
Modeling antibody responses during viral infections

Stanca Ciupe

University of Louisiana at Lafayette

Antibody functions

- Neutralization of free virus
- Complement-mediated lysis of free virus and infected cells
- Opsonization of virus particles by antibodies and phagocytosis of virus particles via Fc- or complement-receptors
- Antibody-dependent cellular cytotoxicity (ADCC) of infected cells
 Tissue damage: HIV, HBV, HCV, herpes, Dengue virus, Polio virus, LCMV

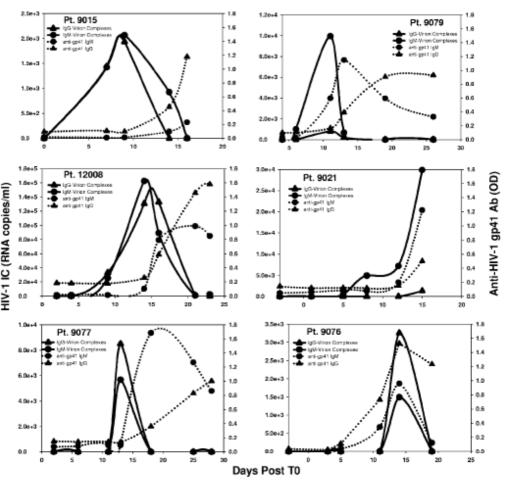


FIG. 5. HIV immune complexes produced at a median time of 8.0 days after T_0 . The detection of immune complexes for patients (Pt) 9015, 12008, 9077, 9079, 9021, and 9076 are aligned to T_0 and plotted in comparison to the detection of free antibody (Ab) responses.

Competition

Antibodies can compete with each other for

- antigen
- space in the lymph nodes
- T cell conjugates and/or kinetic prolongation
- 1. Competition between strain-specific and broadly specific neutralizing antibody in HIV infection.
- Competition between antibodies directed to virus particles and those directed to empty particles in Hepatitis B infection.

1. HIV infection

- Broadly neutralizing antibodies
 - Monoclonal Ab: IgG1b12, 2F5, 2G12, 4E10, Z13, PG9, PG16
 - VRC01 (neutralizes 90% HIV strains)
- Vaccines
 - AIDSVax
 - Rocombinant gp120 protein as vaccine vector
 - Induced strain-specific Ab but failed to induce broadly neutralizing Ab
 - STEP
 - Induction of cellular mediated immune responses
 - Recombinant adenovirus serotype 5
 - Suppressed by pre-existing AD5-specific Ab
 - Enhanced HIV infection
 - RV 144
 - ALVAC-HIV recombinant canarypox + AIDSVax
 - Successful in reducing infectivity rates
 - Believed inefficient for clade C

What are the challenges?

Virus

- Extensive viral clade and sequence diversity
- Early establishment of latent viral reservoirs
- Viral evasion of humoral and cellular immune responses

Antibody

- Responses are strain-specific (ssAb)
- No method exists to elicit broadly reactive neutralizing antibodies in vivo
 - Deleted during selection [Haynes, Science 2005, Nat Struct Mol Biol 2010]
 - Wrong conformation
 - □ High rate of mutation (VRC01) [Kwong Science 2010]
 - Competition [Zhang, PNAS 2009, Clarke, Evol Applic 2009]

Competition

Hypothesis

Presence of strain-specific antibodies doesn't have to exclude the presence of broadly neutralizing ones

Model

- Competition between the two antibody types.
- Find the parameter region where bnAb is made inefficient by ssAb

Model without competition -continuous immunization

Basic reproduction number

$$R_0 = \frac{r}{K_0 \frac{a}{\beta}}$$

If $R_0 < 1$ then all viruses will be cleared. If $R_0 > 1$ then at least one virus will persist.

Biological interpretation: When the virus replication rate is smaller then the product between the bnAb affinity rate and the antibody life span viruses will be cleared, otherwise some persist.

Model with competition -continuous immunization а а а ß ß A_2 An A_1 λ ß β λ_0 λ_0 A_0 а

Model equations:

$$\frac{dV_i}{dt} = (r - KA_i - K_0 A_0)V_i$$

$$\frac{dA_i}{dt} = \lambda V_i + A_i(a - \beta A_T)$$

$$\frac{dA_0}{dt} = \lambda_0 \sum_{i=1}^n V_i + A_0(a - \beta A_T)$$

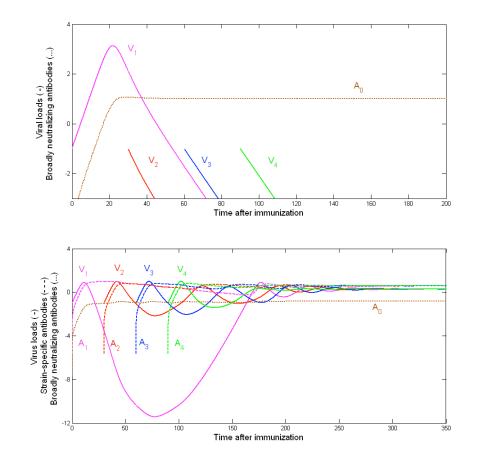
$$V_i(t_i) = V_0, \ A_i(t_i) = 0, \ A_0(0) = 0.$$

Basic reproductive number

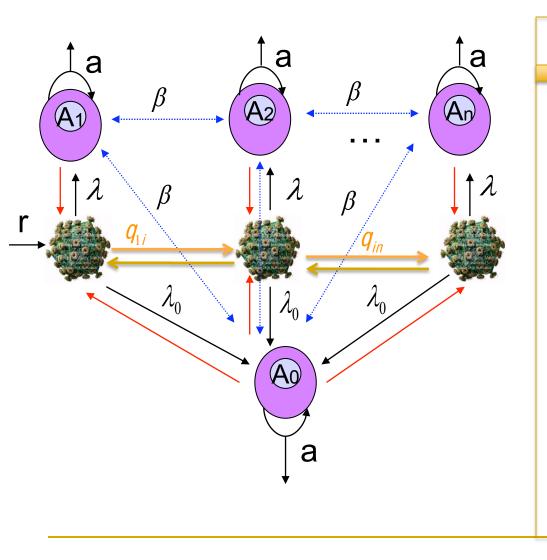
$$R_0 = \frac{r}{\frac{m\lambda_0 K_0 + \lambda K}{m(\lambda + \lambda_0)} \frac{a}{\beta}}$$
 dependent on *m*.

If $R_0 < 1$ for m = n then all viruses will be cleared.

If there exist an m>1 such that $R_0 > 1$ then all viruses will persist.


Biological interpretation: When the virus replication rate is smaller then the product between the combined ssAb and bnAb affinity rate and the antibody life span viruses will be cleared, otherwise some persist.

Model prediction


For any $m \ge 2$ for which

$$\frac{a}{\beta}\frac{mK_{0}\lambda_{0}+K\lambda}{m(\lambda+\lambda_{0})} < r < K_{0}\frac{a}{\beta}$$

- Viruses are cleared with no competition.
- Viruses persist with competition.

Natural infection - mutations

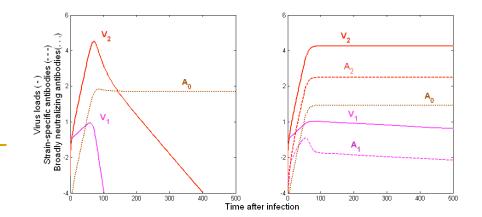
Model equations: $\frac{dV_{i}}{dt} = r \sum_{i=1}^{n} q_{ij} V_{j} - (KA_{i} + K_{0}A_{0}) V_{i}$ $\frac{dA_i}{dt} = \lambda V_i + A_i (a - \beta A_T)$ $\frac{dA_0}{dt} = \lambda_0 \sum_{i=1}^n V_i + A_0 (a - \beta A_T)$ $V_1(0) = V_{10}$ $V_i(0) = A_i(0) = A_0(0) = A_1(0) = 0.$ $Q = \{q_{ij}\}_{i,j}$ is the mutation matrix: $0 \le q_{ij} \le 1 \text{ and } \sum_{j=1}^{n} q_{ij} = 1.$

No competition

Let $V = (V_1, V_2, ..., V_n)$ interact with A_0 . The dynamics of the systems (1) and (2) are quivalent

(1)
$$\frac{dV}{dt} = (rQ - K_0 A_0 I_n)V$$
$$\frac{dA_0}{dt} = \lambda_0 V_T + A_0 (a - \beta A_0)$$
$$(2) \qquad \frac{dV_T}{dt} = (r - K_0 A_0)V_T$$
$$\frac{dA_0}{dt} = \lambda_0 V_T + A_0 (a - \beta A_0)$$

when the dominant eigenvalue of $Q = \{q_{ij}\}$ is simple, with corresponding eigenvector $Z \ge 0$ s.t. QZ = Z.


For example

1. Q is irreducible.

2.
$$Q = \begin{pmatrix} 1 - q_{12} & 0 & 0 & \dots & 0 & 0 \\ q_{12} & 1 - q_{23} & 0 & \dots & 0 & 0 \\ \dots & & & & & & \\ 0 & 0 & 0 & q_{n-1n} & 1 \end{pmatrix}.$$

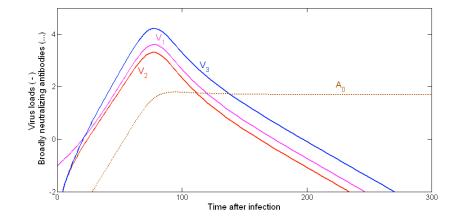
Then
$$R_0 = \frac{r}{K_0 \frac{a}{\beta}}$$
 is independent of n and Q.

When $R_0 < 1$ all virus strains are cleared and when $R_0 > 1$ all (dominat) viruses persist.

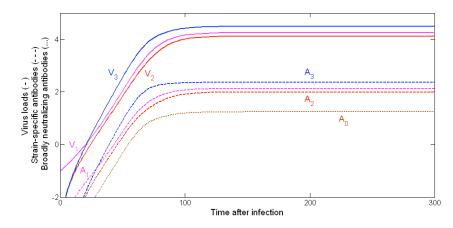
Competition

$$\mathbf{R}_0 = \frac{\mathbf{r}}{\Omega \, \mathbf{K}_0 \, \frac{\mathbf{a}}{\beta}}$$

If $R_0 < 1$ then all viruses are cleared, otherwise some viruses persist.


For n = 2 and $\mu_{11} = 1 - \alpha$, $\mu_{12} = \alpha$, $\mu_{21} = \mu_{22} = 0$

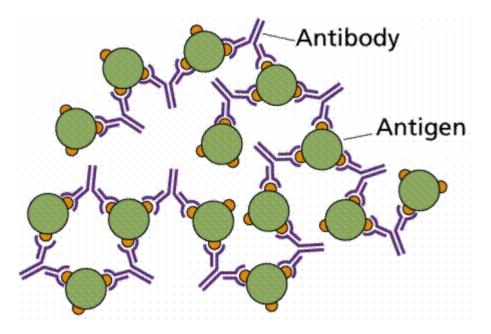
$$\Omega = \frac{\frac{K}{K_0} (\frac{\lambda}{\lambda_0} + \frac{K_0}{K}) (\frac{\lambda}{\lambda_0} + 2\frac{K_0}{K})}{(1 + \frac{\lambda}{\lambda_0}) \{(3\frac{\lambda}{\lambda_0} + 4\frac{K_0}{K}) - \alpha(2\frac{\lambda}{\lambda_0} + 4\frac{K_0}{K}) + \sqrt{((3\frac{\lambda}{\lambda_0} + 4\frac{K_0}{K}) - \alpha(2\frac{\lambda}{\lambda_0} + 4\frac{K_0}{K}))^2 - 8(\frac{\lambda}{\lambda_0} + \frac{K_0}{K})(\frac{\lambda}{\lambda_0} + 2\frac{K_0}{K})(1 - \alpha)^2\}}}$$


Model prediction

For parameters

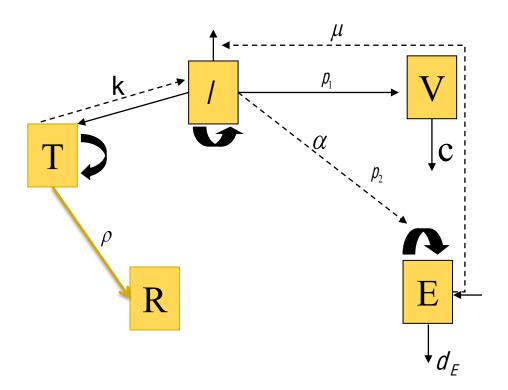
$$\Omega K_0 \frac{a}{\beta} < r < K_0 \frac{a}{\beta}$$

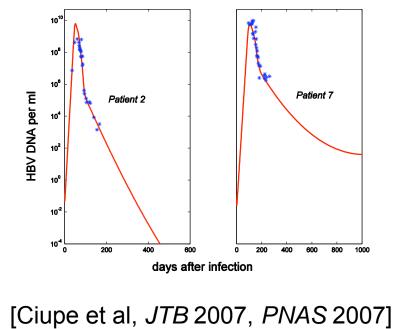
- Viruses are cleared with no competition.
- Viruses persist with competition.


Summary

- Broadly neutralizing antibodies alone can control multiple HIV infections.
- Additional immune events directed against specific HIV viral strains weaken the immune system defense, by limiting the growth of B cells producing broadly neutralizing antibodies.
- Under global resource limitation, HIV will be controlled only when there is no delay in a viral-specific antibody response. We know that this is not achieved in vivo.
- Inferences:
 - Increase in K_0 .
 - Decrease in λ_0 .

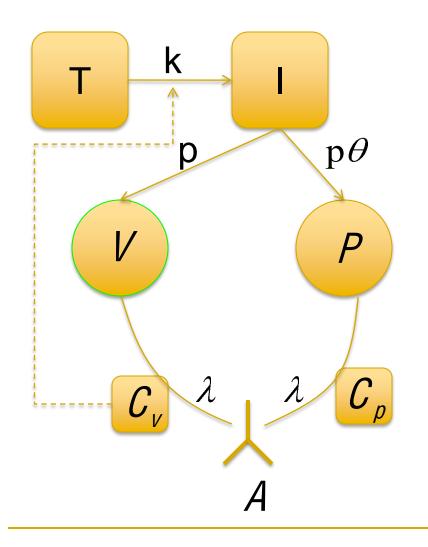
 How much antibody is needed for protection?


- vitro/vivo


 How many surface antigens have to be occupied by antibodies?

http://gened.emc.maricopa.edu

2. Hepatitis B



Antibody responses

- Efficient vaccine that induces anti-HBsAg antibodies and immune system memory.
- For people already infected
 - Role of antibody in disease pathogenesis.
 - Anti-HBs antibody is detectable after the resolution of acute infection.
 - Inhibit the spread of infection, but do not affect viral replication (Zhang, *J. Virol*, 2004).
 - Subviral particles (1000-10,000 more than virus) may serve as a decoy.

Antibody model

Model equations:

$$\frac{dT}{dt} = rT(1 - \frac{T+I}{T_{max}}) - kVT$$

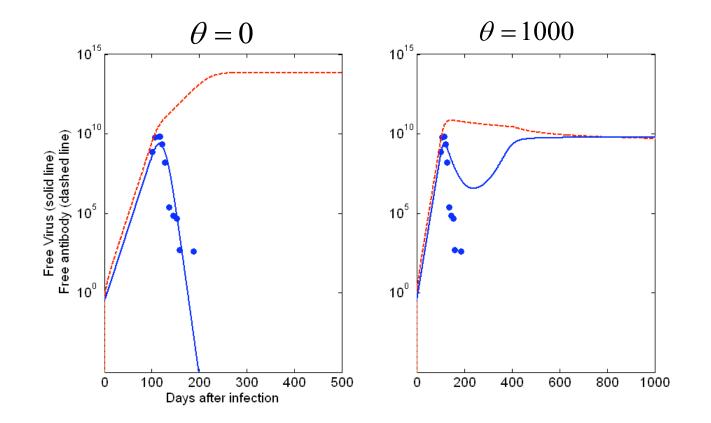
$$\frac{dI}{dt} = rI(1 - \frac{T+I}{T_{max}}) + kVT - \rho I$$

$$\frac{dV}{dt} = \rho I - cV + k_{-}C_{v} - k_{+}AV$$

$$\frac{dP}{dt} = \theta \rho I - cP + k_{-}^{\rho}C_{\rho} - k_{+}^{\rho}AP$$

$$\frac{dC_{v}}{dt} = -k_{-}C_{v} + k_{+}AV - c_{AV}C_{v}$$

$$\frac{dC_{\rho}}{dt} = -k_{-}^{\rho}C_{\rho} + k_{+}^{\rho}AP - c_{AV}C_{\rho}$$


$$\frac{dA}{dt} = \lambda(V + P) + A(a - \beta A)$$

$$+ k_{-}C_{v} - k_{+}AV + k_{-}^{\rho}C_{\rho} - k_{+}^{\rho}AP$$

Things to consider

- Different binding rates
- Different removal rates
- Delay in antibody production
- Increase the binding, so that most antibodies are in complexes
- Combined effect of immune responses

Numerical results

Antibody responses to subviral particles lower the responses directed at virus particles leading to chronic infections.

Conclusions

- Competition between antibody producing B cells alone can explain the inefficacy of antibodies to control viral infection
 - Most fit antibody wins
 - Of the limited amount of antibody present, most bind noninfectious particles which exceeds virus titers.
- Use this knowledge in a vaccine trial

Acknowledgments

- Thomas Kepler, Duke University
- Patrick DeLeenheer, Univ of Florida
- Alan Perelson, LANL
- Ruy Ribeiro, LANL