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Why?

All interesting plasma magnetic confinement equilibria are either

spectrally unstable or spectrally stable with indefinite linearized

energy, i.e. have negative energy modes. Both are dangerous

- the latter generically unstable because of nonlinearity? How

fast?

PJM and D. Pfirsch (1990)



Program

• Do for infinite degree-of-freedom Hamiltonian systems that

which can be done for finite. Krein-Moser theorem. Discrete

spectrum pretty easy. Continuous spectrum? Not so easy.

Analysis necessary. G. Hagstrom and PJM (2011).

• ‘Real’ problem pde vs. low dof models.



Kinetic Theory

Phase Space Density (main dynamical variable):

f : D ⊂ R3 × R3 × R→ R+

f(x, v, t)∆x∆v= number of particles (probability density) in phase

space volume ∆x∆v at time t.

Thermal equilibrium at Maxwell Distribution:

fM = Ne−v
2/2

Nonthermal Relaxation:

• Collisions ⇒ asymptotic stability via Boltzman’s H-theorem

• Long-range interactions → mean-field theory, i.e. Vlasov eqn.

spectral instability or maybe something else?



Two-Stream Instability

fTS = Nv2e−v
2/2

DG code results with I. Gamba



Nonmonotonic or Anisotropic Equilibria

• Spectrally stable yet indefinite linearized energy!

• What happens nonlinearly?

• Something like Arnold diffusion → instability?

• Too slow to be important? Moser in celestial mech context.

• Nekhoroshev with n large →∞?





Comparison

Celestial Mechanics:

• basic time scale = 1 year

• solar system age = 5× 109 years

• number of dof n = 3− 100

Plasma Confinement Device:

• plasma or electron gyro frequency = 1012 − 1013 sec−1

• confinement time of 100 sec (ITER burn flat top 400s)

• number of dof n = 1023, but probably effectively much smaller?

Plasma has million times more cycles and n much bigger!



Charged Particle on Quadratic Mountain

Simple model of FLR stabilization → mirror machine.

Lagrangian:

L =
m

2

(
ẋ2 + ẏ2

)
+
eB

2c
(ẏx− ẋy) +

k

2

(
x2 + y2

)

Hamiltonian:

H =
m

2

(
p2
x + p2

y

)
+ ωL (ypx − xpy)−

m

2
(ωL − ω0)

(
x2 + y2

)

Two frequencies:

ωL =
eB

2mc
and ω0 =

√
k

m



Quadratic Mountain Krein



Quadratic Mountain Normal Form

For large enough B system is stable and ∃ a canonical transform

to

H = |ωf |
(
P2
f +Q2

f

)
− |ωs|

(
P2
s +Q2

s

)

Slow mode is negative energy mode.

Weierstrass (1894), Williamson (1936) ...

.



Charged Particle on Perturbed Integrable
Mountain

H =
m

2

(
p2
x + p2

y

)
+ωL (ypx − xpy)−

m

2
(ωL − ω0)

(
x2 + y2

)
+ax3 + ...

In terms of linear normal coords

H =
|ωf |

2

(
P2
f +Q2

f

)
−
|ωs|
2

(
P2
s +Q2

s

)
+
α

2

[
Qs

(
Q2
f − P

2
f

)
− 2QfPfPs

]

Assume 2:1, order three resonance, ωf = 1/2 and ωs = 1, aver-

aging ⇒ Cherry (1925):

Qf =

√
2

α(t− ε)
sin(t+ γ), and etc.

Explosive growth! So because of NEM have linear (spectral)

stability but nonlinear instability (to infinitesimal perturbations).



Charged Particle on Perturbed Integrable
Nonresonant Mountain



Charged Particle on Perturbed Nonintegrable
Nonresonant Mountain

H = |ωf |
(
P2
f +Q2

f

)
−|ωs|

(
P2
s +Q2

s

)
+
α

2

[
Qs

(
Q2
f − P

2
f

)
− (1 + ε)QfPfPs

]

Despited ‘tangle’ system is stable because ∃ invariant tori close

enough to central elliptic point. (Moser, ...)

Cubic Symplectic Map:

p′ = −q q′ = p+ qt− q3

Inverse tangent bifurcation at trace t = −2



Cubic Map

So, NEM system is stable. Tori near central elliptic point act as
subneighborhoods in stability proof.



Charged Particle on Perturbed Nonintegrable
Nonresonant Mountain with Earthquake

Instability by motion around invariant tori.

How fast?

What to study?

4D symplectic map

C. Kueny (1987) → Caroline Gameiro Lopes Martins (2011)
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Fig. 6 (a) Phase space for the Cubic Map with t = -1.1 (b) Green square where we are going to focus (c) Zoom in at 

the green square, emphasizing the curves in red and blue. 

 

Generating function: 
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Coupled quadratic & cubic mapping: 
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Constant values used: a = 0.01; τ = 0.9864; t = -1.1. Two orbits were iterated: 

1) Chaotic orbit in black (q, p, Q, P) = (0.6253, 0.6230, 0.0000, 0.0000); 



 

 

2) Invariant orbit in red (q, p, Q, P) = (0.65, 0.65, 0.00, 0.00), iterated with 
9

101xn = . 

(a) (b)  

Fig. 7 Phase space (q, p) for 2 orbits (described above) (a) Orbit in black iterated with 
3

105xn =  and orbit in red 

iterated with 
9

101xn = , but only 
4

101xn =  were plotted (b) Orbit in black iterated with 
4

102xn =  and orbit in 

red iterated with 
9101xn = , but only 

4101xn =  were plotted. 

 

 

(a) (b)  

Fig. 8 Phase space (Q, P) for 2 orbits (described above) (a) Orbit in black iterated with 
3105xn =  and orbit in red 

iterated with 
9

101xn = , but only 
4

101xn =  were plotted (b) Orbit in black iterated with 
4

102xn =  and orbit in 

red iterated with 
9101xn = , but only 

4101xn =  were plotted. 



Tools

For example:

• Gomez, Modelo, and Simo (2010)

• Huguet, de La Llave, and Sire (2011)



1D Vlasov-Poisson System - Prototype

Phase space density (1 + 1 + 1 field theory):

f(x, v, t) ≥ 0

Conservation of phase space density:

∂f

∂t
+ v

∂f

∂x
+

e

m

∂φ[x, t; f ]

∂x

∂f

∂v
= 0

Poisson’s equation:

φxx = 4π
[
e
∫
R
f(x, v, t) dv − ρB

]

Energy:

H =
m

2

∫
Π

∫
R
v2f dxdv +

1

8π

∫
Π

(φx)2 dx



Noncanonical Hamiltonian Structure

Hamiltonian structure of media in Eulerian variables

Kinematic Commonality:

energy, momentum, Casimir conservation; dynamics is
measure preserving rearrangement; continuous spectra;
. . .−→ Krein’s theorem

Noncanonical Poisson Bracket:

{F,G} =
∫
Z
ζ

[
δF

δζ
,
δG

δζ

]
dqdp =

∫
Z

δF

δζ
J
δG

δζ
dqdp

Cosymplectic Operator:

J · = −
(
∂ζ

∂q

∂ ·
∂p
−
∂ ·
∂q

∂ζ

∂p

)
Equation of Motion:

∂ζ

∂t
= {ζ,H} = J

δH

δζ
= −[ζ, E].

Organizing principle. Do one do all!



Linear Vlasov-Poisson System

Expand about Stable Homogeneous Equilibrium:

f = f0(v) + δf(x, v, t)

Linearized EOM:

∂δf

∂t
+ v

∂δf

∂x
+

e

m

∂δφ[x, t; δf ]

∂x

∂f0

∂v
= 0

δφxx = 4πe
∫
R
δf(x, v, t) dv

Linearized Energy (Kruskal-Oberman):

HL = −
m

2

∫
Π

∫
R

v (δf)2

f ′0
dvdx+

1

8π

∫
Π

(δφx)2 dx



Linear Hamiltonian PDE

• Because noncanonical must expand f-dependent Poisson bracket

as well as Hamiltonian. ⇒

Linear Poisson Bracket:

{F,G}L =
∫
f0

[
δF

δδf
,
δG

δδf

]
dx dv ,

where δf is the new dynamical variable and the Hamiltonian is the

Kruskal-Oberman energy, HL. The LVP system has the following

Hamiltonian form:

∂δf

∂t
= {δf,HL}L ,

with variables noncanonical and HL not diagonal.



Solution

Assume

δf =
∑
k

fk(v, t)eikx , δφ =
∑
k

φk(t)eikx

Linearized EOM:

∂fk
∂t

+ ikvfk + ikφk
e

m

∂f0

∂v
= 0 , k2φk = −4πe

∫
R
fk(v, t) dv

Three methods:

1. Laplace Transforms (Landau and others 1946)

2. Normal Modes (Van Kampen, Case,... 1955)

3. Coordinate Change ⇐⇒ Integral Transform (PJM, Pfirsch,
Shadwick, Balmforth 1992)



Hamiltonian Spectrum

Hamiltonian Operator:

fkt = −ikvfk +
if ′0
k

∫
R
dv̄ fk(v̄, t) =: −Tkfk ,

Complete System:

fkt = −Tkfk and f−kt = −T−kf−k , k ∈ R+

Lemma If λ is an eigenvalue of the Vlasov equation linearized

about the equilibrium f ′0(v), then so are −λ and λ∗ . Thus if

λ = γ + iω, then eigenvalues occur in the pairs, ±γ and ±iω,

for purely real and imaginary cases, respectively, or quartets,

λ = ±γ ± iω, for complex eigenvalues.



Spectral Theorem

Set k = 1 and consider T : f 7→ ivf− if ′0
∫
f in the space W1,1(R).

W1,1(R) is Sobolev space containing closure of functions ‖f‖1,1 =
‖f‖1 + ‖f ′‖1 =

∫
R dv(|f |+ |f ′|). Contains all functions in L1(R)

with weak derivatives in L1(R). T is densely defined, closed, etc.

Definition Resolvent of T is R(T, λ) = (T −λI)−1 and λ ∈ σ(T ).
(i) λ in point spectrum, σp(T ), if R(T, λ) not injective. (ii) λ
in residual spectrum, σr(T ), if R(T, λ) exists but not densely
defined. (iii) λ in continuous spectrum, σc(T ), if R(T, λ) exists,
densely defined but not bounded.

Theorem Let λ = iu. (i) σp(T ) consists of all points iu ∈ C,
where ε = 1 − k−2 ∫

Rdv f
′
0/(u− v) = 0. (ii) σc(T ) consists of all

λ = iu with u ∈ R \ (−iσp(T ) ∩ R). (iii) σr(T ) contains all the
points λ = iu in the complement of σp(T ) that satisfy f ′0(u) = 0.

Note Penrose (1960) criterion and e.g. P. Degond (1986). Sim-
ilar but different.



Canonization & Diagonalization

Fourier Linear Poisson Bracket:

{F,G}L =
∞∑
k=1

ik

m

∫
R
f ′0

(
δF

δfk

δG

δf−k
−
δG

δfk

δF

δf−k

)
dv

Linear Hamiltonian:

HL = −
m

2

∑
k

∫
R

v

f ′0
|fk|2 dv +

1

8π

∑
k

k2|φk|2

=
∑
k,k′

∫
R

∫
R
fk(v)Ok,k′(v|v

′) fk′(v
′) dvdv′

Canonization:

qk(v, t) = fk(v, t) , pk(v, t) =
m

ikf ′0
f−k(v, t) =⇒

{F,G}L =
∞∑
k=1

∫
R

(
δF

δqk

δG

δpk
−
δG

δqk

δF

δpk

)
dv



Integral Transform

Definintion:

f(v) = G[g](v) := εR(v) g(v) + εI(v)H[g](v) ,

where

εI(v) = −π
ω2
p

k2

∂f0(v)

∂v
, εR(v) = 1 +H[εI](v) ,

and the Hilbert transform

H[g](v) :=
1

π
−
∫

g(u)

u− v
du ,

with −
∫

denoting Cauchy principal value of
∫
R.



Transform Properties

Theorem (G1) G : Lp(R) → Lp(R), 1 < p < ∞, is a bounded

linear operator; i.e.

‖G[g]‖p ≤ Bp ‖g‖p ,

where Bp depends only on p.

Theorem (G2) If f ′0 ∈ L
q(R), stable, Hölder decay, then G[g]

has a bounded inverse,

G−1 : Lp(R)→ Lp(R) ,

for 1/p+ 1/q < 1, given by

g(u) = G−1[f ](u)

:=
εR(u)

|ε(u)|2
f(u)−

εI(u)

|ε(u)|2
H[f ](u) .

where |ε|2 := ε2
R + ε2

I .



Diagonalization

Mixed Variable Generating Functional:

F[q, P ′] =
∞∑
k=1

∫
R
qk(v)G[P ′k](v) dv

Canonical Coordinate changes (q, p)←→ (Q′, P ′):

pk(v) =
δF[q, P ′]

δqk(v)
= G[Pk](v) , Q′k(u) =

δF[q, P ′]

δPk(u)
= G†[qk](u)

New Hamiltonian:

HL = 1
2

∞∑
k=1

∫
R
duσk(u)ωk(u)

[
Q2
k(u) + P2

k (u)
]

where σk(v) = −sgn(vf ′0(v)) and ωk(u) = |ku|

(Q′, P ′)←→ (Q,P ) is trivial.



Krein-Like Theorem for VP

Theorem Let f0 be a stable equilibrium distribution function

for the Vlasov equation. Then f0 is structurally stable under

dynamically accessible perturbations in W1,1, if there is only one

solution of f ′0(v) = 0. If there are multiple solutions, f0 is struc-

turally unstable and the unstable modes come from the roots of

f ′0 that satisfy f ′′0(v) < 0.

Remark A change in the signature of the continuous spectrum

is a necessary and sufficient condition for structural instability.

The bifurcations do not occur at all points where the signature

changes, however. Only those that represent valleys of the dis-

tribution can give birth to unstable modes.



Fluid Two-Stream

Waterbag distribution function:


















