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Milnor’s λ-invariant (On manifolds homeomorphic to the 7-sphere, 1956)

B - closed oriented manifold of dimension 8.

(1) sign(B) =
1

45
< 7p2(TB)− p2

1(TB), [B] >∈ Z.

(∗) 2p2
1(TB)− sign(B) ≡ 0 (7).

If B = B1 qM B2 with H3(M,Z) = H4(M,Z) = 0 then
sign(B) = sign(B1)− sign(B2) and p2

1(TB) = p̂2
1(TB1)− p̂2

1(TB2)
hence

λ(M) := [2 < p̂2
1(TB1), [B1,M] > − sign(B1)] ∈ Z/7Z

is independent of the choice of B1 such that M ' ∂B1 (note:
MSO7 = 0).
(geometric description of λ)
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Intrinsic description of λ(M) I

B - oriented of dimension 8 with boundary M = ∂B.

(1′) sign(B) =
1

45

∫
B

(7p2(∇TB)− p2
1(∇TB))− η(M),

η(M) denoting the eta-invariant of the signature operator on M.
Chosing ρ ∈ Ω3(M) with p1(∇TB)|M = dρ and a cut-off function
χ ∈ C∞(B) for a collar of M ⊆ B, the form

p1(∇TB , α) := p1(∇TB)− d(χρ) ∈ Ω4
c(B)

represents p̂1(TB) ∈ H4(B,M; Z) and Stoke’s theorem gives∫
B

p2
1(∇TB) =< p̂2

1(TB), [B,M] > +

∫
M
ρ ∧ p1(∇TM)

and consequently

λ(M) = [

∫
B

7p2(∇TB)−
∫

M
ρ ∧ p1(∇TM)− 45η(M)] ∈ Z/7Z.
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Intrinsic description of λ(M) II

Similarly, the first summand in

λ(M) = [

∫
B

7p2(∇TB)−
∫

M
ρ ∧ p1(∇TM)− 45η(M)] ∈ Z/7Z

can be expressed intrinsically in terms of M leading to
λ(M) = [

∫
M(420θ ∧ c(∇TM)2 − 246ρ∧ p1(∇TM)− 210c(∇TM)2 ∧

ρ)− 45η(M)− 10080η(Mc)] ∈ Z/7Z,
(analytic description of λ)
where:

c ∈ H2(M,Z) is the characteristic class of a chosen
Spinc -structure on M.

θ ∈ Ω3(M) solves c(∇TM)2|M = dθ and

η(Mc) is the eta-invariant of the Spinc -Dirac operator on M.
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Overview - Constructions

For all m ≥ 1 we will define a group homomorphism

ban : MString4m−1 −→ T2m

using spectral invariants of twisted Dirac operators. ban will be a
secondary version of the Witten genus.
We will be able to evaluate ban restricted to

A4m−1 := ker(MString4m−1
j−→ MSpin4m−1) ⊆ MString4m−1

by equating it ban|A4m−1 = bgeom = btop with homomorphisms
constructed using differential geometry and homotopy theory,
respectively.
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Overview - Computations

There will be a factorization

MString4m−1
σ // // tmf4m−1

btmf

��
A4m−1

� ?

OO

btop
// T2m

and btmf will be made explicit using the known structure of tmf∗.
Recalling the Witten genus (Ando/Hopkins/Rezk) σ is onto
(Hopkins/Mahowald) this will imply in particular non-triviality of
btop for infinitely many values of m.
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Witten genus I

The Witten genus

R : MSpin4m → KO[[q]]4m ' Z[[q]]

is given by its characteristic series

Φ ∈ Q[[q]][[p1, p2, . . .]]

as R([M]) =

κm

∫
M

Φ(p1(∇TM), p2(∇TM), . . .)
(AS)
= κm

∑
n≥0

qn·index(DM⊗Rn(TM)),

where κm is 1 for m even and 1
2 for m odd.
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Witten genus II

There is a factorization

MZ
2m_�

(q−exp.)

��
MString4m

22

j
// MSpin4m

R
// KO[[q]]4m ∼=

// Z[[q]],

MZ
2m denoting modular forms of weight 2m.

We have explicitely

Φ(p1, . . . ) = exp

[ ∞∑
k=2

2

(2k)!
G2kN2k(p1, . . .)

]
eG2p1 ∈ Q[[q]][[p1, . . . ]]

and define

Φ̃(p1, . . . , ) := exp

[ ∞∑
k=2

2

(2k)!
G2kN2k(p1, . . . )

] ∞∑
j=1

G j
2pj−1

1

j!
.
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target group

For all m ≥ 1, the target of our invariants ban, bgeom and btop will
be the quotient group

T2m :=
R[[q]]

Z[[q]] +MR
2m

.
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Interlude - structure of A4m−1

For all m ≥ 1,

(Hovey) MString4m−1 is finite consisting of 2- and 3-torsion.

(Anderson/Brown/Peterson) MSpin4m−1 is a finite F2-vector
space and is zero for m ≤ 9.

The quotient MString4m−1/A4m−1 is finite 2-primary and zero
for m ≤ 9, i.e. up to dimension 35.

We will see that
btop : A4m−1 −→ T2m

detects all 3-torsion and part of the 2-torsion of A4m−1.
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Definition of ban

Let m ≥ 1 and M a (4m − 1)-dimensional closed String manifold.
Choose a metric on M and H ∈ Ω3(M) : dH = p1

2 (∇TM).

Lemma

The following is well-defined and a group homomorphism:

ban : MString4m−1 −→ T2m , [M] 7→

[2κm

∫
M

H ∧ Φ̃(∇TM) + κm

∑
n≥0

qn · η((M⊗ Rn(TM ⊕ R))t)]

This is essentially an applcation of the Atiyah/Patodi/Singer Index
Theorem.
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bgeom - using a Spin zero-bordism

Assuming [M] ∈ A4m−1 ⊆ String4m−1 there is a Spin-manifold Z
such that M = ∂Z .
An index formula shows that the η-invariants in the definition of
ban differ by integers from a characterisic class on Z , showing
ban|A4m−1 = bgeom defined by

bgeom : A4m−1 −→ T2m,

[M] 7→ [2κm

∫
M

H ∧ Φ̃(∇TM)− κm

∫
Z

Φ(∇TZ )].
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Construction of btop - motivating example

A very short summary of the construction of Adams’ e-invariant:

Σ−1MU

��

// Σ−1KQ/Z

S2m−1

e(x)

44iiiiiiiiii

99

0

%%KKKKKKKKKK
x // S

��
MU,

where the map Σ−1MU −→ Σ−1KQ/Z is derived from the
complex orientation MU −→ K of complex K -theory.
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Construction of btop

We contemplate

Σ−1F //

a
++

��

Σ−1G //

��

Σ−1GQ

��
S4m−1

Z

99

[M] //

0

%%KKKKKKKKKK MString
σ //

j

��

tmf

��

// tmfQ

��
MSpin // ko[[q]] // ko[[q]]Q

and see
that the following map btop : A4m−1 −→ T2m is well-defined and a
group homomorphism:

[M] 7→ a ◦ Z ∈ GQ,4m '
Z[[q]]⊗Q
MQ

2m

can−→ T2m.
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Comparison

For all m ≥ 1 we can show

bgeom = btop : A4m−1 −→ T2m

and it is easy to construct

btmf : tmf4m−1 −→ T2m

similarly as above factoring btop through the (refined) Witten genus

σ : MString4m−1 −→ tmf4m−1.
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Computations at 3

m name ord Y E ∗,∗2 (tmf(3)) btmf (. . . )

1 ν 3 [ν]2 [2
3 ]

7 ν∆ 3 [ν]2∆2 [2
3∆]

nase
The table gives the complete list of additive generators of
tmf(3),4m−1 for 4m − 1 < 75. It continues 72-periodicially under
multiplication with ∆3.
For all m ≥ 1 btmf : tmf(3),4m−1 ↪→ T(3),2m is injective.
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Computations at 2 - I

For all m ≥ 1, btmf (Filt4(tmf(2),4m−1)) = 0.

For all m ≥ 1 such that (m mod 48) ∈ {1, 7, 13, 25, 31, 37}
we have an injection
b̄tmf : tmf(2),4m−1/Filt4(tmf(2),4m−1) ↪→ T(2),2m.

For all other m ≥ 1 we have btmf (tmf(2),4m−1) = 0.
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Computations at 2 - II

m name ord Y E∗,∗
2 (tmf(2)) btmf (. . . ) c ∈ {. . . }

1 ν 8 [ν]2 [ 3
8 ]

7 2ν∆ 4 2[ν]2∆2 [ c
4 ∆] 1, 3

13 ν∆2 8 [ν]2∆2
2 [ c

8 ∆2] 1, 5
25 ν∆4 8 [ν]2∆4

2 [ c
8 ∆4] 1, 5

31 2ν∆5 4 2[ν]2∆5
2 [ c

4 ∆5] 1, 3
37 ν∆6 8 [ν]2∆6

2 [ c
8 ∆6] 1, 5

4 ηa14 2 [η]2[a14]2 0
10 ηa38 2 [η]2[a38]2 0
19 ηa74 2 [η]2[a74]2 0
29 ηa110 2 [η]2[a110]2 0
34 ηa134 2 [η]2[a134]2 0

The second column is a complete list of additive generators of

tmf(2),4m−1/Filt4(tmf(2),4m−1)

in this range of dimension and there is a 192-periodicity.
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Closer look at A4m−1

Recall A4m−1 = ker(MString4m−1
j−→ MSpin4m−1).

d
One has dimF2(MSpin4m−1) = 0, . . . , 0 (m = 9),
1 (m = 10), 2, 4, 7, 22, . . . , 17493 (m = 32).
d
Using results of Mahowald/Gorbunov one can check
A39 = MString39 (the case m = 10) .
z
In general we have the following alternative.
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Open problem (either way)

MString4m−1
σ //

ban

%%JJJJJJJJJJJJJJJJJJJJJ
tmf4m−1

btmf

��

(commutes?)

A4m−1

� ?

(equality?)

OO

btop
// T2m.
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