# Secondary Invariants 

 forString Bordism and
Topological Modular Forms
Ulrich Bunke, Niko Naumann
http://arxiv.org/abs/0912.4875

## Milnor's $\lambda$-invariant (On manifolds homeomorphic to the 7 -sphere, 1956)

$B$ - closed oriented manifold of dimension 8.

$$
\begin{gathered}
(1) \operatorname{sign}(B)=\frac{1}{45}<7 p_{2}(T B)-p_{1}^{2}(T B),[B]>\in \mathbb{Z} \\
(*) 2 p_{1}^{2}(T B)-\operatorname{sign}(B) \equiv 0(7)
\end{gathered}
$$

If $B=B_{1} \amalg_{M} B_{2}$ with $H^{3}(M, \mathbb{Z})=H^{4}(M, \mathbb{Z})=0$ then
$\operatorname{sign}(B)=\operatorname{sign}\left(B_{1}\right)-\operatorname{sign}\left(B_{2}\right)$ and $p_{1}^{2}(T B)=\hat{p}_{1}^{2}\left(T B_{1}\right)-\hat{p}_{1}^{2}\left(T B_{2}\right)$
hence

$$
\lambda(M):=\left[2<\hat{p}_{1}^{2}\left(T B_{1}\right),\left[B_{1}, M\right]>-\operatorname{sign}\left(B_{1}\right)\right] \in \mathbb{Z} / 7 \mathbb{Z}
$$

is independent of the choice of $B_{1}$ such that $M \simeq \partial B_{1}$ (note:
$M S O_{7}=0$ ).
(geometric description of $\lambda$ )

## Intrinsic description of $\lambda(M)$ |

$B$ - oriented of dimension 8 with boundary $M=\partial B$.

$$
\left(1^{\prime}\right) \operatorname{sign}(B)=\frac{1}{45} \int_{B}\left(7 p_{2}\left(\nabla^{T B}\right)-p_{1}^{2}\left(\nabla^{T B}\right)\right)-\eta(M),
$$

$\eta(M)$ denoting the eta-invariant of the signature operator on $M$. Chosing $\rho \in \Omega^{3}(M)$ with $\left.p_{1}\left(\nabla^{T B}\right)\right|_{M}=d \rho$ and a cut-off function $\chi \in \mathcal{C}^{\infty}(B)$ for a collar of $M \subseteq B$, the form

$$
p_{1}\left(\nabla^{T B}, \alpha\right):=p_{1}\left(\nabla^{T B}\right)-d(\chi \rho) \in \Omega_{c}^{4}(B)
$$

represents $\hat{p}_{1}(T B) \in H^{4}(B, M ; \mathbb{Z})$ and Stoke's theorem gives

$$
\int_{B} p_{1}^{2}\left(\nabla^{T B}\right)=<\hat{p}_{1}^{2}(T B),[B, M]>+\int_{M} \rho \wedge p_{1}\left(\nabla^{T M}\right)
$$

and consequently

$$
\lambda(M)=\left[\int_{B} 7 p_{2}\left(\nabla^{T B}\right)-\int_{M} \rho \wedge p_{1}\left(\nabla^{T M}\right)-45 \eta(M)\right] \in \mathbb{Z} / 7 \mathbb{Z}
$$

## Intrinsic description of $\lambda(M)$ II

Similarly, the first summand in

$$
\lambda(M)=\left[\int_{B} 7 p_{2}\left(\nabla^{T B}\right)-\int_{M} \rho \wedge p_{1}\left(\nabla^{T M}\right)-45 \eta(M)\right] \in \mathbb{Z} / 7 \mathbb{Z}
$$

can be expressed intrinsically in terms of $M$ leading to $\lambda(M)=\left[\int_{M}\left(420 \theta \wedge c\left(\nabla^{T M}\right)^{2}-246 \rho \wedge p_{1}\left(\nabla^{T M}\right)-210 c\left(\nabla^{T M}\right)^{2} \wedge\right.\right.$
$\left.\rho)-45 \eta(M)-10080 \eta\left(M^{c}\right)\right] \in \mathbb{Z} / 7 \mathbb{Z}$,
(analytic description of $\lambda$ )
where:

- $c \in H^{2}(M, \mathbb{Z})$ is the characteristic class of a chosen Spin ${ }^{\text {c }}$-structure on $M$.
- $\theta \in \Omega^{3}(M)$ solves $\left.c\left(\nabla^{T M}\right)^{2}\right|_{M}=d \theta$ and
- $\eta\left(M^{c}\right)$ is the eta-invariant of the Spin${ }^{c}$-Dirac operator on $M$.


## Overview - Constructions

For all $m \geq 1$ we will define a group homomorphism

$$
b^{a n}: \text { MString }_{4 m-1} \longrightarrow T_{2 m}
$$

using spectral invariants of twisted Dirac operators. $b^{\text {an }}$ will be a secondary version of the Witten genus.
We will be able to evaluate $b^{\text {an }}$ restricted to

$$
A_{4 m-1}:=\operatorname{ker}\left(\text { MString }_{4 m-1} \xrightarrow{j} \text { MSpin }_{4 m-1}\right) \subseteq \text { MString }_{4 m-1}
$$

by equating it $\left.b^{a n}\right|_{A_{4 m-1}}=b^{\text {geom }}=b^{\text {top }}$ with homomorphisms constructed using differential geometry and homotopy theory, respectively.

## Overview - Computations

There will be a factorization

and $b^{t m f}$ will be made explicit using the known structure of $t m f_{*}$. Recalling the Witten genus (Ando/Hopkins/Rezk) $\sigma$ is onto (Hopkins/Mahowald) this will imply in particular non-triviality of $b^{\text {top }}$ for infinitely many values of $m$.

## Witten genus I

The Witten genus

$$
R: \text { MSpin }_{4 m} \rightarrow K O[[q]]_{4 m} \simeq \mathbb{Z}[[q]]
$$

is given by its characteristic series

$$
\Phi \in \mathbb{Q}[[q]]\left[\left[p_{1}, p_{2}, \ldots\right]\right]
$$

as $R([M])=$
$\kappa_{m} \int_{M} \Phi\left(p_{1}\left(\nabla^{T M}\right), p_{2}\left(\nabla^{T M}\right), \ldots\right) \stackrel{(A S)}{=} \kappa_{m} \sum_{n \geq 0} q^{n} \cdot \operatorname{index}\left(D_{M} \otimes R_{n}(T M)\right)$,
where $\kappa_{m}$ is 1 for $m$ even and $\frac{1}{2}$ for $m$ odd.

There is a factorization

$$
\begin{aligned}
& \rightarrow \downarrow^{>} \mathcal{M}_{2 m}^{\mathbb{Z}} \\
& \text { MString }_{4 m} \underset{j}{\longrightarrow} \text { MSpin }_{4 m} \xrightarrow[R]{ } K O[[q]]_{4 m} \cong \mathbb{Z}[[q]],
\end{aligned}
$$

$\mathcal{M}_{2 m}^{\mathbb{Z}}$ denoting modular forms of weight $2 m$.
We have explicitely

$$
\Phi\left(p_{1}, \ldots\right)=\exp \left[\sum_{k=2}^{\infty} \frac{2}{(2 k)!} G_{2 k} N_{2 k}\left(p_{1}, \ldots\right)\right] e^{G_{2} p_{1}} \in \mathbb{Q}[[q]]\left[\left[p_{1}, \ldots\right]\right]
$$

and define

$$
\tilde{\Phi}\left(p_{1}, \ldots,\right):=\exp \left[\sum_{k=2}^{\infty} \frac{2}{(2 k)!} G_{2 k} N_{2 k}\left(p_{1}, \ldots\right)\right] \sum_{j=1}^{\infty} \frac{G_{2}^{j} p_{1}^{j-1}}{j!}
$$

## target group

For all $m \geq 1$, the target of our invariants $b^{a n}, b^{\text {geom }}$ and $b^{\text {top }}$ will be the quotient group

$$
T_{2 m}:=\frac{\mathbb{R}[[q]]}{\mathbb{Z}[[q]]+\mathcal{M}_{2 m}^{\mathbb{R}}}
$$

## Interlude - structure of $A_{4 m-1}$

For all $m \geq 1$,

- (Hovey) MString $4_{4 m-1}$ is finite consisting of 2- and 3-torsion.
- (Anderson/Brown/Peterson) MSpin $_{4 m-1}$ is a finite $\mathbb{F}_{2}$-vector space and is zero for $m \leq 9$.
- The quotient MString $_{4 m-1} / A_{4 m-1}$ is finite 2-primary and zero for $m \leq 9$, i.e. up to dimension 35 .

We will see that

$$
b^{\text {top }}: A_{4 m-1} \longrightarrow T_{2 m}
$$

detects all 3-torsion and part of the 2-torsion of $A_{4 m-1}$.

## Definition of $b^{a n}$

Let $m \geq 1$ and $M$ a ( $4 m-1$ )-dimensional closed String manifold.
Choose a metric on $M$ and $H \in \Omega^{3}(M): d H=\frac{p_{1}}{2}\left(\nabla^{T M}\right)$.

## Lemma

The following is well-defined and a group homomorphism:

$$
\begin{gathered}
b^{a n}: \text { MString }_{4 m-1} \longrightarrow T_{2 m},[M] \mapsto \\
{\left[2 \kappa_{m} \int_{M} H \wedge \tilde{\Phi}\left(\nabla^{T M}\right)+\kappa_{m} \sum_{n \geq 0} q^{n} \cdot \eta\left(\left(\mathcal{M} \otimes R_{n}(T M \oplus \mathbb{R})\right)_{t}\right)\right]}
\end{gathered}
$$

This is essentially an applcation of the Atiyah/Patodi/Singer Index Theorem.

## $b^{\text {geom }}$ - using a Spin zero-bordism

Assuming $[M] \in A_{4 m-1} \subseteq$ String $_{4 m-1}$ there is a Spin-manifold $Z$ such that $M=\partial Z$.
An index formula shows that the $\eta$-invariants in the definition of $b^{\text {an }}$ differ by integers from a characterisic class on $Z$, showing $\left.b^{a n}\right|_{A_{4 m-1}}=b^{\text {geom }}$ defined by

$$
\begin{gathered}
b^{\text {geom }}: A_{4 m-1} \longrightarrow T_{2 m} \\
{[M] \mapsto\left[2 \kappa_{m} \int_{M} H \wedge \tilde{\Phi}\left(\nabla^{T M}\right)-\kappa_{m} \int_{Z} \Phi\left(\nabla^{T Z}\right)\right] .}
\end{gathered}
$$

## Construction of $b^{\text {top }}$ - motivating example

A very short summary of the construction of Adams' e-invariant:
where the map $\Sigma^{-1} \overline{M U} \longrightarrow \Sigma^{-1} K \mathbb{Q} / \mathbb{Z}$ is derived from the complex orientation $M U \longrightarrow K$ of complex $K$-theory.

## Construction of $b^{\text {top }}$

We contemplate

and see
that the following map $b^{\text {top }}: A_{4 m-1} \longrightarrow T_{2 m}$ is well-defined and a group homomorphism:

$$
[M] \mapsto a \circ Z \in G_{\mathbb{Q}, 4 m} \simeq \frac{\mathbb{Z}[[q]] \otimes \mathbb{Q}}{\mathcal{M}_{2 m}^{\mathbb{Q}}} \xrightarrow{\text { can }} T_{2 m} .
$$

## Comparison

For all $m \geq 1$ we can show

$$
b^{\text {geom }}=b^{\text {top }}: A_{4 m-1} \longrightarrow T_{2 m}
$$

and it is easy to construct

$$
b^{t m f}: t m f_{4 m-1} \longrightarrow T_{2 m}
$$

similarly as above factoring $b^{\text {top }}$ through the (refined) Witten genus

$$
\sigma: \text { MString }_{4 m-1} \longrightarrow \text { tmf }_{4 m-1}
$$

## Computations at 3

| $m$ | name | ord | ${ }^{Y} E_{2}^{*, *}\left(\right.$ tmf $\left._{(3)}\right)$ | $b^{\text {tmf }}(\ldots)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\nu$ | 3 | $[\nu]_{2}$ | $\left[\frac{2}{3}\right]$ |
| 7 | $\nu \Delta$ | 3 | $[\nu]_{2} \Delta_{2}$ | $\left[\frac{2}{3} \Delta\right]$ |

The table gives the complete list of additive generators of $t m f_{(3), 4 m-1}$ for $4 m-1<75$. It continues 72-periodicially under multiplication with $\Delta^{3}$.
For all $m \geq 1 b^{\operatorname{tmf}}: \operatorname{tmf}(3), 4 m-1 \hookrightarrow T_{(3), 2 m}$ is injective.

## Computations at 2 - I

- For all $m \geq 1, b^{t m f}\left(\operatorname{Filt}^{4}\left(\operatorname{tmf}_{(2), 4 m-1}\right)\right)=0$.
- For all $m \geq 1$ such that $(m \bmod 48) \in\{1,7,13,25,31,37\}$ we have an injection $\bar{b}^{\text {tmf }}: \operatorname{tmf}_{(2), 4 m-1} /$ Filt $^{4}\left(\operatorname{tmf}_{(2), 4 m-1}\right) \hookrightarrow T_{(2), 2 m}$.
- For all other $m \geq 1$ we have $b^{\operatorname{tmf}}\left(\operatorname{tmf}_{(2), 4 m-1}\right)=0$.


## Computations at 2 - II

| $m$ | name | ord | ${ }^{Y} E_{2}^{*, *}\left(t m f_{(2)}\right)$ | $b^{t m f}(\ldots)$ | $c \in\{\ldots\}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\nu$ | 8 | $[\nu]_{2}$ | $\left[\frac{3}{8}\right]$ |  |
| 7 | $2 \nu \Delta$ | 4 | $2[\nu]_{2} \Delta_{2}$ | $\left[\frac{c}{4} \Delta\right]$ | 1,3 |
| 13 | $\nu \Delta^{2}$ | 8 | $[\nu]_{2} \Delta_{2}^{2}$ | $\left[\frac{c}{8} \Delta^{2}\right]$ | 1,5 |
| 25 | $\nu \Delta^{4}$ | 8 | $[\nu]_{2} \Delta_{2}^{4}$ | $\left[\frac{c}{8} \Delta^{4}\right]$ | 1,5 |
| 31 | $2 \nu \Delta^{5}$ | 4 | $2[\nu]_{2} \Delta_{2}^{5}$ | $\left[\frac{c}{4} \Delta^{5}\right]$ | 1,3 |
| 37 | $\nu \Delta^{6}$ | 8 | $[\nu]_{2} \Delta_{2}^{6}$ | $\left[\frac{c}{8} \Delta^{6}\right]$ | 1,5 |
| 4 | $\eta a_{14}$ | 2 | $[\eta]_{2}\left[a_{14}\right]_{2}$ | 0 |  |
| 10 | $\eta a_{38}$ | 2 | $[\eta]_{2}\left[a_{38}\right]_{2}$ | 0 |  |
| 19 | $\eta a_{74}$ | 2 | $[\eta]_{2}\left[a_{74}\right]_{2}$ | 0 |  |
| 29 | $\eta a_{110}$ | 2 | $[\eta]_{2}\left[a_{110}\right]_{2}$ | 0 |  |
| 34 | $\eta a_{134}$ | 2 | $[\eta]_{2}\left[a_{134}\right]_{2}$ | 0 |  |

The second column is a complete list of additive generators of

$$
\operatorname{tmf}_{(2), 4 m-1} / \operatorname{Filt}^{4}\left(\operatorname{tmf}_{(2), 4 m-1}\right)
$$

in this range of dimension and there is a 192-periodicity.

## Closer look at $A_{4 m-1}$

Recall $A_{4 m-1}=\operatorname{ker}\left(\right.$ MString $_{4 m-1} \xrightarrow{j}$ MSpin $\left._{4 m-1}\right)$.
One has $\operatorname{dim}_{\mathbb{F}_{2}}\left(\right.$ MSpin $\left._{4 m-1}\right)=0, \ldots, 0(m=9)$,
$1(m=10), 2,4,7,22, \ldots, 17493(m=32)$.
Using results of Mahowald/Gorbunov one can check $A_{39}=$ MString $_{39}$ (the case $m=10$ ).

In general we have the following alternative.

## Open problem (either way)



