Secondary Invariants for String Bordism and Topological Modular Forms

Ulrich Bunke, Niko Naumann

http://arxiv.org/abs/0912.4875

B - closed oriented manifold of dimension 8.

(1)
$$\operatorname{sign}(B) = \frac{1}{45} < 7p_2(TB) - p_1^2(TB), [B] > \in \mathbb{Z}.$$

(*)
$$2p_1^2(TB) - \operatorname{sign}(B) \equiv 0$$
 (7).

If $B = B_1 \amalg_M B_2$ with $H^3(M, \mathbb{Z}) = H^4(M, \mathbb{Z}) = 0$ then $\operatorname{sign}(B) = \operatorname{sign}(B_1) - \operatorname{sign}(B_2)$ and $p_1^2(TB) = \hat{p}_1^2(TB_1) - \hat{p}_1^2(TB_2)$ hence

$$\lambda(M) := [2 < \hat{p}_1^2(TB_1), [B_1, M] > -\operatorname{sign}(B_1)] \in \mathbb{Z}/7\mathbb{Z}$$

is independent of the choice of B_1 such that $M \simeq \partial B_1$ (note: $MSO_7 = 0$). (geometric description of λ)

Intrinsic description of $\lambda(M)$ I

B - oriented of dimension 8 with boundary $M = \partial B$.

(1') sign(B) =
$$\frac{1}{45} \int_{B} (7p_2(\nabla^{TB}) - p_1^2(\nabla^{TB})) - \eta(M),$$

 $\eta(M)$ denoting the eta-invariant of the signature operator on M. Chosing $\rho \in \Omega^3(M)$ with $p_1(\nabla^{TB})|_M = d\rho$ and a cut-off function $\chi \in \mathcal{C}^{\infty}(B)$ for a collar of $M \subseteq B$, the form

$$p_1(\nabla^{TB}, \alpha) := p_1(\nabla^{TB}) - d(\chi \rho) \in \Omega^4_c(B)$$

represents $\hat{p}_1(TB) \in H^4(B,M;\mathbb{Z})$ and Stoke's theorem gives

$$\int_{B} p_1^2(\nabla^{TB}) = <\hat{p}_1^2(TB), [B, M] > + \int_{M} \rho \wedge p_1(\nabla^{TM})$$

and consequently

$$\lambda(M) = \left[\int_{B} 7\rho_{2}(\nabla^{TB}) - \int_{M} \rho \wedge \rho_{1}(\nabla^{TM}) - 45\eta(M)\right] \in \mathbb{Z}/7\mathbb{Z}.$$

Intrinsic description of $\lambda(M)$ II

Similarly, the first summand in

$$\lambda(M) = \left[\int_{B} 7\rho_{2}(\nabla^{TB}) - \int_{M} \rho \wedge p_{1}(\nabla^{TM}) - 45\eta(M)\right] \in \mathbb{Z}/7\mathbb{Z}$$

can be expressed intrinsically in terms of M leading to $\lambda(M) = \left[\int_{M} (420\theta \wedge c(\nabla^{TM})^2 - 246\rho \wedge p_1(\nabla^{TM}) - 210c(\nabla^{TM})^2 \wedge \rho) - 45\eta(M) - 10080\eta(M^c)\right] \in \mathbb{Z}/7\mathbb{Z},$ (analytic description of λ) where:

- c ∈ H²(M, Z) is the characteristic class of a chosen Spin^c-structure on M.
- $heta \in \Omega^3(M)$ solves $c(
 abla^{\mathcal{T}M})^2|_M = d heta$ and
- $\eta(M^c)$ is the eta-invariant of the Spin^c-Dirac operator on M.

For all $m \ge 1$ we will define a group homomorphism

$$b^{an}: MString_{4m-1} \longrightarrow T_{2m}$$

using spectral invariants of twisted Dirac operators. b^{an} will be a secondary version of the Witten genus. We will be able to evaluate b^{an} restricted to

$$A_{4m-1} := \ker(MString_{4m-1} \xrightarrow{j} MSpin_{4m-1}) \subseteq MString_{4m-1}$$

by equating it $b^{an}|_{A_{4m-1}} = b^{geom} = b^{top}$ with homomorphisms constructed using differential geometry and homotopy theory, respectively.

There will be a factorization

$$MString_{4m-1} \xrightarrow{\sigma} tmf_{4m-1}$$

$$A_{4m-1} \xrightarrow{b^{top}} T_{2m}$$

and b^{tmf} will be made explicit using the known structure of tmf_* . Recalling the Witten genus (Ando/Hopkins/Rezk) σ is onto (Hopkins/Mahowald) this will imply in particular non-triviality of b^{top} for infinitely many values of m. The Witten genus

$$R: MSpin_{4m} \rightarrow KO[[q]]_{4m} \simeq \mathbb{Z}[[q]]$$

is given by its characteristic series

$$\Phi \in \mathbb{Q}[[q]][[p_1, p_2, \ldots]]$$

as R([M]) =

$$\kappa_m \int_M \Phi(p_1(\nabla^{TM}), p_2(\nabla^{TM}), \ldots) \stackrel{(AS)}{=} \kappa_m \sum_{n \ge 0} q^n \cdot \operatorname{index}(D_M \otimes R_n(TM)),$$

where κ_m is 1 for *m* even and $\frac{1}{2}$ for *m* odd.

-∢ ≣ →

Witten genus II

There is a factorization

$$MString_{4m} \xrightarrow{j} MSpin_{4m} \xrightarrow{R} KO[[q]]_{4m} \xrightarrow{\cong} \mathbb{Z}[[q]],$$

 $\mathcal{M}_{2m}^{\mathbb{Z}}$ denoting modular forms of weight 2m. We have explicitely

$$\Phi(p_1,...) = \exp\left[\sum_{k=2}^{\infty} \frac{2}{(2k)!} G_{2k} N_{2k}(p_1,...)\right] e^{G_2 p_1} \in \mathbb{Q}[[q]][[p_1,...]]$$

and define

$$\tilde{\Phi}(p_1,\ldots,):=\exp\left[\sum_{k=2}^{\infty}\frac{2}{(2k)!}G_{2k}N_{2k}(p_1,\ldots)\right]\sum_{j=1}^{\infty}\frac{G_2^jp_1^{j-1}}{j!}.$$

Niko Naumann Secondary Invariants for MO < 8 > and tmf

For all $m \ge 1$, the target of our invariants b^{an}, b^{geom} and b^{top} will be the quotient group

$$T_{2m} := \frac{\mathbb{R}[[q]]}{\mathbb{Z}[[q]] + \mathcal{M}_{2m}^{\mathbb{R}}}$$

A I > A I > A

3

For all $m \ge 1$,

- (Hovey) $MString_{4m-1}$ is finite consisting of 2- and 3-torsion.
- (Anderson/Brown/Peterson) *MSpin*_{4m-1} is a finite 𝔽₂-vector space and is zero for *m* ≤ 9.
- The quotient *MString*_{4m−1}/*A*_{4m−1} is finite 2-primary and zero for *m* ≤ 9, i.e. up to dimension 35.

We will see that

$$b^{top}: A_{4m-1} \longrightarrow T_{2m}$$

detects all 3-torsion and part of the 2-torsion of A_{4m-1} .

Let $m \ge 1$ and M a (4m - 1)-dimensional closed String manifold. Choose a metric on M and $H \in \Omega^3(M) : dH = \frac{p_1}{2} (\nabla^{TM})$.

Lemma

The following is well-defined and a group homomorphism:

$$b^{an}: MString_{4m-1} \longrightarrow T_{2m}, \ [M] \mapsto \\ [2\kappa_m \int_M H \wedge \tilde{\Phi}(\nabla^{TM}) + \kappa_m \sum_{n \ge 0} q^n \cdot \eta((\mathcal{M} \otimes R_n(TM \oplus \mathbb{R}))_t)]$$

This is essentially an applcation of the Atiyah/Patodi/Singer Index Theorem.

(*) *) *) *)

Assuming $[M] \in A_{4m-1} \subseteq String_{4m-1}$ there is a Spin-manifold Z such that $M = \partial Z$. An index formula shows that the η -invariants in the definition of b^{an} differ by integers from a characterisic class on Z, showing $b^{an}|_{A_{4m-1}} = b^{geom}$ defined by

$$b^{geom}: A_{4m-1} \longrightarrow T_{2m}$$

$$[M] \mapsto [2\kappa_m \int_M H \wedge \tilde{\Phi}(\nabla^{TM}) - \kappa_m \int_Z \Phi(\nabla^{TZ})].$$

• • = • • = • = •

Construction of b^{top} - motivating example

A very short summary of the construction of Adams' *e*-invariant:

$$\Sigma^{-1}\overline{MU} \longrightarrow \Sigma^{-1}K\mathbb{Q}/\mathbb{Z}$$

$$S^{2m-1} \xrightarrow{\tilde{x}} S$$

$$MU,$$

where the map $\Sigma^{-1}\overline{MU} \longrightarrow \Sigma^{-1}K\mathbb{Q}/\mathbb{Z}$ is derived from the complex orientation $MU \longrightarrow K$ of complex *K*-theory.

Construction of *b*^{top}

We contemplate

and see

that the following map $b^{top}: A_{4m-1} \longrightarrow T_{2m}$ is well-defined and a group homomorphism:

$$[M] \mapsto a \circ Z \in G_{\mathbb{Q},4m} \simeq \frac{\mathbb{Z}[[q]] \otimes \mathbb{Q}}{\mathcal{M}_{2m}^{\mathbb{Q}}} \xrightarrow{can} T_{2m}.$$

For all $m \ge 1$ we can show

$$b^{geom} = b^{top} : A_{4m-1} \longrightarrow T_{2m}$$

and it is easy to construct

$$b^{tmf}: tmf_{4m-1} \longrightarrow T_{2m}$$

similarly as above factoring b^{top} through the (refined) Witten genus

$$\sigma: MString_{4m-1} \longrightarrow tmf_{4m-1}.$$

m	name	ord	$^{Y}E_{2}^{*,*}(tmf_{(3)})$	$b^{tmf}(\dots)$
1	ν	3	$[\nu]_2$	$\left[\frac{2}{3}\right]$
7	$\nu\Delta$	3	$[\nu]_2 \Delta_2$	$\left[\frac{2}{3}\Delta\right]$

The table gives the complete list of additive generators of $tmf_{(3),4m-1}$ for 4m-1 < 75. It continues 72-periodicially under multiplication with Δ^3 . For all $m \ge 1 \ b^{tmf} : tmf_{(3),4m-1} \hookrightarrow T_{(3),2m}$ is injective.

- For all $m \ge 1$, $b^{tmf}(\text{Filt}^4(tmf_{(2),4m-1})) = 0$.
- For all $m \ge 1$ such that $(m \mod 48) \in \{1, 7, 13, 25, 31, 37\}$ we have an injection $\overline{b}^{tmf} : tmf_{(2),4m-1}/\text{Filt}^4(tmf_{(2),4m-1}) \hookrightarrow T_{(2),2m}.$
- For all other $m \ge 1$ we have $b^{tmf}(tmf_{(2),4m-1}) = 0$.

Computations at 2 - II

m	name	ord	$^{Y}E_{2}^{*,*}(tmf_{(2)})$	$b^{tmf}(\dots)$	$c \in \{\dots\}$
1	ν	8	$[\nu]_2$	$[\frac{3}{8}]$	
7	$2\nu\Delta$	4	$2[\nu]_2\Delta_2$	$\left[\frac{c}{4}\Delta\right]$	1,3
13	$\nu\Delta^2$	8	$[\nu]_2\Delta_2^2$	$\left[\frac{c}{8}\Delta^2\right]$	1,5
25	$\nu\Delta^4$	8	$[\nu]_2 \Delta_2^4$	$\left[\frac{c}{8}\Delta^{4}\right]$	1,5
31	$2\nu\Delta^5$	4	$2[\nu]_2 \Delta_2^5$	$\left[\frac{c}{4}\Delta^{5}\right]$	1,3
37	$ u\Delta^{6}$	8	$[\nu]_2 \Delta_2^6$	$\left[\frac{c}{8}\Delta^{6}\right]$	1, 5
4	ηa_{14}	2	$[\eta]_2[a_{14}]_2$	0	
10	ηa_{38}	2	$[\eta]_2[a_{38}]_2$	0	
19	ηa_{74}	2	$[\eta]_2[a_{74}]_2$	0	
29	ηa_{110}	2	$[\eta]_2[a_{110}]_2$	0	
34	ηa_{134}	2	$[\eta]_2[a_{134}]_2$	0	

The second column is a complete list of additive generators of

$$tmf_{(2),4m-1}/Filt^4(tmf_{(2),4m-1})$$

in this range of dimension and there is a 192-periodicity.

Recall
$$A_{4m-1} = \ker(MString_{4m-1} \xrightarrow{j} MSpin_{4m-1}).$$

One has
$$\dim_{\mathbb{F}_2}(MSpin_{4m-1}) = 0, \dots, 0 \ (m = 9), 1 \ (m = 10), 2, 4, 7, 22, \dots, 17493 \ (m = 32).$$

Using results of Mahowald/Gorbunov one can check $A_{39} = MString_{39}$ (the case m = 10).

In general we have the following alternative.

Open problem (either way)

포 씨는 포