New Lax-Oleinik Type Operators in the Weak KAM Theory

—A joint work with Kaizhi Wang

Jun Yan

School of Mathematical Sciences Fudan University, Shanghai

1/22

New Lax-Oleinik type operators in the weak KAM theory

- §1 Background
- §2 New Lax-Oleinik type operators
- §3 Rates of convergence of L-O semigroup and new L-O operators.

In this talk, we introduce some modifications of the Lax-Oleinik operators in the context of weak KAM theory, both in the autonomous and non-autonomous setting. These modified operators enjoy better properties of convergence: In the non autonomous case, they do converge, unlike the genuine L-O operators, and in the autonomous case, they converge more quickly. For example, when the Mather set is a quasiperiodic torus the new L-O operators converge faster than the genuine ones in the sense of order.

1. Background

Let M be a closed and connected smooth manifold.

Standard assumptions in Mather theory:

Consider a C^2 Lagrangian $L:TM\times\mathbb{R}^1\to\mathbb{R}^1$, $(x,v,t)\mapsto L(x,v,t)$. We suppose that L satisfies the following conditions introduced by Mather:

- (H1) **Periodicity**. L is 1-periodic in the \mathbb{R}^1 factor, i.e., L(x,v,t)=L(x,v,t+1) for all $(x,v,t)\in TM\times\mathbb{R}^1$.
- (H2) **Positive Definiteness**. For each $x \in M$ and each $t \in \mathbb{R}^1$, the restriction of L to $T_xM \times t$ is strictly convex in the sense that its Hessian second derivative is everywhere positive definite.

(H3) Superlinear Growth. $\lim_{\|v\|_x \to +\infty} \frac{L(x,v,t)}{\|v\|_x} = +\infty$ uniformly on $x \in M$, $t \in \mathbb{R}^1$, where $\|\cdot\|_x$ denotes the norm on T_xM induced by a Riemannian metric. By the compactness of M, this condition is independent of the choice of the Riemannian metric.

Completeness of the Euler-Lagrange Flow. Every solution of the Euler-Lagrange equation, which in local coordinates is:

$$\frac{d}{dt}\frac{\partial L}{\partial v}(x,\dot{x},t) = \frac{\partial L}{\partial x}(x,\dot{x},t),$$

are defined on all of \mathbb{R}^1 .

The corresponding Hamiltonian equations read

$$\dot{x} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial x},$$

where $H(x,p)=p\dot{x}-L(x,\dot{x},t)$ and $p=\frac{\partial L}{\partial \dot{x}}.$ The corresponding Hamilton-Jacobi equation is

$$u_t + H(x, u_x, t) = c,$$

where c=c(L) is the Ma $\|lpha$ critical value of the Lagrangian L.

For all $t_2 \geq t_1$ and $x, y \in M$, let

$$F_{t_1,t_2}(x,y) = \inf_{\gamma} \int_{t_1}^{t_2} L(\gamma(s), \dot{\gamma}(s), s) ds,$$

where the infimum is taken over the continuous and piecewise C^1 paths $\gamma:[t_1,t_2]\to M$ such that $\gamma(t_1)=x$ and $\gamma(t_2)=y$. Define the action potential and extended Peierls barrier as follows. For each $(t_1,t_2)\in\mathbb{S}^1\times\mathbb{S}^1$, let

$$\Phi_{\tau_1,\tau_2}(x,y) = \inf F_{t_1,t_2}(x,y)$$

for all $(x,y) \in M \times M$, where the infimum is taken on the set of $(t_1,t_2) \in \mathbb{R}^2$ such that $\tau_1 = [t_1]$, $\tau_2 = [t_2]$ and $t_2 \ge t_1 + 1$. For each $(\tau_1,\tau_2) \in \mathbb{S}^1 \times \mathbb{S}^1$, let

$$h_{\tau_1,\tau_2}(x,y) = \lim_{t_2 - t_1 \to +\infty} \inf F_{t_1,t_2}(x,y)$$

for all $(x,y) \in M \times M$, where the liminf is restricted to the set of $(t_1,t_2) \in \mathbb{R}^2$ such that $\tau_1 = [t_1]$, $\tau_2 = [t_2]$.

6/22

Standard assumptions in the weak KAM theory:

Let $L_a:TM\to\mathbb{R}^1$, $(x,v)\mapsto L_a(x,v)$ be a C^2 Lagrangian satisfying the following two conditions:

(H2') **Positive Definiteness**. For each $(x,v) \in TM$, the Hessian second derivative $\frac{\partial^2 L_a}{\partial v^2}(x,v)$ is positive definite.

(H3') Superlinear Growth. $\lim_{\|v\|_x \to +\infty} \frac{L_a(x,v)}{\|v\|_x} = +\infty$ uniformly on $x \in M$.

The corresponding Hamilton-Jacobi equation is

$$H_a(x, u_x) = c(L_a). (2)$$

Definition (Lax-Oleinik semigroup) For each $u \in C(M, \mathbb{R}^1)$ and each $t \geq 0$, let

$$T_t^a u(x) = \inf_{\gamma} \left\{ u(\gamma(0)) + \int_0^t L_a(\gamma(s), \dot{\gamma}(s)) ds \right\}$$
 (3)

for all $x \in M$, and

$$T_t u(x) = \inf_{\gamma} \left\{ u(\gamma(0)) + \int_0^t L(\gamma(s), \dot{\gamma}(s), s) ds \right\}$$
 (4)

for all $x\in M$, where the infimums are taken among the continuous and piecewise C^1 paths $\gamma:[0,t]\to M$ with $\gamma(t)=x$. In view of (3) and (4), for each $t\geq 0$, T^a_t and T_t are operators from $C(M,\mathbb{R}^1)$ to itself. It is not difficult to check that $\{T^a_t\}_{t\geq 0}$ and $\{T_n\}_{n\in\mathbb{N}}$ are one-parameter semigroups of operators. $\{T^a_t\}_{t\geq 0}$ and $\{T_n\}_{n\in\mathbb{N}}$ are called the L-O semigroup associated with L_a and L, respectively.

Definition (weak KAM solution—time-independent case) A weak KAM solution of the Hamilton-Jacobi equation (2) is a function $u: M \to \mathbb{R}^1$ such that

(1) u is dominated by L, i.e.,

$$u(x) - u(y) \le \Phi_{0,0}(y, x), \quad \forall x, y \in M.$$

(2) For every $x\in M$ there exists a curve $\gamma:(-\infty,0]\to M$ with $\gamma(0)=x$ such that

$$u(x) - u(\gamma(t)) = \int_{t}^{0} L_{a}(\gamma(s), \dot{\gamma}(s)) ds, \quad \forall t \in (-\infty, 0].$$

Theorem (Fathi)

- (1) For every $u \in C(M, \mathbb{R}^1)$, the uniform limit $\lim_{t \to +\infty} T_t^a u = \bar{u}$ exists and \bar{u} is a weak KAM solution of (2).
- (2) The weak KAM solutions and viscosity solutions are the same.

Fathi (1998) raised the question as to whether the analogous result holds in the time-periodic case. This would be the convergence of $T_n u$, $\forall u \in C(M, \mathbb{R}^1)$, as $n \to +\infty$, $n \in \mathbb{N}$.

Fathi and Mather (2000) gave a negative answer to the question.

2. New Lax-Oleinik type operators

2.1 Time-periodic case

Definition (new L-O operator—time-periodic case) For each $\tau \in [0,1]$, each $n \in \mathbb{N}$ and each $u \in C(M, \mathbb{R}^1)$, let

$$\tilde{T}_n^{\tau} u(x) = \inf_{\substack{k \in \mathbb{N} \\ n < k < 2n}} \inf_{\gamma} \left\{ u(\gamma(0)) + \int_0^{\tau + k} L(\gamma(s), \dot{\gamma}(s), s) ds \right\}$$

for all $x \in M$, where the second infimum is taken among the continuous and piecewise C^1 paths $\gamma:[0,\tau+k]\to M$ with $\gamma(\tau+k)=x$.

For each $\tau \in [0,1]$ and each $n \in \mathbb{N}$, \tilde{T}_n^{τ} is an operator from $C(M,\mathbb{R}^1)$ to itself. We call \tilde{T}_n^{τ} the new L-O operator associated with L. For each $n \in \mathbb{N}$ and each $u \in C(M,\mathbb{R}^1)$, let $U_n^u(x,\tau) = \tilde{T}_n^{\tau}u(x)$ for all $(x,\tau) \in M \times [0,1]$. Then U_n^u is a continuous function on $M \times [0,1]$.

Definition (weak KAM solution—time-periodic case) A weak KAM solution of the Hamilton-Jacobi equation (1) is a function $u:M imes \mathbb{S}^1 o \mathbb{R}^1$ such that

u is dominated by L, i.e.,

$$u(x,\tau) - u(y,s) \le \Phi_{s,\tau}(y,x), \quad \forall (x,\tau), \ (y,s) \in M \times \mathbb{S}^1.$$

(2) For every $(x,\tau) \in M \times \mathbb{S}^1$ there exists a curve $\gamma: (-\infty,\tilde{\tau}] \to M$ with $\gamma(\tilde{\tau})=x$ and $[\tilde{\tau}] = \tau$ such that

$$u(x,\tau) - u(\gamma(t), [t]) = \int_{t}^{\tilde{\tau}} L(\gamma(s), \dot{\gamma}(s), s) ds, \quad \forall t \in (-\infty, \tilde{\tau}].$$

Now we come to the main result:

Theorem (Wang and Yan, 2010) For each $u \in C(M, \mathbb{R}^1)$, the uniform limit $\lim_{n \to +\infty} U_n^u$ exists and

$$\lim_{n \to +\infty} U_n^u(x, \tau) = \inf_{y \in M} (u(y) + h_{0, [\tau]}(y, x))$$

for all $(x,\tau)\in M\times [0,1]$, where $[\tau]=\tau$ mod 1, and h denotes the extended Peierls barrier. Furthermore, let $\bar{u}(x,[\tau])=\inf_{y\in M}(u(y)+h_{0,[\tau]}(y,x))$. Then $\bar{u}:M\times\mathbb{S}^1\to\mathbb{R}^1$ is a weak KAM solution of the Hamilton-Jacobi equation (1)

$$u_s + H(x, u_x, s) = 0.$$

Another important result states as follows.

Theorem (Wang and Yan, 2010) Let $\bar{u} \in C(M \times \mathbb{S}^1, \mathbb{R}^1)$. Then the following three statements are equivalent.

- There exists $u \in C(M, \mathbb{R}^1)$ such that the uniform limit $\lim_{n \to +\infty} U_n^u = \bar{u}$.
- \bar{u} is a weak KAM solution of (1).
- \bar{u} is a viscosity solution of (1).

2.2 Time-independent case

Definition (new L-O operator—time-independent case) For each $u \in C(M, \mathbb{R}^1)$ and each $t \geq 0$, let

$$\tilde{T}_t^a u(x) = \inf_{t \le \sigma \le 2t} \inf_{\gamma} \left\{ u(\gamma(0)) + \int_0^{\sigma} L_a(\gamma(s), \dot{\gamma}(s)) ds \right\}$$

for all $x \in M$, where the second infimum is taken among the continuous and piecewise C^1 paths $\gamma:[0,\sigma] \to M$ with $\gamma(\sigma)=x$.

It is easy to check that $\{\tilde{T}^a_t\}_{t\geq 0}: C(M,\mathbb{R}^1)\to C(M,\mathbb{R}^1)$ is a one-parameter semigroup of operators. We call it the new L-O semigroup associated with L_a .

(1) For each $u \in C(M, \mathbb{R}^1)$, the uniform limit $\lim_{t \to +\infty} \tilde{T}^a_t u$ exists and

$$\lim_{t \to +\infty} \tilde{T}_t^a u = \lim_{t \to +\infty} T_t^a u = \bar{u}.$$

(2) For each $t \geq 0$ and each $u \in C(M, \mathbb{R}^1)$, $\|\tilde{T}^a_t u - \bar{u}\|_{\infty} \leq \|T^a_t u - \bar{u}\|_{\infty}$.

3. Rates of convergence of the L-O semigroup (time-independent case) and the family of the new L-O operators.

We believe that there is a deep relation between dynamical properties of the Aubry set (Mather set) and the rates of convergence of the L-O semigroup (time-independent case) and the family of the new L-O operators.

group
$$\{T^a_t\}_{t\geq 0}$$

1. Iturriaga and Sánchez-Morgado (2009) proved that if the Aubry set consists in a finite number of hyperbolic periodic orbits or hyperbolic fixed points, the L-O semigroup converges exponentially.

2. Wang and Yan (2010) discussed the rate of convergence problem when the Mather set is a quasi-periodic invariant torus of the Euler-Lagrange flow. Consider a class of C^2 superlinear and strictly convex Lagrangians on \mathbb{T}^n

$$L_a^1(x,v) = \frac{1}{2} \langle A(x)(v-\omega), (v-\omega) \rangle + f(x,v-\omega), \quad x \in \mathbb{T}^n, \ v \in \mathbb{R}^n, \quad (5)$$

where A(x) is an $n \times n$ matrix, $\omega \in \mathbb{S}^{n-1}$ is a given vector, and $f(x,v-\omega) = O(\|v-\omega\|^3)$ as $v-\omega \to 0$. It is clear that $c(L_a^1) = 0$ and $\tilde{\mathcal{M}}_0 = \tilde{\mathcal{A}}_0 = \tilde{\mathcal{N}}_0 = \bigcup_{x \in \mathbb{T}^n} (x,\omega)$, which is a quasi-periodic invariant torus with frequency vector ω of the Euler-Lagrange flow associated to L_a^1 . For (5), the authors showed that for each $u \in C(\mathbb{T}^n, \mathbb{R}^1)$, there is a constant $K_2 > 0$ such that

$$||T_t^a u - \bar{u}||_{\infty} \le \frac{K_2}{t}, \quad \forall t > 0.$$
 (6)

An example was provided to show that the above result is sharp in the sense of order.

$$L = \frac{1}{2} \langle v - \omega, v - \omega \rangle.$$

Take

$$u(x) = \begin{cases} \delta - \operatorname{dist}(x, x_0), & \operatorname{dist}(x, x_0) \leq \delta; \\ 0, & \text{otherwise.} \end{cases}$$

$$\lim_{t \to +\infty} T_t u(x) = \min_{x \in \mathbb{T}^n} u(x) \stackrel{\triangle}{=} u_0.$$

There exist $t_m \to +\infty$ such that

$$|T_{t_m}^- u(x_0) - u_0(x_0)| \ge \frac{\delta^2}{32t_m}.$$

20/22

semigroup $\{\tilde{T}_t^a\}_{t\geq 0}$

Recall the notations for Diophantine vectors: for $\varrho > n-1$ and $\alpha > 0$, let

$$\mathcal{D}(\varrho,\alpha) = \Big\{ \beta \in \mathbb{S}^{n-1} \mid |\langle \beta, k \rangle| \ge \frac{\alpha}{|k|^{\varrho}}, \ \forall k \in \mathbb{Z}^n \setminus \{0\} \Big\},$$

where $|k| = \sum_{i=1}^{n} |k_i|$. For (5), Wang and Yan (2010) proved that given any frequency vector $\omega \in \mathcal{D}(\varrho, \alpha)$, for each $u \in C(\mathbb{T}^n, \mathbb{R}^1)$, there is a constant $K_3 > 0$ such that

$$\|\tilde{T}_t^a u - \bar{u}\|_{\infty} \le K_3 t^{-(1 + \frac{4}{2\varrho + n})}, \quad \forall t > 0.$$

In view of (6) and (7), we conclude that the new L-O semigroup converges faster than the L-O semigroup in the sense of order when the Aubry set $\tilde{\mathcal{A}}_0$ of the Lagrangian system (5) is a quasi-periodic invariant torus with Diophantine frequency vector $\omega \in \mathcal{D}(\varrho, \alpha)$.

THANK YOU VERY MUCH!

Reference: A New Kind Of Lax-Oleinik Type Operator

With Parameters For Time-Periodic Positive Definite

Lagrangian Systems, accepted by CMP

Contact me via email: yanjun@fudan.edu.cn

