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Milnor's A-invariant (On manifolds homeomorphic to the 7-sphere, 1956)

B - closed oriented manifold of dimension 8.

(1) sign(B) = % < 7p2(TB) — p?(TB),[B] >€ Z.
(x) 2pF(TB) — sign(B) = 0(7).
If B = By 1l By with H3(M,Z) = H*(M
sign(B) = sign(By) — sign(B,) and p3(
hence

,Z) = 0 then
TB) = p(TB1) — pi(TB2)

)\( ) [2 < p (TBl) [Bl, M] > —sign(Bl)] S Z/?Z

is independent of the choice of B; such that M ~ 9B; (note:
MSO; =0).
(geometric description of \)
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Intrinsic description of A(M) |

B - oriented of dimension 8 with boundary M = 0B.

(1) sign(B) = gz [ (102(V %) = pH(TTE)) = (M),

n(M) denoting the eta-invariant of the signature operator on M.
Chosing p € Q3(M) with p1(V78)[y = dp and a cut-off function
X € C*(B) for a collar of M C B, the form

(VTP 0) = pi(VTP) = d(xp) € Q2(B)
represents py(TB) € H*(B, M;Z) and Stoke's theorem gives

/ PA(VTE) =< p3(TB),[B, M] > + / oA py(VTM)
B M

and consequently

_[/ 7p2(VTB)—/ p A (VM) — 455(M)] € Z/7Z.
B M



Intrinsic description of A(M) Il

Similarly, the first summand in

A(M) = [ /B 7pa(VTE) - /M o A (VM) — 459(M)] € Z/7Z

can be expressed intrinsically in terms of M leading to

A(M) = [[,,,(4200 A c(VTM)2 —246p A py (VM) — 210c(V ™) A
p) — 45n(M) — 10080n(M°)] € Z/7Z,

(analytic description of \)

where:

o c € H?(M,Z) is the characteristic class of a chosen
Spin©-structure on M.

o 0 € Q3(M) solves ¢(VT™™)2|,, = d6 and
@ 7n(M¢€) is the eta-invariant of the Spin°-Dirac operator on M.
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Overview - Constructions

For all m > 1 we will define a group homomorphism

b®" : MStringgm—1 — Tom

using spectral invariants of twisted Dirac operators. b°" will be a
secondary version of the Witten genus.
We will be able to evaluate b®" restricted to

Agm—1 = ker(MStringgm—1 N MSpingm—1) € MStringsm—1

by equating it b?"|,,,_, = b8°™ = b'P with homomorphisms
constructed using differential geometry and homotopy theory,
respectively.
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Overview - Computations

There will be a factorization

MStringam—1 —— tmfym_1

t btmf
ptop \i

A4m— 11— T2m

and b will be made explicit using the known structure of tmf,.

Recalling the Witten genus (Ando/Hopkins/Rezk) o is onto
(Hopkins/Mahowald) this will imply in particular non-triviality of
b®™P for infinitely many values of m.

Niko Naumann Secondary Invariants for MO < 8 > and tmf



Witten genus |

The Witten genus
R : MSpinam — KO[[q]lam ~ Z[[q]]

is given by its characteristic series

® € Q[[allllp1: p2; - - 1l
as R([M]) =

/{m/Md)(pl(VTM),pz(VTM),...) (42 ﬁqu ‘index(Dp@R,(TM)),

n>0

where K, is 1 for m even and % for m odd.
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Witten genus Il

There is a factorization
A
> M3
(q—exp.)

MStringam —— MSpinam —z> KOlldllam —— Z[[q]]

M?Z_ denoting modular forms of weight 2m.
We have explicitely

(D(Pl, s ) = exp [Z (2/{)' GQkNZk(pl, . )] eG2P1 c Q[[q]][[pl, N ]]
k=2 ’
and define
00 0o j 1
pr--) = exp [Z (22k),G2kN2k(P1,...) > Gzﬁi
k=2 ) =1 J:
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For all m > 1, the target of our invariants b", b8°™ and b™” will
be the quotient group

_ Rlq]
Tzl + M5,

2m
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Interlude - structure of Asp,_1

For all m > 1,

o (Hovey) MStringam—1 is finite consisting of 2- and 3-torsion.

@ (Anderson/Brown/Peterson) MSpinsm—1 is a finite Fp-vector
space and is zero for m < 9.

e The quotient MStringam—1/Aam—1 is finite 2-primary and zero
for m <9, i.e. up to dimension 35.

We will see that
b Agm—1 — Tom

detects all 3-torsion and part of the 2-torsion of Agpm—1.

Niko Naumann Secondary Invariants for MO < 8 > and tmf



Definition of b"

Let m>1and M a (4m — 1)-dimensional closed String manifold.
Choose a metric on M and H € Q3(M) : dH = B(VM).

Lemma
The following is well-defined and a group homomorphism:

b?" . MStringgm—1 — Tom, [M] —

[26m /M HASY™) + kim Y q" - n((M & Ry(TM & R)),)]

n>0

<

This is essentially an applcation of the Atiyah/Patodi/Singer Index
Theorem.
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b8°™ - using a Spin zero-bordism

Assuming [M] € Agm—1 C Stringam—1 there is a Spin-manifold Z
such that M = 0Z.

An index formula shows that the n-invariants in the definition of
b?" differ by integers from a characterisic class on Z, showing
b3 a,,,_, = b8°™ defined by

bE°" : Agm—1 — Tom,

(M] — [2/€m/MH/\<T>(VTM)—nm/z¢(VTZ)].
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Construction of b™P - motivating example

A very short summary of the construction of Adams’ e-invariant:

—

Y IMU — X 'KQ/Z
,"7 — - 7
/l/ ~e(x)
52m—'177//x—> S
|
MU,

where the map ¥ "'MU — £ 71KQ/Z is derived from the
complex orientation MU — K of complex K-theory.
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Construction of b

We contemplate

a

T
YIF——=3l6—=X7'Gy

2" | | |

54m—'1'7 g> MString —~ tmf tmfy

~NoEo

MSpin — ko[[q]] — ko[[q]]o

and see
that the following map b*P : Agpp_1 — Tom is well-defined and a
group homomorphism:

[M] — aoZ € Ggam =~

)0 o 7,

2m
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Comparison

For all m > 1 we can show
b&™ = p'P : A 1 — Tom
and it is easy to construct
b : tmfym_1 — Tom

similarly as above factoring b'™P through the (refined) Witten genus

o : MStringgm_1 — tmfam_1.
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Computations at 3

| m | name | ord | YE] " (tmfi3)) | 6™ (...) |
1 v 3 [v]2 [%]
vA | 3 [V]2A2 [%A]

The table gives the complete list of additive generators of
tmf(3) 4m—1 for 4m — 1 < 75. It continues 72-periodicially under
multiplication with A3.

For all m > 1 pt™f . tmf(3) am—1 — T(3)2m IS injective.
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Computations at 2 - |

@ Forall m>1, bt’"f(Fﬂt“(tmf(z),zxmfl)) =0.

e For all m > 1 such that (m mod 48) € {1,7,13,25,31,37}
we have an injection
b tmfg) am—1/Filt* (tmfi2) am-1) = T(2) 2m-

o For all other m > 1 we have bt"’f(tmf(2)74m_1) -0
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Computations at 2 - |l

| m | name [ord [ VE " (tmfi)) [ 6™ (...) [ce{ .. }]

1 v 8 V]2 [%]
7| 2vA | 4 2[v]2A A 1,3
13| vAZ | 8 V.2 [£A7] 15
25 vA* [ 8 [V].A3 [£AY] 1,5
31| 20A% | 4 | 2[]AS [£AT] 1,3
37| vA® | 8 [V].AS [£A%] 1,5
4 | naw | 2 [n]2[a14]2 0
10| masg | 2 n]2[azs)2 0
19 UE 2 Nl2[374])2 0
29 | nayo | 2 [n]2[a110]2 0
34 | naisq | 2 [n]2[a134)2 0

The second column is a complete list of additive generators of

tmfo) am—1/Filt* (tmfi2) 4m_1)

in this range of dimension and there is a 192-periodicity.
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Closer look at Aspm_1

Recall Agpm—1 = ker(MStringsm—1 4, MSpingm—1).

One has dimp,(MSpingm—1) =0,...,0(m =9),
1(m =10),2,4,7,22,...,17493 (m = 32).

Using results of Mahowald/Gorbunov one can check
Asg = MStringsg (the case m = 10) .

In general we have the following alternative.
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Open problem (either way)

MStringam—1 ————— tmfam_1
) (commutes?)
(equality?) pan btmf
Asm-1 e Tom.
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