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Introduction

.

.

Definition (Chirikov-Taylor standard family of maps)
Let T = R/Z, κ ∈ R+, ϕ(x) = 2π−1 sin(2πx); define fκ : T2 → T2

fκ : (x, y) 7→ (y,−x+ 2y + κϕ̇(y)) mod Z2

fκ is a symplectic reversible exact twist diffeomorphism.

κ = 0 0 < κ ≪ 1
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Introduction

.

.

estion
Is C = {κ ∈ R+ s.t. fκ is ergodic} ̸= ∅ ?

Conjecture (Carleson·1991):

lim
n→∞

Leb({κ ∈ R+ s.t. fκ has no elliptic islands} ∩ [n, n+ 1]) = 1

.

.

estion (Sinai·1994)
Let C∗ = {κ s.t. hLeb(fκ) > 0}; does any of the following hold?

C∗ = R \ {0} LebC∗ > 0 C∗ ̸= ∅

By Pesin theory we know that if hLeb(fκ) > 0, there exist positive
measure invariant sets on which fκ is ergodic (stochastic sea)
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Some related previous results

.

.

Theorem (Duarte·1994)
There exists κ0 > 0 and a residual set of parameters MD ⊂ [κ0,∞)
s.t. if κ ∈ MD , then fκ has infinitely many elliptic periodic points
accumulating on a locally maximal hyperbolic set that fills the torus
as κ → ∞

.

.

Theorem (Gorodetksi·2010)
There exists κ0 > 0 and a residual set of parameters MG ⊂ [κ0,∞)
s.t. if κ ∈ MG, then the stochastic sea of fκ has full Hausdorff
dimension
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Main results

.

.

Theorem (2011)
There exists κ0 > 0 and a dense set of parameters M ⊂ [κ0,∞) of
Hausdorff dimension larger than ¼ such that if κ ∈ M, then fκ has
infinitely many elliptic islands whose centers accumulate on a locally
maximal hyperbolic set that fills the torus as κ → ∞

.

.

Theorem (2011)
There exists a κ0 > 0 such that for almost every κ ≥ κ0 the standard
map fκ has only finitely many cyclicity 1 elliptic islands
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Definitions

.

.

Basic observation
For large κ there exists a set Cκ ⊂ T2 and cone fields C u,s

κ such that

∀ p ∈ T2 \ Cκ fκ∗C
u
κ |p ⊂ C u

κ |fκp f∗
κC s

κ|p ⊂ C s
κ|f−1

κ p

.

.

Definition (κ-adapted slope field)
h : T2 → RP smooth such that diffeomorphisms transform κh as
the slope of a vector field. In particular:

fκ∗h =h1 −
1

κ2h ◦ f−1
κ

f∗
κh =h−1 +

1

κ2[h1 − h] ◦ fκ
h1(x, y) = ϕ̈(x) + 2κ−1 h−1(x, y) = 0
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κh =h−1 +

1

κ2[h1 − h] ◦ fκ
h1(x, y) = ϕ̈(x) + 2κ−1 h−1(x, y) = 0

Fix α ∈ (½, 1) and τ ∈ R+, then there exist C u,s s.t.:
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κ(α, τ) = {h s.t. ∥h − h−1∥ < C sκα−1}

∀ p ∈ T2 \ Cκ fκ∗C
u
κ |p ⊂ C u

κ |fκp f∗
κC s

κ|p ⊂ C s
κ|f−1

κ p

Jacopo De Simoi Cyclicity one elliptic islands in the Standard family 6 / 15



Definitions

.

.

Definition (Cyclicity)
Let p ∈ T2 a periodic point for fκ of least period N :

s(p) ≑ card ({p, fκp, · · · , fN−1
κ p} ∩ Cκ)

By invariance of C u,s outside Cκ:

p elliptic ⇒ s(p) > 0

Jacopo De Simoi Cyclicity one elliptic islands in the Standard family 7 / 15



Definitions

.

.

Definition (Cyclicity)
Let p ∈ T2 a periodic point for fκ of least period N :

s(p) ≑ card ({p, fκp, · · · , fN−1
κ p} ∩ Cκ)

By invariance of C u,s outside Cκ:

p elliptic ⇒ s(p) > 0

Jacopo De Simoi Cyclicity one elliptic islands in the Standard family 7 / 15



Results

.

.

Theorem (2011)
There exists κ0 > 0 and a dense set of parameters M ⊂ [κ0,∞) of
Hausdorff dimension larger than ¼ such that if κ ∈ M, then fκ has
infinitely many cyclicity 1 elliptic islands whose center accumulate
on a locally maximal hyperbolic set that fills the torus as κ → ∞

.

.

Theorem (2011)
There exists κ0 > 0 such that for almost every κ ≥ κ0 the standard
map fκ has only finitely many cyclicity 1 elliptic islands

.

.

Conjecture
There exists κ0 > 0 such that for almost every κ ≥ κ0 the standard
map fκ has only finitely many elliptic islands of either bounded
cyclicity or period larger than some Ns
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Preliminary construction

Fix α, τ ; choose pair of critical sets Ĉκ ⊂ Cκ:

Cκ = Cκ(α, τ) Ĉκ = Cκ(α, τ/10)

Construct locally maximal hyperbolic set Λκ ⊂ T2 \ Ĉκ

w/ expansion rate > κα; Markov partition (of Λκ):

Λκ ∋ p 7→ · · · a−2a−1a0a1a2 · · ·

Extend the construction to a finite time Markov structure:

T2 \ Cκ ∋ p 7→ ⟨ã−∗ · · · ã−1ã0ã1 · · · ã∗⟩

Cκ ∋ p 7→ ω(p) = ⟨ã1 · · · ãn⟩

Recall Cκ(α, τ) is a O
(
τκα−1

)
strip around critical points of ϕ̇
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Symbols ã belong to some extended alphabet
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Extend the construction to a finite time Markov structure:

T2 \ Cκ ∋ p 7→ ⟨ã−∗ · · · ã−1ã0ã1 · · · ã∗⟩
Cκ ∋ p 7→ ω(p) = ⟨ã1 · · · ãn⟩

Note: if p ∈ Ck ∩ f −1
κ Ck we set p 7→ ⟨⟩
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Main lemmata

Eω = {κ s.t. ∃ p ∈ Cκ, p cyclicity 1 elliptic p.p. for fκ, ω(p) = ω}
Jm = [m− ½,m+ ½] m large enough

.

.

Lemma (Upper bound)
Given ω, κ, ∃ at most one cyclicity 1 elliptic p.p. for fκ s.t. ω(p) = ω

card{ω}||ω| ≤ Constm|ω|

Leb(Jm ∩ Eω) ≤ Constm−2α|ω|−1

.

.

Lemma (Density + Lower bound)
For any B ⊂ Jm there exists N s.t. diamB ∼ m−N and ω with
|ω| = 2N such that B ⊃ Eω ⊃ Jω where Jω is an interval and

diam Jω ≥ Constm−4N−1

Moreover, the middle logN symbols in ω can be fixed arbitrarily
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Conclusion of the proof
.

.

Lemma (Upper bound)
Given ω, κ, ∃ at most one cyclicity 1 elliptic p.p. s.t. ω(p) = ω

card{ω}||ω| ≤ Constm|ω|

Leb(Jm ∩ Eω) ≤ Constm−2α|ω|−1

If p a cyclicity 1 p.p. for fκ ⇒ κ ∈ Eω(p)

∑
N

∑
|ω|=N Leb(Jm ∩ Eω) =

∑
N m(1−2α)N−1 < ∞

Borel·Cantelli lemma implies the result.
Moreover notice:∑

N

∑
|ω|=N

Leb(Jm ∩ Eω) ∼ m−1

There are no cyclicity 1 elliptic p.p in a parameter set of density
approaching 1 as m → ∞ (i.e. Carleson conjecture holds for
cyclicity 1).
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Conclusion of the proof

.

.

Lemma (Density + Lower bound)
For any B ⊂ Jm there exists N s.t. diamB ∼ m−N and ω with
|ω| = 2N such that B ⊃ Eω ⊃ Jω where Jω is an interval and

diam Jω ≥ Constm−4N−1

Moreover, the middle logN symbols in ω can be arbitrarily fixed

Let Λ̄κ ⊂ Λκ \ Cκ be a locally maximal hyperbolic set

Enumerate all possible words of given length for Λ̄κ

Construct a Cantor set in B by induction using the lemma

fixing the middle symbols according to the enumeration
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Proof of the lemmata

Define ∆♯
ω,κ = {p ∈ Cκ s.t. ω(p) = ω}; ∆♭

ω,κ = f
|ω|+1
κ ∆♯

ω,κ

Adapted coordinates on ∆♯
ω,κ and ∆♭

ω,κ

f
|ω|+1
κ

Cκ Cκ

∆♯
ω,κ

∆♭
ω,κ
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ω,κ = f
|ω|+1
κ ∆♯

ω,κ

Adapted coordinates on ∆♯
ω,κ and ∆♭

ω,κ

Leaf functions: ℓ♯ω[ζ;κ](ξ) and ℓ♭ω[η;κ](ξ)

Geometrical bounds:

Lω ∼ sup
p∈∆♯

ω,κ

dx|ω|+1

dy0
≥ κ|ω|α

Dependence on κ:

|∂κ(ℓ♭ω[η;κ](ξ)− ℓ♯ω[ζ;κ](ξ))| ∼ 1

Ellipticity condition:

|∂ξ(ℓ♭ω[η;κ](ξ)− ℓ♯ω[ζ;κ](ξ))| ≲ L−1
ω

ω-adapted Cω,κ of thickness ∼ κ−1L−1
ω
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Upper and lower bounds

Define ∆̄♯
ω,κ = {p ∈ Cω,κ s.t. ω(p) = ω} ∆̄♭

ω,κ = f
|ω|+1
κ ∆̄♯

ω,κ

κ−1L−1
ω

κ−1L−2
ω

κ−1L−2
ω

∆̄♯
ω,κ

∆̄♭
ω,κ

Cω,κ

If p ∈ ∆ω,κ cyclicity 1 elliptic p.p.:

p ∈ ∆̄♯
ω,κ

∩ ∆̄♭
ω,κ

Consider diagonal leaves ℓD♯ and ℓD
♭

then if p ∈ ℓD
♯ ∩ ℓD

♭, p is a cyclicity 1 p.p.
+ ellipticity condition

⇒ Both upper & lower bounds

κ−2|ω|−1
∗
≲ LebEω ≲ κ−2α|ω|−1

+ at most 1 elliptic p.p. with given ω
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Density argument

.

.

Observation
∆♯

ω,κ and ∆♯
ω′,κ are close if the first symbols of ω, ω′ agree

∆♭
ω,κ and ∆♭

ω′,κ are close if the last symbols of ω, ω′ agree

.

.

Definition (Bicylinder of rank r)
Ω = {ω with prescribed first and last r symbols}
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Density argument

ω = ⟨ a1a2 · · · ar︸ ︷︷ ︸
Ω♯

∗ ∗ ∗ · · · ∗ ∗ ∗ an−ran−r+1 · · · an−2an−1︸ ︷︷ ︸
Ω♭

⟩

Cκ Cκ

L−1
Ω♯

L−1
Ω♭
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Density argument

.

.

Observation
∆♯

ω,κ and ∆♯
ω′,κ are close if the first symbols of ω, ω′ agree

∆♭
ω,κ and ∆♭

ω′,κ are close if the last symbols of ω, ω′ agree

.

.

Definition (Bicylinder of rank r)
Ω = {ω with prescribed first and last r symbols}

Given Ω = Ω♯ ∩ Ω♭ of rank r we have nontrivial intersections
for κ ∈ JΩ ball with diam JΩ ∼ L−1

Ω♯ + L−1
Ω♭

Given a ball B ∈ Jm ∃ Ω s.t. JΩ ⊂ B, diamB ∼ m−rankΩ

Previous argument implies ∃ p elliptic N -p.p. with ω(p) ∈ Ω,
N ∼ 2 rankΩ ⇒ Jω ⊂ B, diam Jω ∼ m−4 rankΩ

Arbitrary choice of central logN symbols in ω(p)
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Final remarks

The construction relies on the generic condition of
non-degeneracy of critical points

The construction gives plenty of information on the parameter
space. In particular it seems it can be used to study higher
cyclicity orbits without a geometrical understanding of
multiple passages through the critical set.

The construction provides estimates on the size of elliptic
islands; such estimates seem to be sharp for cyclicity 1.
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