	Poroelastic Model	Conclusions ○
Results (2))		
	data set 03	data set 06	
40 ata		40 data $n=1$ $n=8.6$	

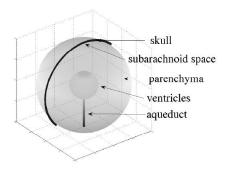




Poroelastic Model (single fluid)

Thick spherical shell of porous elastic solid filled with incompressible fluid

u – radial displacement of solid p – fluid pressure



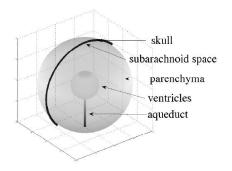
Boundary conditions:

- Given fluid flux *Q*_{in} into the ventricle
- Stress continuity at ventricle wall
- Given resistance to outflow $Q_{\text{out}} = \frac{p p_{\text{venous}}}{R}$ at skull
- Porous tissue (solid) fixed to skull: $u(r_{out}, t) = 0$
- Poiseuille flow through aqueduct included in boundary conditions

Poroelastic Model (single fluid)

Thick spherical shell of porous elastic solid filled with incompressible fluid

u – radial displacement of solid p – fluid pressure



Boundary conditions:

- Given fluid flux *Q*_{in} into the ventricle
- Stress continuity at ventricle wall
- Given resistance to outflow $Q_{\text{out}} = \frac{p p_{\text{venous}}}{R}$ at skull
- Porous tissue (solid) fixed to skull: u(r_{out}, t) = 0
- Poiseuille flow through aqueduct included in boundary conditions

Governing equations (single fluid)

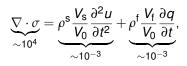
(Linearised) strain of the solid

$$\epsilon = \operatorname{tr}(\epsilon) = \frac{\partial u}{\partial r} + 2\frac{u}{r}$$

Combined stress

$$\sigma = \sigma_{\mathsf{solid}} + \alpha \sigma_{\mathsf{fluid}} = \mathbf{K} \varepsilon - \alpha \mathbf{p} \mathbf{I}$$

Conservation of momentum



thus, neglecting inertial terms,

$$K\frac{\partial \epsilon}{\partial r} - \alpha \frac{\partial p}{\partial r} = 0$$

Increase of fluid content in volume V_0

$$\zeta := \frac{V_{\rm f} - V_{\rm f,0}}{V_0} = \alpha \varepsilon + sp$$

Darcy flow through porous medium

$$q = -\frac{k(\epsilon)}{\mu} \frac{\partial p}{\partial r}$$

Fluid volume balance

$$\frac{\partial \zeta}{\partial t} = -\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 q \right)$$

yields

$$\alpha \frac{\partial \epsilon}{\partial t} + s \frac{\partial p}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{k(\epsilon)}{\mu} \frac{\partial p}{\partial r} \right)$$

Governing equations (single fluid)

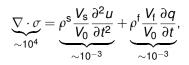
(Linearised) strain of the solid

$$\epsilon = \operatorname{tr}(\epsilon) = \frac{\partial u}{\partial r} + 2\frac{u}{r}$$

Combined stress

$$\sigma = \sigma_{\mathsf{solid}} + \alpha \sigma_{\mathsf{fluid}} = \mathbf{K} \varepsilon - \alpha \mathbf{p} \mathbf{I}$$

Conservation of momentum



thus, neglecting inertial terms,

$$K\frac{\partial\epsilon}{\partial r} - \alpha\frac{\partial p}{\partial r} = 0$$

Increase of fluid content in volume V_0

$$\zeta := \frac{V_{\mathsf{f}} - V_{\mathsf{f},0}}{V_0} = \alpha \epsilon + \boldsymbol{sp}$$

Darcy flow through porous medium

$$q = -\frac{k(\epsilon)}{\mu} \frac{\partial p}{\partial r}$$

Fluid volume balance

$$\frac{\partial \zeta}{\partial t} = -\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 q \right)$$

yields

$$\alpha \frac{\partial \epsilon}{\partial t} + s \frac{\partial \rho}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{k(\epsilon)}{\mu} \frac{\partial \rho}{\partial r} \right)$$

Extension to two fluid model

Include measured arterial blood pressure $p_{ab}(t)$ into stress

$$\sigma = \sigma_{\text{solid}} + \alpha \sigma_{\text{CSF}} + \alpha_{\text{ab}} \sigma_{\text{ab}} = K\varepsilon - \alpha \rho I - \alpha_{\text{ab}} \rho_{\text{ab}} I$$

and increase in CSF content

$$\zeta = \alpha \epsilon + s \rho - s_{ab} \rho_{ab}$$

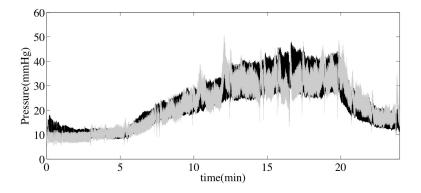
yielding the equations

$$\begin{aligned} & \mathcal{K}\frac{\partial \epsilon}{\partial r} - \alpha \frac{\partial p}{\partial r} = \alpha_{ab} \frac{\partial p_{ab}}{\partial r}, \\ & \alpha \frac{\partial \epsilon}{\partial t} + s \frac{\partial p}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{k(\epsilon)}{\mu} \frac{\partial p}{\partial r} \right) + s_{ab} \frac{\partial p_{ab}}{\partial t} \end{aligned}$$

Introduction	Compartment Model	Poroelastic Model ○○○●○○	Conclusions o

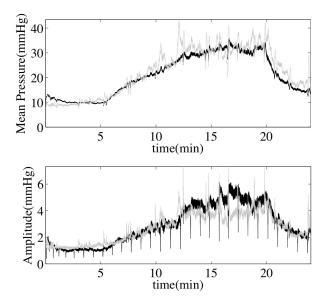
Results

Finite Difference simulation of data set 00:



Introduction	Compartment Model	Poroelastic Model	Co
		000000	

Results (Details)

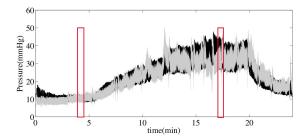


Poroelastic Model

Simulation Movies

Before infusion: 4.0-4.5 min

During infusion: 17.0-17.5 min



Conclusions & Further work

Conclusions

- Highly nonlinear relation between model parameters and form of pressure curve in extended compartment model
- Only some parameters can be fitted reliably to clinical data
- No spatial variation in compliance model
- Poroelastic model predicts reasonable values
- Physical parameters may not be known

Further work

- Finite Element simulation (time dependent)
- Improve multifluid poroelastic model
- Further analysis of clinical data

Thank you!