Arnold diffusion via normally hyperbolic cylinders Instability in Hamitonian systems Fields Institute, Toronto, 2011 Vadim Kaloshin¹, Patrick Bernard ², Ke Zhang³ ¹The University of Maryland ²Université Paris - Dauphine ³University of Toronto June 15, 2011 ## Arnold diffusion We consider a close-to-integrable Hamiltonian system $$H(\theta, p, t) = H_0(p) + \epsilon H_1(\theta, p, t), \theta \in \mathbb{T}^n, p \in \mathbb{R}^n, t \in \mathbb{T}.$$ ▶ We say that the system exhibits Arnold diffusion if there exists c>0 such that the following hold: for arbitrarily small ϵ , there exists an orbit $(\theta(t),p(t))$ and T>0 with $$|p(T) - p(0)| > c > 0.$$ - ► The first example of Arnold diffusion was constructed by Arnold in 1964. - Conjecture(Arnold): There is Arnold diffusion for a "typical" system. ## Resonances - ▶ We say a vector $\omega \in \mathbb{R}^n$ is resonant if there exists $k \in \mathbb{Z}^n$ and $l \in Z$ such that $k \cdot \omega + l = 0$. - ▶ Denote $\omega(p) = (\omega_1, \dots, \omega_n)(p) = \partial_p H_0(p)$. Figure: Resonances for n=2 # Averaging near a single resonance - ▶ For simplicity, consider n=2 and the resonance $\omega_1=0$. - Consider the model example $$H(\theta, p, t) = \frac{1}{2}p_1^2 + \frac{1}{2}p_2^2 + \epsilon \cos \theta_1 + \epsilon H_2(\theta, p, t),$$ where $\int_{\mathbb{T}^2} H_2 d\theta_2 dt = 0$. There exists a symplectic change of coordinates, under which the Hamiltonian takes the form $$H(\theta, p, t) = \frac{1}{2}p_1^2 + \frac{1}{2}p_2^2 + \epsilon \cos \theta_1 + h.o.t.$$ ▶ Consider ϵ fixed and the higher order terms as a perturbation. This inspires the definition of the *a priori* unstable system: $$H(\theta, p, t) = h(p_1, p_2, \theta_1) + \delta P(p, \theta, t).$$ ## Prior work on Arnold diffusion - A priori unstable system: - Geometric methods: Chierchia and Gallavotti '95, Treschev '04, Delshams, de la Llave and Seara '06 (Delshams and Huguet '09). - ▶ Variational methods: Bernard '08, Cheng and Yan '04, '09. - ► A priori stable system: Mather 03 (announcement), various manuscripts by Mather. # A version of Arnold diffusion for a priori stable system #### **Theorem** Assume that the Hamiltonian is C^r with $r \geq 4$. For a "typical" ϵH_1 (with $\|H_1\|_{C^r}=1$), there exists $l(H_1)>0$, an orbit $(\theta,p)(t)$ of the the Hamiltonian system $H_\epsilon=H_0+\epsilon H_1$ and T>0 such that $$|p(T) - p(0)| > l(H_1).$$ #### Remark - ▶ The "diffusion distance" depends only on the projection of the perturbation on the unit sphere of C^r functions. - Here "typical" means Mather's cusp residue condition. ## The Arnold mechanism System: $$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + \epsilon(\cos \theta_1 - 1) - \epsilon\mu(\cos \theta_1 - 1)\cos(\theta_2 + t).$$ ## The Arnold mechanism System: $$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + \epsilon(\cos \theta_1 - 1) - \epsilon\mu(\cos \theta_1 - 1)\cos(\theta_2 + t).$$ - ▶ This may be viewed as an a priori unstable system as we can fix ϵ and let $\mu \to 0$. - ► There exists a 3-dimensional-normally hyperbolic invariant cylinder (NHIC) $\Lambda = \{\theta_1 = p_1 = 0\}$. - ▶ Λ is foliated by invariant tori $T_c = \{p_2 = c_2, p_1 = 0, \theta_1 = 0\}$, where $c = (0, c_2)$. - ► The stable and unstable manifold of T_c intersect transversally. In particular, T_c admits a homoclinic orbit that has isolated intersections with the section $\{\theta_1 = \frac{\pi}{2}\}$. # Arnold mechanism: picture Figure: Arnold mechanism # Arnold mechanism: variational explanation ▶ Each T_c consists of orbits $\gamma: \mathbb{R} \to \mathbb{T}^n \times \mathbb{R}^n$ that minimize the action $\int_a^b L_c(\theta, \dot{\theta}, t)$, where $$L_c = \frac{1}{2}(\dot{\theta} - c)^2 + \epsilon(1 - \cos\theta_1) - \epsilon\mu(1 - \cos\theta_1)\cos(\theta_2 + t).$$ We call the union of such minimal orbits the Mañe set \mathcal{N}_c . - ▶ The homoclinic orbits to T_c are minimal orbits that makes at least one round in the θ_1 direction. We call this set the *lifted* Mañe set $\hat{\mathcal{N}}_c$, for they corresponds to the Mañe set of the double cover. - ▶ If the lifted Mañe set $\hat{\mathcal{N}}_c$ is isolated, then for c' close to c, there is an orbit connecting \mathcal{N}_c and $\mathcal{N}_{c'}$. - Proof: Mather's method of changing Lagrangian. # NHIC for a priori unstable system #### Consider $$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + (\cos \theta_1 - 1) + \mu P(\theta, p, t).$$ - ► There exists NHIC Λ close to $\theta_1 = p_1 = 0$. - ▶ The Mañe set \mathcal{N}_c are contained in Λ , but they are not necessarily tori. They could be: - Invariant tori. - Periodic orbits. - Cantori. # Anrold diffusion for a priori unstable system ## Theorem (Bernard, Cheng and Yan) Assume that: 1. All \mathcal{N}_c that is an invariant torus has irrational rotation number. 2. If \mathcal{N}_c is an invariant torus, then $\hat{\mathcal{N}}_c$ is isolated. Then there is Arnold diffusion along the NHIC. ## Theorem (Cheng and Yan) For a residue set of perturbations, condition 2 is satisfied for all \mathcal{N}_c simultaneously. ## A priori stable system: normal form ightharpoonup Consider n=2 for simplicity. Let $$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + \epsilon H_1(\theta, p, t)$$ and consider the resonance $p_1 = 0$. ## A priori stable system: normal form ▶ Consider n = 2 for simplicity. Let $$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + \epsilon H_1(\theta, p, t)$$ and consider the resonance $p_1 = 0$. There exists a normal form $$H = \frac{1}{2}p^2 + \epsilon Z(\theta_1, p) + \epsilon R(\theta, p, t),$$ where $\|R\|_{C^2} \leq \delta$ on the set $U_K = \{|p_1| \leq \epsilon^{\frac{1}{6}}, |p_2k_2+l| > \epsilon^{\frac{1}{6}}/K, \text{ for all } |k_2|, |l| \leq K\}.$ K depend on δ . ▶ Diffusion distance depends on δ . Hence, it is important that δ does not go to zero as $\epsilon \to 0$. # Existence of crumpled cylinders For the normal form system with sufficiently small δ , generically, there exists finitely many NHIC's $\Lambda_i = \{(\theta_1, p_1) = X_i(\theta_2, p_2, t)\}$. We also have $$\left\| \frac{\partial \theta_1}{\partial p_2} \right\| = O(\delta/\sqrt{\epsilon}), \quad \left\| \frac{\partial \theta_1}{\partial (\theta_2, t)} \right\| = O(\delta).$$ Figure: Crumpled cylinder ▶ The Mañe sets \mathcal{N}_c for $c = (0, c_2)$ are contained in Λ_j . - ▶ The Mañe sets \mathcal{N}_c for $c = (0, c_2)$ are contained in Λ_j . - ▶ Each \mathcal{N}_c is contained in a graph over (θ_2, t) . (Mather's projected graph theorem) - ▶ The Mañe sets \mathcal{N}_c for $c = (0, c_2)$ are contained in Λ_j . - ▶ Each \mathcal{N}_c is contained in a graph over (θ_2, t) . (Mather's projected graph theorem) - ▶ Each \mathcal{N}_c can only be a torus, a periodic orbit, or a cantorus. - ▶ The Mañe sets \mathcal{N}_c for $c = (0, c_2)$ are contained in Λ_j . - ▶ Each \mathcal{N}_c is contained in a graph over (θ_2, t) . (Mather's projected graph theorem) - ▶ Each \mathcal{N}_c can only be a torus, a periodic orbit, or a cantorus. - ▶ Assume 1. All \mathcal{N}_c that is an invariant torus has irrational rotation number. 2. If \mathcal{N}_c is an invariant torus, then $\hat{\mathcal{N}}_c$ is isolated. Then there is Arnold diffusion along the NHIC. - The genericity theorem of Cheng and Yan applies. - ▶ It is also possible to jump from Λ_j to Λ_{j+1} . ## Double resonance Work-in-progress with V. Kaloshin: Study $$H(\theta_1,\theta_2,p_1,p_2,t)=\frac{1}{2}p^2+\epsilon H_1(\theta,p,t)$$ near $\{p_1=p_2=0\}.$ ## Double resonance Work-in-progress with V. Kaloshin: Study $$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + \epsilon H_1(\theta, p, t)$$ near $$\{p_1 = p_2 = 0\}$$. Normal form: $$H(\theta,p,t) = \frac{1}{2}p^2 + \epsilon Z(\theta,p) + \epsilon R$$ on $|p_1|, |p_2| \leq \sqrt{\epsilon}$. Rescale: $$H(\theta, I, t) = \frac{1}{2}I^2 + Z(\theta, 0) + \tilde{R}.$$ ## Double resonance Work-in-progress with V. Kaloshin: Study $$H(\theta_1, \theta_2, p_1, p_2, t) = \frac{1}{2}p^2 + \epsilon H_1(\theta, p, t)$$ near $$\{p_1 = p_2 = 0\}$$. Normal form: $$H(\theta,p,t) = \frac{1}{2}p^2 + \epsilon Z(\theta,p) + \epsilon R$$ on $|p_1|, |p_2| \leq \sqrt{\epsilon}$. Rescale: $$H(\theta, I, t) = \frac{1}{2}I^2 + Z(\theta, 0) + \tilde{R}.$$ Study of double resonance related to the 2 degrees of freedom mechanical system $H=K(I)-U(\theta)$. # Mañe sets for the mechanical system ▶ By Maupertuis principle, the minimal orbits corresponds to minimal geodesics of the Jacobi metric K(E+U), for $E>-\min U$. # Mañe sets for the mechanical system - ▶ By Maupertuis principle, the minimal orbits corresponds to minimal geodesics of the Jacobi metric K(E+U), for $E>-\min U$. - ▶ If $E = -\min U$, the minimal geodesics could be a concatenation of simple curves. # Mañe sets for the mechanical system - ▶ By Maupertuis principle, the minimal orbits corresponds to minimal geodesics of the Jacobi metric K(E+U), for $E>-\min U$. - ▶ If $E = -\min U$, the minimal geodesics could be a concatenation of simple curves. - ▶ Assume that $U(\theta_0) = \min U$, generically $(0, \theta_0)$ is a hyperbolic saddle with distinct eigenvalues. Minimal geodesics are homoclinic orbits to $(0, \theta_0)$. Figure: Homoclinics # Flower cylinder ▶ Assume that there are two homoclinics Γ_1 and Γ_2 to $(0, \theta_0)$. # Flower cylinder - ▶ Assume that there are two homoclinics Γ_1 and Γ_2 to $(0, \theta_0)$. - ▶ Shil'nikov-Tureav '89 (Bolotin-Rabinowitz '01) Under some additional assumptions, for each E sufficiently close to 0, there exists an orbit shadowing $\Gamma_1 * \Gamma_2$. ## Flower cylinder - Assume that there are two homoclinics Γ_1 and Γ_2 to $(0, \theta_0)$. - Shil'nikov-Tureav '89 (Bolotin-Rabinowitz '01) Under some additional assumptions, for each E sufficiently close to 0, there exists an orbit shadowing $\Gamma_1 * \Gamma_2$. - ▶ With some work, we can see that the family of periodic orbits form a normally hyperbolic cylinder with the "figure eight" as boundary.