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1. Introduction
Yaari (1965):

max
c (t)2Φ

Z T

0
Ω(t)α(t)g(c(t))dt (1)

subject to
c(t) � 0, (2)

S(t) � 0, (3)

S 0(t) = j(t)S(t) +m(t)� c(t), (4)

S(0) = S0. (5)

Ω(t) = survival probability at time t, α(t) = discount function, c(t) =
consumption, g(c) = utility function, S(t) = wealth (accumulated savings), m(t) =
income, j(t) = interest rate, T = maximum lifetime, S0 = initial wealth at time 0,
and Φ = space of piecewise continuous functions that take values on [0,∞).



2. Earlier Work
I Two fundamental issues

1. whether the optimization problem (1) - (5) has a solution, and
2. whether the optimal solution is unique if it exists.

I Yaari (1964): Let g(c) = c � e�c , α(t) = 1, j(t) = 0, Ω(t) = 1� t,
T = 1, m(t) = 0, and S0 > 0. This optimization problem does not have
a solution if S0 � log 2. An optimal solution exists if and only if
S0 < log 2.

I This result is counter-intuitive: there is no optimal way to consume the
endowed wealth if it is too large.

I A minute increase in S0 can change the model from one with an optimal
solution to one without.

I In this example, m(t) = 0 is assumed. Leung (2009) shows that
m(t) > 0 raises the likelihood that the optimization problem will not
have a solution, i.e., the existence problem is exacerbated.

I What is the cause of the existence problem?
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THEOREM 1 (Leung (1994)). If either lim
c!0+

g 0(c) < ∞ or m(T ) > 0, then

there exists a t� 2 [0,T ) such that S�(t) = 0 and c�(t) = m(t) for all
t 2 [t�,T ].
I Theorem 1 states that there must be a terminal wealth depletion time t�

before T if either lim
c!0+

g 0(c) < ∞ or m(T ) > 0.

I The entire wealth is exhausted at t� and the depletion is terminal (as
opposed to temporary).
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I Consumption after t� will be exactly equal to income.

Figure 2
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I The condition m(T ) > 0 is likely to be satis�ed in practice because of
the provision of social security bene�ts and the existence of private
pensions and annuities.

I Theorem 1 provides a rigorous analytical account for the heretofore
unexplained �nding of terminal wealth depletion in Hurd�s (1989)
empirical work and Mirer�s (1992, 1994) simulation studies because the
condition m(T ) > 0 is satis�ed in these studies.

I Let π(t) and πt (t) denote the probability density function of T and the
hazard rate of death, respectively. By de�nition,

Ω(t) = Pr(T > t) =
R T
t π(x)dx and πt (t) = π(t)/Ω(t).

I The key factor that causes wealth depletion is uncertain lifetime because
it eventually drives the e¤ective discount rate for the future (i.e.,
�πt (t) +

α0(t)
α(t) ) to in�nity (as Ω(T ) = 0 means that πt (T ) = ∞).

I As emphasized in Rae (1834) and Fisher (1930), uncertain lifetime
increases impatience and tends to reduce saving.

I What is new here is the analytical and unambiguous result that the
uncertainty of lifetime will eventually lead to terminal wealth depletion
before the maximum lifetime.



I The condition m(T ) > 0 is likely to be satis�ed in practice because of
the provision of social security bene�ts and the existence of private
pensions and annuities.

I Theorem 1 provides a rigorous analytical account for the heretofore
unexplained �nding of terminal wealth depletion in Hurd�s (1989)
empirical work and Mirer�s (1992, 1994) simulation studies because the
condition m(T ) > 0 is satis�ed in these studies.

I Let π(t) and πt (t) denote the probability density function of T and the
hazard rate of death, respectively. By de�nition,

Ω(t) = Pr(T > t) =
R T
t π(x)dx and πt (t) = π(t)/Ω(t).

I The key factor that causes wealth depletion is uncertain lifetime because
it eventually drives the e¤ective discount rate for the future (i.e.,
�πt (t) +

α0(t)
α(t) ) to in�nity (as Ω(T ) = 0 means that πt (T ) = ∞).

I As emphasized in Rae (1834) and Fisher (1930), uncertain lifetime
increases impatience and tends to reduce saving.

I What is new here is the analytical and unambiguous result that the
uncertainty of lifetime will eventually lead to terminal wealth depletion
before the maximum lifetime.



I The condition m(T ) > 0 is likely to be satis�ed in practice because of
the provision of social security bene�ts and the existence of private
pensions and annuities.

I Theorem 1 provides a rigorous analytical account for the heretofore
unexplained �nding of terminal wealth depletion in Hurd�s (1989)
empirical work and Mirer�s (1992, 1994) simulation studies because the
condition m(T ) > 0 is satis�ed in these studies.

I Let π(t) and πt (t) denote the probability density function of T and the
hazard rate of death, respectively. By de�nition,

Ω(t) = Pr(T > t) =
R T
t π(x)dx and πt (t) = π(t)/Ω(t).

I The key factor that causes wealth depletion is uncertain lifetime because
it eventually drives the e¤ective discount rate for the future (i.e.,
�πt (t) +

α0(t)
α(t) ) to in�nity (as Ω(T ) = 0 means that πt (T ) = ∞).

I As emphasized in Rae (1834) and Fisher (1930), uncertain lifetime
increases impatience and tends to reduce saving.

I What is new here is the analytical and unambiguous result that the
uncertainty of lifetime will eventually lead to terminal wealth depletion
before the maximum lifetime.



I The condition m(T ) > 0 is likely to be satis�ed in practice because of
the provision of social security bene�ts and the existence of private
pensions and annuities.

I Theorem 1 provides a rigorous analytical account for the heretofore
unexplained �nding of terminal wealth depletion in Hurd�s (1989)
empirical work and Mirer�s (1992, 1994) simulation studies because the
condition m(T ) > 0 is satis�ed in these studies.

I Let π(t) and πt (t) denote the probability density function of T and the
hazard rate of death, respectively. By de�nition,

Ω(t) = Pr(T > t) =
R T
t π(x)dx and πt (t) = π(t)/Ω(t).

I The key factor that causes wealth depletion is uncertain lifetime because
it eventually drives the e¤ective discount rate for the future (i.e.,
�πt (t) +

α0(t)
α(t) ) to in�nity (as Ω(T ) = 0 means that πt (T ) = ∞).

I As emphasized in Rae (1834) and Fisher (1930), uncertain lifetime
increases impatience and tends to reduce saving.

I What is new here is the analytical and unambiguous result that the
uncertainty of lifetime will eventually lead to terminal wealth depletion
before the maximum lifetime.



I The condition m(T ) > 0 is likely to be satis�ed in practice because of
the provision of social security bene�ts and the existence of private
pensions and annuities.

I Theorem 1 provides a rigorous analytical account for the heretofore
unexplained �nding of terminal wealth depletion in Hurd�s (1989)
empirical work and Mirer�s (1992, 1994) simulation studies because the
condition m(T ) > 0 is satis�ed in these studies.

I Let π(t) and πt (t) denote the probability density function of T and the
hazard rate of death, respectively. By de�nition,

Ω(t) = Pr(T > t) =
R T
t π(x)dx and πt (t) = π(t)/Ω(t).

I The key factor that causes wealth depletion is uncertain lifetime because
it eventually drives the e¤ective discount rate for the future (i.e.,
�πt (t) +

α0(t)
α(t) ) to in�nity (as Ω(T ) = 0 means that πt (T ) = ∞).

I As emphasized in Rae (1834) and Fisher (1930), uncertain lifetime
increases impatience and tends to reduce saving.

I What is new here is the analytical and unambiguous result that the
uncertainty of lifetime will eventually lead to terminal wealth depletion
before the maximum lifetime.



I The condition m(T ) > 0 is likely to be satis�ed in practice because of
the provision of social security bene�ts and the existence of private
pensions and annuities.

I Theorem 1 provides a rigorous analytical account for the heretofore
unexplained �nding of terminal wealth depletion in Hurd�s (1989)
empirical work and Mirer�s (1992, 1994) simulation studies because the
condition m(T ) > 0 is satis�ed in these studies.

I Let π(t) and πt (t) denote the probability density function of T and the
hazard rate of death, respectively. By de�nition,

Ω(t) = Pr(T > t) =
R T
t π(x)dx and πt (t) = π(t)/Ω(t).

I The key factor that causes wealth depletion is uncertain lifetime because
it eventually drives the e¤ective discount rate for the future (i.e.,
�πt (t) +

α0(t)
α(t) ) to in�nity (as Ω(T ) = 0 means that πt (T ) = ∞).

I As emphasized in Rae (1834) and Fisher (1930), uncertain lifetime
increases impatience and tends to reduce saving.

I What is new here is the analytical and unambiguous result that the
uncertainty of lifetime will eventually lead to terminal wealth depletion
before the maximum lifetime.



Simulation

I g(c) = c1�γ

1�γ , γ > 0 (g(c) = log(c) if γ = 1), t 2 [65,T ], j = 0.03
I m(t) = M for t � 65, where M is a positive constant. It is a good
approximation (e.g., Hurd (1989)).

I t� is determined by

S(65)
M

=
Z t�

65
e�j(t�65)

8<:
"

Ω(t)e(j�α)t

Ω(t�)e(j�α)t�

# 1
γ

� 1

9=; dt.
I Mortality follows the Gompertz Law

Ω(t) = e�0.00093φ(e0.087t�1), φ = 1, 2.

I An individual with φ = 2 has twice the hazard rate of death than an
individual with φ = 1.

I Table 1 reports the simulation results for three di¤erent values of S (65)M .
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Table 1
Terminal Wealth Depletion Time t�

t�

φ = 1 φ = 2
S (65)
M

S (65)
M

γ α 1 5 10 1 5 10

4 0.10 74 82 87 73 80 84
0.05 77 86 90 75 82 86
0.03 79 87 92 75 83 86
0.01 81 89 93 76 84 87

1 0.10 70 74 76 69 73 75
0.05 71 77 80 70 74 77
0.03 73 79 82 71 75 78
0.01 75 81 84 72 77 79

0.5 0.10 68 71 73 68 70 72
0.05 70 73 76 69 72 74
0.03 71 75 78 69 73 75
0.01 73 78 80 70 74 76

0.1 0.10 66 67 68 66 67 68
0.05 67 69 70 67 68 69
0.03 68 70 71 67 68 69
0.01 69 72 73 68 69 70



Simulation results

I Several observations are in order.

1. Terminal wealth depletion can occur very early. In some cases it happens in
only a few years after retirement. In the extreme case where γ = 0.1 and
α = 0.1, even a relatively wealthy individual with S (65)

M = 10 will deplete
his assets at age 68.

2. The magnitude of t� varies appreciably with the values of γ, α, φ, and
S (65)
M : t� increases with γ and S (65)

M , and decreases with α and φ.
3. One cannot infer from t� alone the characteristics of the individual. For
example, an individual whose t� is 70 can be relatively rich (S (65)M = 10,

γ = 0.1, α = 0.05, φ = 1) or poor (S (65)M = 1, γ = 1, α = 0.1, φ = 1).
4. Other factors such as poor health, low risk aversion, low interest rate, or
high income could also be responsible.

5. The simulation results support that the model can account for low wealth
holdings and early terminal wealth depletion observed in a number of
empirical studies.
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I For the general model (1) - (5), t� is obtained by solving the equation
ϕ(t�) = 0, where

ϕ(t) = S0�

Z t

0
e�

R z
0 j(x )dx

"
(g 0)�1

 
Ω(t)α(t)g 0(m(t))e

R t
z j(x )dx +

R t
z e

R w
z j(x )dxµ(w )dw

Ω(z )α(z )

!
�m(z )

#
dz , (6)

t 2 [0,T ), and µ(w ) is the multiplier for the inequality constraint (3).

I There are three fundamental questions about ϕ(t).

1. Existence: Whether ϕ(t) has a root?
2. Uniqueness: Whether it is possible for ϕ(t) to have multiple roots?
3. Optimality: If ϕ(t) has a unique root, is it necessarily optimal? If ϕ(t) has
multiple roots, which root (if any) is optimal?
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I There is a close relationship between the existence of an optimal solution
to (1) - (5) and the existence of a root for ϕ(t).

I If ϕ(t) does not have a root, then (1) - (5) will not have an optimal
solution.

I One can ascertain the existence of an optimal solution to (1) - (5) by
investigating the existence of a root for ϕ(t).

I This indirect approach can therefore provide an alternative way to solve
(1) - (5) and shed light on the existence problem raised in Yaari (1964).

I For Yaari�s (1964) example, it can be shown that ϕ(t) does not have a
root if S0 � log 2. If S0 < log 2, then ϕ(t) has a root.

I A major factor that renders ϕ(t) rootless is the property of the utility
function, namely g 0(c) � 1, which prevents ϕ(t) from diminishing to
�∞.



I There is a close relationship between the existence of an optimal solution
to (1) - (5) and the existence of a root for ϕ(t).

I If ϕ(t) does not have a root, then (1) - (5) will not have an optimal
solution.

I One can ascertain the existence of an optimal solution to (1) - (5) by
investigating the existence of a root for ϕ(t).

I This indirect approach can therefore provide an alternative way to solve
(1) - (5) and shed light on the existence problem raised in Yaari (1964).

I For Yaari�s (1964) example, it can be shown that ϕ(t) does not have a
root if S0 � log 2. If S0 < log 2, then ϕ(t) has a root.

I A major factor that renders ϕ(t) rootless is the property of the utility
function, namely g 0(c) � 1, which prevents ϕ(t) from diminishing to
�∞.



I There is a close relationship between the existence of an optimal solution
to (1) - (5) and the existence of a root for ϕ(t).

I If ϕ(t) does not have a root, then (1) - (5) will not have an optimal
solution.

I One can ascertain the existence of an optimal solution to (1) - (5) by
investigating the existence of a root for ϕ(t).

I This indirect approach can therefore provide an alternative way to solve
(1) - (5) and shed light on the existence problem raised in Yaari (1964).

I For Yaari�s (1964) example, it can be shown that ϕ(t) does not have a
root if S0 � log 2. If S0 < log 2, then ϕ(t) has a root.

I A major factor that renders ϕ(t) rootless is the property of the utility
function, namely g 0(c) � 1, which prevents ϕ(t) from diminishing to
�∞.



I There is a close relationship between the existence of an optimal solution
to (1) - (5) and the existence of a root for ϕ(t).

I If ϕ(t) does not have a root, then (1) - (5) will not have an optimal
solution.

I One can ascertain the existence of an optimal solution to (1) - (5) by
investigating the existence of a root for ϕ(t).

I This indirect approach can therefore provide an alternative way to solve
(1) - (5) and shed light on the existence problem raised in Yaari (1964).

I For Yaari�s (1964) example, it can be shown that ϕ(t) does not have a
root if S0 � log 2. If S0 < log 2, then ϕ(t) has a root.

I A major factor that renders ϕ(t) rootless is the property of the utility
function, namely g 0(c) � 1, which prevents ϕ(t) from diminishing to
�∞.



I There is a close relationship between the existence of an optimal solution
to (1) - (5) and the existence of a root for ϕ(t).

I If ϕ(t) does not have a root, then (1) - (5) will not have an optimal
solution.

I One can ascertain the existence of an optimal solution to (1) - (5) by
investigating the existence of a root for ϕ(t).

I This indirect approach can therefore provide an alternative way to solve
(1) - (5) and shed light on the existence problem raised in Yaari (1964).

I For Yaari�s (1964) example, it can be shown that ϕ(t) does not have a
root if S0 � log 2. If S0 < log 2, then ϕ(t) has a root.

I A major factor that renders ϕ(t) rootless is the property of the utility
function, namely g 0(c) � 1, which prevents ϕ(t) from diminishing to
�∞.



I There is a close relationship between the existence of an optimal solution
to (1) - (5) and the existence of a root for ϕ(t).

I If ϕ(t) does not have a root, then (1) - (5) will not have an optimal
solution.

I One can ascertain the existence of an optimal solution to (1) - (5) by
investigating the existence of a root for ϕ(t).

I This indirect approach can therefore provide an alternative way to solve
(1) - (5) and shed light on the existence problem raised in Yaari (1964).

I For Yaari�s (1964) example, it can be shown that ϕ(t) does not have a
root if S0 � log 2. If S0 < log 2, then ϕ(t) has a root.

I A major factor that renders ϕ(t) rootless is the property of the utility
function, namely g 0(c) � 1, which prevents ϕ(t) from diminishing to
�∞.



Uniqueness

I For the uniqueness issue, the objective functional in (1) is strictly
concave in c(�), and (2) - (5) imply that the set of feasible c(�) is
convex. Therefore, if the solution to (1) - (5) exists, it must be unique.

I This implies that, even if ϕ(t) has multiple roots, only one of them can
be optimal. The optimal root must be unique.
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Existence Theorems

THEOREM 2 (Leung (2009)). Assume that (i) g 0(0+) < ∞ or m(T ) > 0,
and (ii) S0 > 0. Let g 0(∞) = lim

c!∞
g 0(c). If g 0(∞) = 0, then the

optimization problem (1) - (5) has a solution.

I Theorem 2 shows that the optimization problem has a solution if the
marginal utility of in�nite consumption is zero.

I Many popular utility functions satisfy this condition, e.g., logarithmic
(ln c), CRRA (c1�δ/(1� δ)), and exponential (�e�c ).

I Examples of a utility function that does not satisfy g 0(∞) = 0 are
c � e�c (the one studied in Yaari (1964)), g(c) = c + ln c , c + c δ

δ

(δ < 1), and
p
c2 � 1 (c � 1). For these utility functions, g 0(∞) = 1.

I The following theorem o¤ers some su¢ cient conditions to deal with the
case where g 0(∞) 6= 0.



THEOREM 3 (Leung (2009)). Assume that (i) g 0(0+) < ∞ or m(T ) > 0,
and (ii) S0 > 0. Suppose g 0(∞) = k > 0. Without loss of generality, assume
that k = 1. Then there exists a τ 2 (0, 1) such that

Ω(τ)α(τ)g 0 (m(τ)) e
R τ
0 j(x )dx = 1. (7)

If there is more than one τ that satis�es (7), assume that

τ = max
n

θ 2 (0, 1)
���Ω(θ)α(θ)g 0 (m(θ)) eR θ

0 j(x )dx = 1
o

(8)

exists. Then the optimization problem (1) - (5) has a solution ifZ τ

0
e�

R t
0 j(x )dx (g 0)�1

 
1

Ω(t)α(t)e
R t
0 j(x )dx

!
dt > S0 +

Z τ

0
e�

R t
0 j(x )dxm(t)dt.

(9)
In particular, ifZ τ

0
e�

R t
0 j(x )dx (g 0)�1

 
1

Ω(t)α(t)e
R t
0 j(x )dx

!
dt = ∞, (10)

then (9) is satis�ed and (1) - (5) has a solution.



I Condition (10) is relatively simple and veri�able.
I In the context of Yaari�s (1964) example, it is di¤erent from his
condition, namely,

α(0)g 0(∞) < α(t#)g 0
�
S0
t#

�
(11)

holds for some t# 2 [0, 1].
I In contrast, condition (10) requires thatZ τ

0
(g 0)�1

�
1

α(t)

�
dt = ∞. (12)

I Clearly, (12) bears no resemblance to (11).
I When applied to Example 1, Yaari (1964, p.587) acknowledges that his
condition (11) is too strong.

I Condition (12) is considerably weaker than condition (11).
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Multiple roots

Theorem 4 (Leung (2007)). Assume that m(t) is continuously di¤erentiable
and η(t) = 0 for t 2 (t�,T ).
(i) If t� is optimal, then ϕ(t) must satisfy the condition

ϕ0(t) � 0 for t > t�. (13)

(ii) If t1 and t2 are roots of ϕ(t) with t1 < t2 and there exists a τ 2 (t1, t2)
such that ϕ(τ) 6= 0, then t1 is not optimal.
(iii) Suppose there exists a t# such that ϕ(t#) = 0 and ϕ0(t) � 0 for
t > t#, then

t� = infft# 2 [0,T ) j ϕ(t#) = 0 and ϕ0(t) � 0 for t > t#g (14)

will be optimal.



I Theorem 4 shows that, even if ϕ(t) has multiple roots, at most one root
can be optimal.

I The location of the optimal root depends on the con�guration of the
roots.

I If the roots are isolated, Theorem 4(ii) demonstrates that the largest root
will be the only optimum. This result holds regardless of whether the
roots are �nitely many or countably in�nitely many.

I If the roots are in a continuum, Theorem 4(iii) reveals that the smallest
root will be the only optimum.

I The selection of the optimal root is not a straightforward matter. In
contrast to the isolated case in which condition (13) eliminates all but
the largest root, the continuum case requires a di¤erent approach.
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I As long as the largest of the continuum of roots satis�es condition (13),
then all the roots in the continuum will also satisfy (13). In this case,
condition (13) cannot help further eliminate the roots in the continuum.
In order to locate the optimal root, it is necessary to draw on the
continuum itself, which will occur only if a special condition is satis�ed.
It turns out that this special condition imposes a restriction on the
optimal consumption path such that it eliminates all but the smallest of
the continuum of roots.

I The condition (13) requires that ϕ(t) be non-increasing for all t greater
than the candidate optimum. If the condition is not satis�ed, then the
candidate root will not be optimal. In this case, there is no optimal root.
Accordingly, the optimal wealth depletion time t� does not exist and the
optimization problem (1) - (5) does not have an optimal solution. Thus,
condition (13) provides a pivotal test for the optimality of the roots.
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3. Annuitization
I. Baseline model
Assume that j(t) = 0. In the absence of annuities, the individual�s decision problem
is given by:

max
c (t)

Z 1
0
(1� t) log (c(t)) dt (15)

subject to
c(t) � 0, (16)

S(t) � 0, (17)

S 0(t) = �c(t), (18)

and
S(0) = S0 > 0. (19)

Let the Hamiltonian H and the Lagrangian L be

H(c(t),S(t), t) = (1� t) log (c(t))� λ(t)c(t) (20)

and

L(c(t),S(t), t) = (1� t) log c(t)� λ(t)c(t) + η(t)c(t) + µ(t)S(t), (21)



Let c�(t) and S�(t) denote the optimal solution. The necessary optimality conditions
are

1� t
c�(t)

= λ(t) (22)

and
�λ0(t) = 0. (23)

It is straightforward to verify that the optimal solution is given by

c�(t) = 2S0(1� t) and S�(t) = S0(1� t)2. (24)

Substituting (24) into (15),

V �0 =
Z 1
0
(1� t) log (c�(t)) dt

=
log(2S0)

2
� 1
4
. (25)

I For this model, S�(t) > 0 for all t 2 [0, 1) and there is no terminal wealth
depletion before t = 1 because g 0(0+) = ∞ and m(t) = 0.

I The value of V �0 obtained in (25) will be served as a benchmark for later
comparisons.
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II. Annuities are available
(i) Costless annuities
Let τ be the annuitization time. At time τ, the individual pays the insurance
company all his wealth S(τ). In return, he receives M from the insurance company at
each instant as long as he lives.Z 1

τ
(1� t)Mdt = S(τ). (26)

Solving for M from (26),

M =
S(τ)R 1

τ (1� t)dt

=
2S(τ)
(1� τ)2

. (27)

The lifetime utility becomes

V =
Z 1
0
(1� t) log(c�(t))dt

=
Z τ

0
(1� t) log(c�(t))dt +

Z 1
τ
(1� t) logMdt

=
Z τ

0
(1� t) log(c�(t))dt + (logM)

Z 1
τ
(1� t)dt. (28)

The term (logM)
R 1

τ (1� t)dt can be interpreted as a scrap function.



The optimality solution c�(t) satis�es

1� t
c�(t)

= λ0 (a constant), t 2 [0, τ], (29)

and Z τ

0
c�(t)dt = S0 � S�(τ). (30)

Solving (29) and (30) for c�(t),

c�(t) =
2 [S0 � S�(τ)] (1� t)

1� (1� τ)2
, t 2 [0, τ]. (31)

Substituting (27) and (31) into (28),

V1 =
Z τ

0
(1� t) log 2(S0 � S

�(τ))(1� t)
1� (1� τ)2

dt +
(1� τ)2

2
log

2S�(τ)
(1� τ)2

=
1� (1� τ)2

2
log

2(S0 � S�(τ))
1� (1� τ)2

� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4

+
(1� τ)2

2
log

2S�(τ)
(1� τ)2

. (32)



To �nd the optimal S�(τ),

∂V1
∂S�(τ)

= � 1� (1� τ)2

2(S0 � S�(τ))
+
(1� τ)2

2S�(τ)
= 0. (33)

This implies that
S�(τ) = S0(1� τ)2. (34)

Substituting (34) into (32),

V1 =
1� (1� τ)2

2
log(2S0)�

(1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4
+
(1� τ)2

2
log(2S0)

=
log(2S0)

2
� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4
. (35)



To �nd the optimal τ,

∂V1
∂τ

= (1� τ)

�
log(1� τ)� 1

2

�
+
1� τ

2
= 0. (36)

This implies that log(1� τ) = 0, i.e.,

τ� = 0. (37)

In other words, the optimal time to annuitize is the very �rst moment. As a
result, (35) becomes

V �1 =
log(2S0)

2
. (38)

Comparing (25) and (38), V �1 > V
�
0 . This result con�rms that it is optimal to

annuitize at time 0. The annuities are so attractive that it is optimal to
annuitize the wealth at the very �rst moment.



I One may suspect that the instantaneous annuitization result obtained in
(37) is due to the assumption that the annuities are costless (i.e.,
actuarially fair).

I We next consider the cost of annuities. There are at least two ways to
model the cost of annuities.

1. The insurance company charges the individual a �xed fee F so that the
annuitizable wealth becomes S(τ)� F .

2. The insurance company charges the individual a variable fee proportional
to the wealth αS(τ) so that the annuitizable wealth becomes (1� α)S(τ).
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(ii) Fixed cost annuities
After paying cost F , the individual�s wealth becomes S(τ)� F . The annuity income
is determined by Z 1

τ
(1� t)Mdt = S(τ)� F . (39)

Solving for M,

M =
S(τ)� FR 1
τ (1� t)dt

=
2(S(τ)� F )
(1� τ)2

. (40)

Substituting (31) and (40) into (28),

V2 =
Z τ

0
(1� t) log 2(S0 � S

�(τ))(1� t)
1� (1� τ)2

dt +
Z 1

τ
(1� t) log 2(S(τ)� F )

(1� τ)2
dt

=
1� (1� τ)2

2
log

2(S0 � S�(τ))
1� (1� τ)2

� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4

+
(1� τ)2

2
log

2(S�(τ)� F )
(1� τ)2

. (41)



Notice that F does not appear in the �rst term because
R τ
0 c

�(t)dt = S0 � S�(τ),
whereas

R 1
τ (1� t)Mdt = S(τ)� F . To �nd the optimal S�(τ),

∂V2
∂S�(τ)

= � 1� (1� τ)2

2(S0 � S�(τ))
+

(1� τ)2

2(S�(τ)� F ) = 0. (42)

Thus,
S�(τ) = S0(1� τ)2 + F

�
1� (1� τ)2

�
. (43)

It follows that

S0 � S�(τ) = S0 � S0(1� τ)2 � F
�
1� (1� τ)2

�
= (S0 � F )

�
1� (1� τ)2

�
(44)

and

S�(τ)� F = S0(1� τ)2 + F
�
1� (1� τ)2

�
� F

= (S0 � F )(1� τ)2. (45)



Substituting (44) and (45) into (41),

V2 =
1� (1� τ)2

2
log(2(S0 � F ))�

(1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4

+
(1� τ)2

2
log(2(S0 � F ))

=
log(2(S0 � F ))

2
� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4
. (46)

As in (36) and (37), V2 is maximized at

τ = 0. (47)

Substituting τ = 0 into (46),

V �2 =
log(2(S0 � F ))

2
. (48)



Comparing (25) and (48),

V �2 > V
�
0 if

log(2(S0 � F ))
2

>
log(2S0)

2
� 1
4
, (49)

i.e.,
F
S0
< 1� e�1/2 = 0.3935. (50)

I If FS0 < 0.3935, then it is optimal to annuitize at τ = 0.

I If FS0 > 0.3935, the cost of annuities is too high and it does not pay to
annuitize.

I The amount 0.3935S0 can be interpreted as the individual�s maximum
willingness to pay for annuities.

I The insurance company can charge the individual as much as 39.35% of
his wealth for annuities.
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2
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4
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F
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I If FS0 < 0.3935, then it is optimal to annuitize at τ = 0.
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(iii) Proportional cost annuities
After paying cost αS(τ), the individual�s wealth becomes (1� α)S(τ).Z 1

τ
(1� t)Mdt = (1� α)S(τ). (51)

Solving for M,

M =
(1� α)S(τ)R 1

τ (1� t)dt

=
2(1� α)S(τ)
(1� τ)2

. (52)

Substituting (31) and (52) into (28),

V3 =
Z 1
0
(1� t) log(c�(t))dt

=
Z τ

0
(1� t) log 2(S0 � S

�(τ))(1� t)
1� (1� τ)2

dt +
�
log

2(1� α)S(τ)
(1� τ)2

� Z 1
τ
(1� t)dt

=
1� (1� τ)2

2
log

2(S0 � S�(τ))
1� (1� τ)2

� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4

+
(1� τ)2

2
log

2(1� α)S�(τ)
(1� τ)2

(53)



To �nd the optimal S�(τ),

∂V3
∂S�(τ)

= � 1� (1� τ)2

2(S0 � S�(τ))
+
(1� τ)2

2S�(τ)
= 0. (54)

Hence, S�(τ) = S0(1� τ)2, which is the same as (34). Substituting this into
(53),

V3 =
1� (1� τ)2

2
log(2S0)�

(1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4
+
(1� τ)2

2
log (2(1� α)S0)

=
log(2S0)

2
� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4
+
(1� τ)2

2
log(1� α) (55)

To �nd the optimal τ,

∂V3
∂τ

= (1� τ) (log(1� τ)� log(1� α)) = 0. (56)

This implies that
τ� = α. (57)



Evaluated at τ = α, ∂2V3
∂τ2

= �1 < 0. Therefore, τ� = α is optimal.
Substituting (57) into (55),

V �3 =
log(2S0)

2
+
(1� α)2

4
� 1
4
. (58)

I Compared to the case where annuities are costless, the individual is worse
o¤ when annuities are costly because V �3 < V

�
1 .

I However, compared to the case where annuities are not available,
V �3 > V0 because of the extra term (1� α)2/4.

I The availability of proportional cost annuities unambiguously improves
welfare.

I The higher the commission rate α, the later is the conversion to annuities.
I If α = 0, then τ = 0, i.e., it is optimal to buy annuities at the very �rst
moment if they are costless, which echoes the result obtained in (37).

I If α = 1, then τ = 1, .i.e., it is optimal not to buy any annuities because
they are too expensive.
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I To verify that it is not optimal to annuitize at time zero, let τ = 0, then
(55) implies that

V3jτ=0 =
log(2S0)

2
+
log(1� α)

2
. (59)

I Since 2 log(1� α) < (1� α)2 � 1,

V3jτ=0 < V �3 .

I This shows τ = 0 is not an optimal choice when α 2 (0, 1).
I The proportionality feature of the cost of annuities causes the individual
to delay the annuitization time.

I This contrasts with the case of �xed cost annuities where the �xed cost
a¤ects only the annuitization decision (whether to annuitize, as shown in
(49)) but not the annuitization time (when to annuitize, as shown in (37)
and (47)).
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III. Positive interest rate
Assume that j(t) = j (a constant). The decision problem becomes

max
c (t)

Z 1
0
(1� t) log (c(t)) dt

subject to
c(t) � 0,

S(t) � 0,

S 0(t) = jS(t)� c(t), (60)

and
S(0) = S0 > 0.

The Hamiltonian H and the Lagrangian L become

H(c(t),S(t), t) = (1� t) log c(t)� λ(t)(jS(t)� c(t))

and

L(c(t),S(t), t) = (1� t) log c(t)� λ(t)(jS(t)� c(t)) + η(t)c(t) + µ(t)S(t).
(61)



The necessary optimality conditions are

1� t
c�(t)

= λ(t) (62)

and
�λ0(t) = jλ(t). (63)

The optimal solution is given by

c�(t) = 2S0(1� t)e jt . (64)

Substituting (64) into (28),

V �4 =
Z 1

0
(1� t) log(c�(t))dt

=
Z 1

0
(1� t) log(2S0(1� t)e jt )dt

=
log(2S0)

2
+
j
6
� 1
4
. (65)



(i) Costless annuities
The annuity income M is given by (27). The optimality solution c�(t) satis�es (62),
(63), and Z τ

0
e�jtc�(t)dt = S0 � e�jτS�(τ). (66)

Solving these three equations,

c�(t) =
2
�
S0 � e�jτS�(τ)

�
(1� t)e jt

1� (1� τ)2
, t 2 [0, τ]. (67)

Substituting (67) into (28),

V5 =
Z 1
0
(1� t) log(c�(t))dt

=
Z τ

0
(1� t) log

2
�
S0 � e�jτS�(τ)

�
(1� t)e jt

1� (1� τ)2
dt +

(1� τ)2 logM
2

=
1� (1� τ)2

2
log

2(S0 � e�jτS�(τ))
1� (1� τ)2

� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4

+jτ2
�
1
2
� τ

3

�
+
(1� τ)2

2
log

2S�(τ)
(1� τ)2

(68)



To �nd the optimal S�(τ),

∂V5
∂S�(τ)

= �
�
1� (1� τ)2

�
e�jτ

2(S0 � e�jτS�(τ))
+
(1� τ)2

2S�(τ)
= 0. (69)

Thus,
S�(τ) = S0(1� τ)2e jτ. (70)

The di¤erence between (34) and (70) is the extra term e jτ in the latter.

V5 =
log (2S0)

2
� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4
+ jτ2

�
1
2
� τ

3

�
+
jτ(1� τ)2

2
.

(71)
To �nd the optimal τ,

∂V5
∂τ

= (1� τ) log(1� τ) +
j(1� τ)2

2
= 0. (72)

This implies that

log(1� τ�) +
j(1� τ�)

2
= 0. (73)



I It is easy to verify that (73) has a unique solution.

I Evaluated at the τ� that solves (73), ∂2V5
∂τ2

= �1� j(1�τ�)
2 < 0.

I Notice that
∂τ�

∂j
=

(1� τ�)2

2+ j(1� τ�)
> 0. (74)

I The higher the interest rate, the later is the annuitization time. It is
worthwhile to delay annuitization because the wealth earns interest.

V �5 =
log (2S0)

2
+

�
2+ (1� τ�)3

�
j

12
+
(1� τ�)2

4
� 1
4

(75)

I Comparing (65) and (75), V �5 > V
�
4 because

(1�τ�)3 j
12 + (1�τ�)2

4 > 0.
I The availability of costless annuities unambiguously improves the
individual�s welfare.
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(ii) Fixed cost annuities
The annuity income M is determined by (40):

M =
S(τ)� FR 1
τ (1� t)dt

=
2(S(τ)� F )
(1� τ)2

.

In this case,

c�(t) =
2
�
S0 � e�jτS�(τ)

�
(1� t)e jt

1� (1� τ)2
, t 2 [0, τ]. (76)

Hence,

V6 =
1� (1� τ)2

2
log

2(S0 � e�jτS�(τ))
1� (1� τ)2

� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4

+jτ2
�
1
2
� τ

3

�
+
(1� τ)2

2
log

2(S�(τ)� F )
(1� τ)2

(77)



To �nd the optimal S�(τ), di¤erentiate (77) with respect to S�(τ),

∂V6
∂S�(τ)

= �
�
1� (1� τ)2

�
e�jτ

2(S0 � e�jτS�(τ))
+

(1� τ)2

2(S�(τ)� F ) = 0. (78)

Thus,
S�(τ) = S0(1� τ)2e jτ + F

�
1� (1� τ)2

�
. (79)

It follows that

S0 � e�jτS�(τ) = (S0 � e�jτF )
�
1� (1� τ)2

�
(80)

and
S�(τ)� F = (e jτS0 � F )(1� τ)2. (81)

Hence,

V6 =
log
�
2(S0 � e�jτF )

�
2

� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4

+jτ2
�
1
2
� τ

3

�
+
(1� τ)2

2
jτ. (82)



To �nd the optimal τ, di¤erentiate (82) with respect to τ,

∂V6
∂τ

=
je�jτF

2(S0 � e�jτF )
+ (1� τ) log(1� τ) +

j(1� τ)2

2
= 0, (83)

which implies that

je�jτ
�
F

2(S0 � e�jτ�F )
+ (1� τ�) log(1� τ�) +

j(1� τ�)2

2
= 0. (84)

Using (84) to simplify (82),

V �6 =
log
�
2(S0 � e�jτ

�
F )
�

2
+
(1� τ)je�jτ

�
F

4(S0 � e�jτ�F )
+

�
2+ (1� τ�)3

�
j

12
+
(1� τ�)2

4
� 1
4
.

(85)



Comparing (65) and (85), V �6 > V
�
4 if the following condition is satis�ed:

log(S0 � e�jτ
�
F ) +

(1� τ�)je�jτ
�
F

2(S0 � e�jτ�F )
+
(1� τ�)3j

6
+
(1� τ�)2

2
> log S0.

(86)
This complicated condition determines whether the individual should annuitize
his wealth at time τ�.



(iii) Proportional cost annuities
The annuity income is determined by

M =
(1� α)S(τ)R 1

τ (1� t)dt

=
2(1� α)S(τ)
(1� τ)2

.

In this case,

V7 =
1� (1� τ)2

2
log

2(S0 � e�jτS�(τ))
1� (1� τ)2

� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4

+jτ2
�
1
2
� τ

3

�
+
(1� τ)2

2
log

2(1� α)S�(τ)
(1� τ)2

. (87)

To �nd the optimal S�(τ), di¤erentiate (87) with respect to S�(τ),

∂V7
∂S�(τ)

= �
�
1� (1� τ)2

�
e�jτ

2(S0 � e�jτS�(τ))
+
(1� τ)2

2S�(τ)
= 0. (88)

Thus, S�(τ) = S0(1� τ)2e jτ, which is the same as (70).



Substituting this into (87),

V7 =
log (2S0)

2
� (1� τ)2

2

�
log(1� τ)� 1

2

�
� 1
4

+jτ2
�
1
2
� τ

3

�
+
jτ(1� τ)2

2
+
(1� τ)2

2
log(1� α). (89)

To �nd the optimal τ,

∂V7
∂τ

= (1� τ) log(1� τ) +
j(1� τ)2

2
� (1� τ) log(1� α) = 0. (90)

Thus,

log(1� τ�) +
j(1� τ�)

2
� log(1� α) = 0. (91)

Therefore, the optimal τ� is determined by (91). Clearly,

∂τ�

∂j
=

(1� τ�)2

2+ j(1� τ�)
> 0 (92)

and
∂τ�

∂α
=
1� τ�

1� α
> 0. (93)

A higher interest rate or a higher commission rate would delay the annuitization time.



V �7 =
log (2S0)

2
+

�
2+ (1� τ�)3

�
j

12
+
(1� τ�)2

4
� 1
4
. (94)

I Comparing (65) and (94), it is clear that V �7 > V
�
4 .

I Annuitization unambiguously improves the individual�s welfare.
I Interestingly, V �7 and V

�
5 have exactly the same functional form. The

only di¤erence is the value of τ�.

I As shown in (73) and (91), the τ� in V �5 depends on j only, whereas the
τ� in V �7 depends on j and α.
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Summary
I For costless annuities, it is optimal to purchase them at the very �rst
moment.

I For �xed cost annuities, it is also optimal to purchase them at the very
�rst moment, provided that it is optimal to annuitize.

I For proportional cost annuities, it is optimal to purchase them at a later
time.

I When the interest rate is positive, it is not optimal to purchase annuities
at the very �rst moment, regardless of whether they are costless or
whether their cost is �xed or proportional.

I It pays to delay the annuitization time because wealth holdings generate
interest income. There will be no interest income after complete
annuitization.
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4. Degree of Annuitization
I The previous analysis considers only complete annuitization, i.e., the
individual pays the insurance company all his wealth at the time of
annuitization.

I Now we assume that j = 0 and the individual can annuitize a fraction θ
of his wealth S0, where 0 � θ � 1.

I For simplicity, we assume that the individual can only annuitize at time
zero.

I In contrast to the previous analysis which focuses on the annuitization
decision (whether to annuitize) and the annuitization time (when to
annuitize), the focus here is the degree of annuitization (how much to
annuitize).

I The question is whether partial or complete annuitization is optimal.
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The decision problem becomes

max
c (t),θ

Z 1

0
(1� t) log(c(t))dt (95)

subject to
c(t) � 0,

S(t) � 0,

S 0(t) = M � c(t), (96)

and
S(0) = (1� θ)S0. (97)

The annuity income M is determined by

M =
θS0R 1

0 (1� t)dt
= 2θS0. (98)



Since M > 0, it follows from Leung (1994) that there exists a terminal wealth
depletion time t� such that S�(t) = 0 for all t 2 [t�, 1]. Thus,

c�(t) =

8><>:
(1�t)M
(1�t�) if t 2 [0, t�]

M if t 2 [t�, 1]
. (99)

Since

(1� θ)S0 +
Z t�

0
Mdt =

Z t�

0
c�(t)dt. (100)

Substituting (98) and (99) into (100),

(1� θ)S0 +
Z t�

0
2θS0dt =

Z t�

0

(1� t)(2θS0)
1� t� dt. (101)

This implies that
θt�2 � (1� θ)(1� t�) = 0. (102)

Thus, the terminal wealth depletion time is given by

t� =

p
(1� θ)(1+ 3θ)� (1� θ)

2θ
(103)



The lifetime utility is given by

V8 =
Z t�

0
(1� t) log M(1� t)

(1� t�) dt +
Z 1

t�
(1� t) logMdt

=
1
2
log(2θS0) +

1
4
((1� t�)2 � 1� 2 log(1� t�)). (104)

To �nd the optimal θ,

∂V8
∂θ

=
1
2θ
� 1
4

�
�2(1� t�) + 2

1� t�
�

(1� t�)
θ(1� θ + 2θt�)

= 0. (105)

This implies that
θ(1� 2t�) = (1� t�)2. (106)

Combining (102) and (106), one obtains

t�2(2� t�) = 0. (107)

This implies that
t� = 0, i.e., θ = 1 (108)

because the other root of (107), t� = 2, is ruled out as t� 2 [0, 1].



Substituting t� = 0 into (104),

V �8 =
log(2S0)

2

I Clearly, V �8 > V
�
0 , thus the individual should completely annuitize at the

very �rst moment.

I Under this setup, complete annuitization is optimal.
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5. General Model
I In a general model, both the degree of annuitization θ and the time of
annuitization τ are decision variables.

I The objective is to investigate jointly the degree of annuitization (how
much to annuitize), and the annuitization time (when to annuitize) in a
single general setup.

I The individual�s decision problem becomes

max
c (t),θ,τ

Z 1

0
Ω(t)α(t)g(c(t))dt (109)

subject to
c(t) � 0, (110)

S(t) � 0, (111)

S 0(t) = jS(t) +m(t) +MI(t�τ) � c(t), (112)

S(0) = S0, (113)

M =
θ(1� α)(S(τ)� F )R 1

τ Ω(t)dt
, (114)
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S(τ) = e jτ
�
S(0) +

Z τ

0
e�jtm(t)dt �

Z τ

0
e�jtc�(t)dt

�
, (115)

0 = e�jτ(1� θ)(1� α)(S(τ)� F ) +
Z t�

τ
e�jt (m(t) +M) dt �

Z t�
τ
e�jtc�(t)dt,

(116)

0 � θ � 1, (117)

0 � τ � 1, (118)

and
0 � α � 1. (119)

where I(t�τ) is an indicator (binary) function of t such that I(t�τ) = 1 if t � τ, and
I(t�τ) = 0 if t < τ.



I The individual chooses how much to annuitize (θ) and when to annuitize
(τ).

I Since M > 0, there must exist a terminal wealth depletion time t� that
occurs after the annuitization time τ.

I The lifetime utility is given by

V =
Z 1
0

Ω(t)α(t)g(c�(t))dt

=
Z t�
0

Ω(t)α(t)g(c�(t))dt +
Z 1
t�

Ω(t)α(t)g(m(t) +M)dt (120)

I This general model allows for �exible annuitization both in the amount
(partial versus complete) and timing (now versus later) and di¤erent cost
structures of annuities (�xed and/or proportional).

I It is a complicated model for further research.
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6. Conclusion
I This paper runs through a series of models that capture various aspects
of annuitization.

I The approach taken here and the models formulated are notably di¤erent
from the ones in the literature, e.g., Richard (1975), Milevsky and Young
(2007), and Sheshinski (2007).

I The closed-form solutions enable us to understand the gist of the issues.
I The analysis is necessarily piecemeal because of the complexity in
analytically solving the model and characterizing the solutions.

I It is hoped that this preliminary analysis will provide the �rst step in this
line of research.

I Extensions

1. Survival functions: individual versus representative (average), own versus
child

2. Features of annuities



6. Conclusion
I This paper runs through a series of models that capture various aspects
of annuitization.

I The approach taken here and the models formulated are notably di¤erent
from the ones in the literature, e.g., Richard (1975), Milevsky and Young
(2007), and Sheshinski (2007).

I The closed-form solutions enable us to understand the gist of the issues.
I The analysis is necessarily piecemeal because of the complexity in
analytically solving the model and characterizing the solutions.

I It is hoped that this preliminary analysis will provide the �rst step in this
line of research.

I Extensions

1. Survival functions: individual versus representative (average), own versus
child

2. Features of annuities



6. Conclusion
I This paper runs through a series of models that capture various aspects
of annuitization.

I The approach taken here and the models formulated are notably di¤erent
from the ones in the literature, e.g., Richard (1975), Milevsky and Young
(2007), and Sheshinski (2007).

I The closed-form solutions enable us to understand the gist of the issues.

I The analysis is necessarily piecemeal because of the complexity in
analytically solving the model and characterizing the solutions.

I It is hoped that this preliminary analysis will provide the �rst step in this
line of research.

I Extensions

1. Survival functions: individual versus representative (average), own versus
child

2. Features of annuities



6. Conclusion
I This paper runs through a series of models that capture various aspects
of annuitization.

I The approach taken here and the models formulated are notably di¤erent
from the ones in the literature, e.g., Richard (1975), Milevsky and Young
(2007), and Sheshinski (2007).

I The closed-form solutions enable us to understand the gist of the issues.
I The analysis is necessarily piecemeal because of the complexity in
analytically solving the model and characterizing the solutions.

I It is hoped that this preliminary analysis will provide the �rst step in this
line of research.

I Extensions

1. Survival functions: individual versus representative (average), own versus
child

2. Features of annuities



6. Conclusion
I This paper runs through a series of models that capture various aspects
of annuitization.

I The approach taken here and the models formulated are notably di¤erent
from the ones in the literature, e.g., Richard (1975), Milevsky and Young
(2007), and Sheshinski (2007).

I The closed-form solutions enable us to understand the gist of the issues.
I The analysis is necessarily piecemeal because of the complexity in
analytically solving the model and characterizing the solutions.

I It is hoped that this preliminary analysis will provide the �rst step in this
line of research.

I Extensions

1. Survival functions: individual versus representative (average), own versus
child

2. Features of annuities



6. Conclusion
I This paper runs through a series of models that capture various aspects
of annuitization.

I The approach taken here and the models formulated are notably di¤erent
from the ones in the literature, e.g., Richard (1975), Milevsky and Young
(2007), and Sheshinski (2007).

I The closed-form solutions enable us to understand the gist of the issues.
I The analysis is necessarily piecemeal because of the complexity in
analytically solving the model and characterizing the solutions.

I It is hoped that this preliminary analysis will provide the �rst step in this
line of research.

I Extensions

1. Survival functions: individual versus representative (average), own versus
child

2. Features of annuities



6. Conclusion
I This paper runs through a series of models that capture various aspects
of annuitization.

I The approach taken here and the models formulated are notably di¤erent
from the ones in the literature, e.g., Richard (1975), Milevsky and Young
(2007), and Sheshinski (2007).

I The closed-form solutions enable us to understand the gist of the issues.
I The analysis is necessarily piecemeal because of the complexity in
analytically solving the model and characterizing the solutions.

I It is hoped that this preliminary analysis will provide the �rst step in this
line of research.

I Extensions

1. Survival functions: individual versus representative (average), own versus
child

2. Features of annuities



6. Conclusion
I This paper runs through a series of models that capture various aspects
of annuitization.

I The approach taken here and the models formulated are notably di¤erent
from the ones in the literature, e.g., Richard (1975), Milevsky and Young
(2007), and Sheshinski (2007).

I The closed-form solutions enable us to understand the gist of the issues.
I The analysis is necessarily piecemeal because of the complexity in
analytically solving the model and characterizing the solutions.

I It is hoped that this preliminary analysis will provide the �rst step in this
line of research.

I Extensions

1. Survival functions: individual versus representative (average), own versus
child

2. Features of annuities



Table 2
Summary of Models

i Annuities j F α θ V �i
0 � � � � � log(2S0 )

2 � 1
4

1 X � � � � log(2S0 )
2

2 X � X � � log(2(S0�F ))
2

3 X � � X � log(2S0 )
2 + (1�α)2

4 � 1
4

4 � X � � � log(2S0 )
2 + j

6 �
1
4

5 X X � � � log(2S0 )
2 +

(2+(1�τ)3)j
12 + (1�τ)2

4 � 1
4

6 X X X � � log(2(S0�e�jτF ))
2 + (1�τ)je�jτF

4(S0�e�jτF )
+
(2+(1�τ)3)j

12 + (1�τ)2

4 � 1
4

7 X X � X � log(2S0 )
2 +

(2+(1�τ)3)j
12 + (1�τ)2

4 � 1
4

8 X � � � X log(2S0 )
2


	1. Introduction
	2. Earlier Work
	3. Annuitization
	I. Baseline model
	II. Annuities are available
	III. Positive interest rate

	4. Degree of Annuitization
	5. General Model
	6. Conclusion

