Optimal Life Insurance Purchase, Consumption and Investment in a Financial Market with Multi-Dimensional Diffusive Terms

Stanley R. Pliska
Professor (Emeritus) of Finance
University of Illinois at Chicago
srpliska @ uic.edu

Co-authors: I. Duarte, D. Pinheiro, and A. Pinto

A Financial Planning Problem

- A young wage earner is just starting a career and a family
- He wants to allocate anticipated income among
 - Consumption
 - Investments
 - Life Insurance Purchase
- His "concerns" are
 - Level of consumption during working years
 - Size of estate at retirement (if he lives that long)
 - Size of estate (bequest) if he dies before retirement

What is the optimal allocation of income?

Literature Review

- Yaari (1965) considered a problem of optimal financial planning (including insurance purchase) decisions for an individual with an uncertain lifetime. A key idea was showing how to convert the optimization problem having a random planning horizon to one with a fixed time horizon.
- Merton (1969, 1971) studied the problem of optimal consumption and portfolio investment for a fixed planning horizon, but with life insurance playing no role. He formulated a stochastic model in a continuous-time setting and used dynamic programming to derive the optimal consumption and portfolio strategies for particular cases.

- Richard (1975) extended Merton's work to include a random lifetime and optimal decisions about life insurance purchase in addition to decisions about consumption and investment
 - He used dynamic programming (like Merton) with a fixed, finite planning horizon that served as an upper bound for the lifetime of the wage earner
 - Using sophisticated methods, he obtained explicit solutions for certain cases
- Ye (2005) studied a similar model, except that, in contrast to Richard's set-up, the planning horizon T is fixed and should be interpreted as the time when the wage earner retires
 - He obtained explicit solutions for certain cases
 - But he assumed only a single risky security, in addition to the riskless bank account, was available for investment

Our Basic Model

Lifetime of the Wage Earner

- The wage earner is alive and starts working at time t = 0
- His lifetime is a non-negative <u>random variable</u> τ which is independent of the risky securities
- This random variable has the <u>distribution function</u> F and the <u>density function</u> f, which are known to the wage earner
- Corresponding to τ is the <u>hazard rate function</u> λ , that is

$$\lambda(t) = f(t)/[1 - F(t)]$$

The (Continuous-Time) Insurance Market

- At any point in time t the wage earner will be covered by a life insurance policy if he is paying the <u>premium payment</u> rate p(t) to the insurance company
- Then if he dies at time t, his beneficiaries will collect

$$p(t)/\eta(t)$$
,

where η is a strictly positive, continuous function called the insurance premium payout ratio

- $\eta(t)$ is known in advance by the wage earner; p(t) is chosen by him (or her)
- No insurance will be purchased after the start of retirement

The Decision Variables

- c(t) = consumption rate at time t
- p(t) = premium payment rate at time t
- $\theta_n(t)$ = proportion of portfolio value invested in security n, n = 0, 1, ..., N (so $\theta_0(t) + \theta_1(t) + ... + \theta_N(t) = 1$)
 - Security n = 0 is a riskless bank account having interest rate r(t), a specified, deterministic function
 - Securities n = 1, ..., N are modeled as multivariate, geometric Brownian motions, the dynamics of which are specified and known to the wage earner

Other Variables of Interest

- X(t) = <u>current wealth</u> = initial wealth + cumulative income
 cumulative consumption cumulative insurance payments
 time-t value of investments
- $Z(t) = X(t) + p(t)/\eta(t) = \text{wage earner's } \underline{\text{legacy}} \text{ or } \underline{\text{bequest}}$ upon death if $t = \tau < T$
- b(t) = time-t value of <u>human capital</u>, that is, a discounted value of the wage earner's future income, with the discount rate being the interest rate r combined with the insurance premium payout ratio η

The Wage Earner's Objective

- Maximize the expected utility of:
 - 1. Cumulative consumption while working
 - 2. The time-T value of the investments, if $\tau > T$
 - 3. The time- τ value of the bequest, if $\tau < T$
- V(t,x) denotes the maximum expected utility if the time-t value of the investments is x

Stochastic Dynamic Programming

- With mild assumptions the maximum expected utility V(t,x)
 will be the unique solution of a <u>Hamilton-Jacobi-Bellman</u>
 equation (details later, if time permits)
- From such a solution, the optimal strategy (c^*, p^*, θ^*) can readily be determined
- Unfortunately, it is almost impossible to obtain explicit solutions, except for some rare special cases
- Hence one usually needs to use numerical methods to compute V(t,x)

Discounted CRRA Utilities

- From now on we restrict ourselves to the special case where the wage earner has the same discounted Constant Relative Risk Aversion (CRRA) utility function for:
 - the consumption of his family
 - the size of his legacy
 - his wealth at retirement
- We assume that $\gamma < 1$, $\gamma \neq 0$ and $\rho > 0$ and let
 - U(c; t) = $e^{-\rho t} c^{\gamma}/\gamma$ (utility of consumption rate c)
 - B(Z; t) = $e^{-\rho t} Z^{\gamma}/\gamma$ (utility of the bequest Z)
 - W(X) = $e^{-\rho T} X^{\gamma} / \gamma$ (utility of wealth X at retirement)

The Optimal Strategies

$$c^{*}(t,x) = \frac{1}{e(t)}(x+b(t))$$

$$p^{*}(t,x) = \eta(t)((D(t)-1)x+D(t)b(t))$$

$$\theta^{*}(t,x) = \frac{1}{x(1-\gamma)}(x+b(t))\xi\alpha(t),$$

where b(t) (the <u>human capital</u>), D(t), and e(t) are various deterministic, scalar-valued functions, $\alpha(t)$ is a vector-valued, deterministic function, and ξ is a matrix

In the next slide:

- N = M = 2 risky securities
- income rate $i(t) = 50,000 \exp(0.03t)$
- interest rate r = 4%
- discount rate $\rho = 3\%$
- risk aversion parameter y = -3
- hazard rate $\lambda(t) = 0.001 + \exp(-9.5 + 0.1t)$
- insurance premium payout ratio $\eta(t) = 1.05 \lambda(t)$
- appreciation rates $\mu_1 = 0.07$, $\mu_2 = 0.11$
- volatilities $\sigma = 0.19$, $\sigma = 0.21$
- correlation between risky assets 80%

Optimal Life Insurance Purchase (2 Risky Securities)

Some Conclusions About $p^*(t,x)$ for the CRRA Case (with some modest assumptions)

- The optimal insurance purchase strategy $p^*(t,x)$ is:
 - A decreasing function of the total wealth x
 - An increasing function of the human capital b(t)
 - For all small enough values of the wealth x it is a unimodal function of the age t
 - A function that can be negative for some x and t
 - A decreasing function of the interest rate r in some neighborhood of (t,x) = (0,0)
 - A decreasing function of the risk aversion parameter γ except in some neighborhood of t = T
 - An increasing function of the utility discount rate ρ
 - An increasing function of the hazard rate λ in some neighborhood of x = 0

Some Conclusions About The Optimal Risky Proportions (With an Additional, Modest Assumption)

- For each risky security n the optimal proportion $\theta_n(t)$ is a decreasing function of the total wealth x
- For each risky security n the optimal proportion $\theta_n(t)$ is an increasing function of the human capital b(t)
- For small enough wealth it can be optimal to borrow money from the riskless bank and buy the risky securities on margin

A "Mutual Fund" Result

Recall the optimal strategy:

$$\theta^*(t,x) = \frac{1}{x(1-\gamma)}(x+b(t))\xi\alpha(t)$$

Actually, this vector has only *N* components, corresponding to the *N* risky securities, so the optimal proportion for the bank is

$$\theta_0 = 1 - \theta_1 - \dots - \theta_N$$

Here ξ is the covariance matrix and α is the column vector of excess returns describing the dynamics of the risky securities. Since the preceding factor is a scalar, we see that the <u>relative</u> proportions among the risky securities are independent of the insurance and mortality data (intuition: due to no correlation).

Comparison With an Otherwise Identical Wage Earner Who Does Not Have the Opportunity To Purchase Life Insurance

- In the paper we goofed up because we ignored the utility of the bequest (equal to value of investments) in the event of premature death
- The problem for this second wage earner should be identical to that of the first with the added constraint that p(t,x) = 0
- So ignore this part of the present paper
- We will deal with this in a revised version

Now For Some Mathematics

The wage earner's goal is to maximize his expected utility, i.e.

$$V(x) = \sup_{\nu \in \mathcal{A}(x)} E_{0,x} \left[\int_0^{T \wedge \tau} U(c(s), s) \, ds + B(Z(\tau), \tau) I_{\{\tau \leq T\}} + W(X(T)) I_{\{\tau > T\}} \right],$$

where

- A(x) is the set of all admissible decision strategies;
- $T \wedge \tau = \min\{T, \tau\};$
- $U(c, \cdot)$ is the utility function for consumption;
- B(Z, ·) is the utility function for the legacy;
- W(X) is the utility function for the terminal wealth.

The Dynamic Programming Principle

- Let A(t,x) be the set of admissible decision strategies $\nu=(c,p,\theta)$ for the dynamics of the wealth process with boundary condition X(t)=x.
- For any $\nu \in \mathcal{A}(t,x)$, define the functional

$$J(t,x;\nu) = E_{t,x} \left[\int_t^{T \wedge \tau} U(c(s),s) ds + B(Z(\tau),\tau) I_{\{\tau \leq T\}} + W(X(T)) I_{\{\tau > T\}} \mid \tau > t, \mathcal{F}_t \right].$$

 The optimal control problem can be restated in dynamic programming form as

$$V(t,x) = \sup_{\nu \in \mathcal{A}(t,x)} J(t,x;\nu).$$

The Hamilton-Jacobi-Bellman Equation

Suppose that the maximum expected utility V is of class C^2 . Then V satisfies the Hamilton-Jacobi-Bellman equation

$$\begin{cases} V_t(t,x) - \lambda(t)V(t,x) + \sup_{\nu \in \mathcal{A}(t,x)} \mathcal{H}(t,x;\nu) = 0 \\ V(T,x) = W(x) \end{cases},$$

where the Hamiltonian function ${\cal H}$ is given by

$$\mathcal{H}(t,x;\nu) = \left(i(t) - c - p + \left(r(t) + \sum_{n=1}^{N} \theta_n(\mu_n(t) - r(t))\right) x\right) V_x(t,x)$$

$$+ \frac{x^2}{2} \sum_{m=1}^{M} \left(\sum_{n=1}^{N} \theta_n \sigma_{nm}(t)\right)^2 V_{xx}(t,x) + \lambda(t) B\left(x + \frac{p}{\eta(t)}, t\right) + U(c,t) .$$

Moreover, an admissible strategy $\nu^* = (c^*, p^*, \theta^*)$ whose corresponding wealth is X^* is optimal if and only if for a.e. $s \in [t, T]$ and P-a.s. we have

$$V_t(s, X^*(s)) - \lambda(s)V(s, X^*(s)) + \mathcal{H}(s, X^*(s); \nu^*) = 0$$
.

Optimal Strategies For the CRRA Case

Let ξ denote the non-singular square matrix given by $(\sigma \sigma^T)^{-1}$. The optimal strategies in the case of discounted constant relative risk aversion utility functions are given by

$$c^{*}(t,x) = \frac{1}{e(t)}(x+b(t))$$

$$p^{*}(t,x) = \eta(t)((D(t)-1)x+D(t)b(t))$$

$$\theta^{*}(t,x) = \frac{1}{x(1-\gamma)}(x+b(t))\xi\alpha(t),$$

where

$$b(t) = \int_{t}^{T} i(s) \exp\left(-\int_{t}^{s} r(v) + \eta(v) \, dv\right) ds$$

$$e(t) = \exp\left(-\int_{t}^{T} H(v) \, dv\right) + \int_{t}^{T} \exp\left(-\int_{t}^{s} H(v) \, dv\right) K(s) \, ds$$

$$H(t) = \frac{\lambda(t) + \rho}{1 - \gamma} - \gamma \frac{\Sigma(t)}{(1 - \gamma)^{2}} - \frac{\gamma}{1 - \gamma} (r(t) + \eta(t))$$

$$D(t) = \frac{1}{e(t)} \left(\frac{\lambda(t)}{\eta(t)}\right)^{1/(1 - \gamma)}, K(t) = \frac{(\lambda(t))^{1/(1 - \gamma)}}{(\eta(t))^{\gamma/(1 - \gamma)}} + 1$$

$$\Sigma(t) = \alpha^{T}(t) \xi \alpha(t) - \frac{1}{2} \|\sigma^{T} \xi \alpha(t)\|^{2}.$$

Final Remarks

- Our model provides a variety of conclusions about optimal decisions for financial planning
 - Some conclusions simply confirm what we always thought
 - Other conclusions provide new insight and intuition
- There are considerable opportunities to develop various extensions, such as:
 - Other utility functions
 - Uncertain future income and/or hazard rate
 - A constraint ruling out selling one's own insurance policy
 - Alternative insurance products

srpliska @ uic.edu