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In this talk, we introduce some modifications of the Lax-Oleinik
operators in the context of weak KAM theory, both in the autonomous
and non-autonomous setting. These modified operators enjoy better
properties of convergence: In the non autonomous case, they do con-
verge, unlike the genuine L-O operators, and in the autonomous case,
they converge more quickly. For example, when the Mather set is a
quasiperiodic torus the new L-O operators converge faster than the

genuine ones in the sense of order.



index.html

1. Background

Let M be a closed and connected smooth manifold.

Standard assumptions in Mather theory:

Consider a C? Lagrangian L : TM xR! — R! (x,v,t) — L(x,v,t). We suppose
that L satisfies the following conditions introduced by Mather:

(H1) Periodicity. L is 1-periodic in the R! factor, i.e., L(z,v,t) = L(x,v,t+ 1) for
all (z,v,t) € TM x R,

(H2) Positive Definiteness. For each x € M and each t € R, the restriction of L
to T, M X t is strictly convex in the sense that its Hessian second derivative is

everywhere positive definite.
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% = 400 uniformly on z € M, t € R!,

where || - || denotes the norm on T, M induced by a Riemannian metric. By the

(H3) Superlinear Growth. lim |,

compactness of M, this condition is independent of the choice of the Riemannian
metric.

(H4) Completeness of the Euler-Lagrange Flow. Every solution of the Euler-
Lagrange equation, which in local coordinates is:

d oL, . oL

prig —(x, 2, t) = 5 —(x, z, t),

are defined on all of RL.

The corresponding Hamiltonian equations read

. OH OH
€r — —— S
ap Y p 8{1} Y
where H(x,p) = pt — L(x,2,t) and p = g—é. The corresponding Hamilton-Jacobi
equation is

ug + H(x,ug, t) = c, (1)

where ¢ = ¢(L) is the Mané critical value of the Lagrangian L.
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For all t9 > t1 and x, y € M, let
to
Fras(ov) =inf [ L0(9).4(5),5)ds.
t1

where the infimum is taken over the continuous and piecewise C! paths v : [t1,t2] —
M such that v(t;1) = = and v(t2) = y. Define the action potential and extended
Peierls barrier as follows. For each (t1,t2) € S x S, let

@7—1)7-2 (x7 y) — inf Ft17t2 (x7 y)
for all (z,y) € M x M, where the infimum is taken on the set of (¢1,t2) € R? such

that ™ = [tl], Ty = [tg] and to > t1 + 1. For each (Tl,TQ) e St x Sl, let

he m(z,y) = liminf Fy 4, (z,y)

to—t1—+o0

for all (x,y) € M x M, where the liminf is restricted to the set of (t1,t2) € R? such
that ™ = [tl], Ty = [tg].
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Standard assumptions in the weak KAM theory:

let L, : TM — R!, (z,v) — Lg(z,v) be a C? Lagrangian satisfying the
following two conditions:
(H2') Positive Definiteness. For each (z,v) € T'M, the Hessian second derivative

0% L,
ov?

(x,v) is positive definite.

Lg (x,v)
0]l

(H3') Superlinear Growth. lim,(, oo = 400 uniformly on z € M.

The corresponding Hamilton-Jacobi equation is

Hy(x,uy) = c(Ly). (2)
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Definition (Lax-Oleinik semigroup) For each u € C(M,R!) and each t > 0, let

Tiua) = int {u(2(0) + | La(2(9).4(9)ds (3)

¥
for all x € M, and

Tiuta) = inf {ut2(0) + [ L2(6),305),5)ds) (4)

ol
for all z € M, where the infimums are taken among the continuous and piecewise C!
paths v : [0,t] — M with ~(t) = z. In view of (3) and (4), for each t > 0, T and
T; are operators from C(M,R!) to itself. It is not difficult to check that {T}};>¢
and {71}, }nen are one-parameter semigroups of operators. {T%};>¢ and {7}, } nen are

called the L-O semigroup associated with L, and L, respectively.
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Definition (weak KAM solution—time-independent case) A weak KAM solution of
the Hamilton-Jacobi equation (2) is a function u : M — R! such that

(1) u is dominated by L, i.e.,

’U,(ZU) - ’U,(y) S (I)O,O(yvx)v VZC, Yy e M.

(2) For every x € M there exists a curve v : (—o0,0] — M with «(0) = x such
that

0
u() — u((t)) = / Lo(1(),4(s))ds, ¥t € (—00,0].
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Theorem (Fathi)

(1) For every u € C(M,R%), the uniform limit lim_. o, Tu = 4 exists and % is a
weak KAM solution of (2).

(2) The weak KAM solutions and viscosity solutions are the same.

Fathi (1998) raised the question as to whether the analogous result holds in the
time-periodic case. This would be the convergence of T,u, Yu € C(M,R'), as

n — +o00, n € N,

Fathi and Mather (2000) gave a negative answer to the question.
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2. New Lax-Oleinik type operators

2.1 Time-periodic case

Definition (new L-O operator—time-periodic case) For each 7 € [0,1], each n € N
and each u € C(M,R'), let

keN
n<k<2n

T7u(x) = inf i.‘fvlf {u(*y(())) + /OT+k L(~v(s),~(s), S)dS}

for all x € M, where the second infimum is taken among the continuous and piece-
wise C! paths v: [0, 7 + k] — M with (7 + k) = =.

For each 7 € [0,1] and each n € N, T7 is an operator from C(M,R') to itself.
We call T7 the new L-O operator associated with L. For each n € N and each
uw e C(M,RY), let Uz, 7) = TTu(z) for all (z,7) € M x [0,1]. Then UY is a

continuous function on M x [0, 1].
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Definition (weak KAM solution—time-periodic case) A weak KAM solution of the
Hamilton-Jacobi equation (1) is a function u : M x S' — R! such that

(1) u is dominated by L, i.e.,

u(z,7) = u(y, 5) < Byr(y,@), V(@,7), (y.5) € M x S\

(2) For every (z,7) € M x S! there exists a curve 7 : (=00, 7] — M with y(7) = z

and [7] = 7 such that

u(@, 7) — u(y(t), [t]) Z/;L('V(SM(S),S)CZ& vt € (=00, 7).
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Now we come to the main result:

Theorem (Wang and Yan, 2010) For each u € C(M,R%), the uniform limit

limy,,_, o U} exists and
li U — inf + h
lim Sz, T) ylél (u(y) 0,[7] (y,x))

for all (x,7) € M x [0,1], where [7] = 7 mod 1, and h denotes the extended
Peierls barrier. Furthermore, let u(x,[7]) = inf e (u(y) + hor(y,2)). Then
%: M x St — R is a weak KAM solution of the Hamilton-Jacobi equation (1)

us + H(x,uz,s) = 0.
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Another important result states as follows.

Theorem (Wang and Yan, 2010) Let w € C(M x S',R!). Then the following three
statements are equivalent.

e There exists u € C(M,R%) such that the uniform limit lim,, o U% = 4.
e ¥ is a weak KAM solution of (1).

e « is a viscosity solution of (1).
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2.2 Time-independent case

Definition (new L-O operator—time-independent case) For each u € C(M,R!) and
each t > 0, let

~

Tau(z) = inf inf{u(v(O))qt /0 JLQ(V(S),V(S))ds}

t<o<2t v
for all x € M, where the second infimum is taken among the continuous and piece-

wise C! paths v : [0, 0] — M with v(o) = =.

It is easy to check that {T2};>o : C(M,R!) — C(M,R') is a one-parameter

semigroup of operators. We call it the new L-O semigroup associated with L.



index.html

Theorem (Wang and Yan, 2010)

(1) For each v € C(M,R'), the uniform limit lim,_ o 7w exists and

lim TYvw = lim T{u = u.
t——+00 t——+00

(2) For each t > 0 and each u € C(M,RY), || Tfu — i oo < || T — | oo-
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3. Rates of convergence of the L-O semigroup
(time-independent case) and the family of the

new L-O operators.

We believe that there is a deep relation between dynamical properties of the
Aubry set (Mather set) and the rates of convergence of the L-O semigroup (time-

independent case) and the family of the new L-O operators.
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3.1. Results on the rate of convergence of the L-O semi-

group {7 }1>0

1. lturriaga and Sénchez-Morgado (2009) proved that if the Aubry set consists in
a finite number of hyperbolic periodic orbits or hyperbolic fixed points, the L-O
semigroup converges exponentially.
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2. Wang and Yan (2010) discussed the rate of convergence problem when the Mather
set is a quasi-periodic invariant torus of the Euler-Lagrange flow. Consider a class

of C? superlinear and strictly convex Lagrangians on T"

L(z,v) = %<A(£B)(U —w),(v—w)) + f(z,v—w), xze€T" velR" (5)

where A(z) is an n X n matrix, w € S*! is a given vector, and f(z,v — w) =
O(|lv — wl||®) as v —w — 0. It is clear that ¢(LL) = 0 and Mg = Ay = Ny =
Uzetn (2, w), which is a quasi-periodic invariant torus with frequency vector w of the
Euler-Lagrange flow associated to L!. For (5), the authors showed that for each
u € C(T™ R'), there is a constant K5 > 0 such that

K
1T%% — @)oo < 72 vt > 0. (6)

An example was provided to show that the above result is sharp in the sense of order.
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An example.

Consider the following integrable Lagrangian

1
in(v—w,v—@.

Take

0 — dist(x, xg), dist(z,zq) < 6;
u(xr) =

0, otherwise.
lim Tiu(x) = min u(x) 24
des  peTn -

There exist t,,, — +00 such that

52
32t,,

T, u(zo) — uo(zo)| =
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3.2. Results on the rate of convergence of the new L-O
semigroup {Tta}tZO

Recall the notations for Diophantine vectors: for p > n — 1 and a > 0, let

D(o,0) = {BeS"™ | 1(8,k)] =

> g VR € Z{0},

where |k| = > " |ki|]. For (5), Wang and Yan (2010) proved that given any
frequency vector w € D(p, ), for each u € C(T",R!), there is a constant K3 > 0
such that

p 4
1T — @100 < Kst™ T zw) | vt > 0.

In view of (6) and (7), we conclude that the new L-O semigroup converges faster than
the L-O semigroup in the sense of order when the Aubry set Aj of the Lagrangian
system (5) is a quasi-periodic invariant torus with Diophantine frequency vector
w € D(p, ).
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THANK YOU VERY MUCH!

Reference: A New Kind Of Lax-Oleinik Type Operator
With Parameters For Time-Periodic Positive Definite

Lagrangian Systems, accepted by CMP

Contact me via email: yanjun@fudan.edu.cn
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