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In 1977 Nekhoroshev published his celebrated result about the
exponential stability (Nekhoroshev theorem).

The theorem provides upper bounds to to the stability times of the
action variables of quasi–integrable systems, with the following main
hypotheses:

I analyticity of the Hamilton function
I a (weak) non–degeneracy of the integrable approximation:

steepness
I the perturbation parameter is suitably small

In this talk we discuss the second point, relevant for
applications; for example, in Celestial Mechanics strong
non-degeneracy conditions are rarely satisfied.



Steepness, in its different forms, has been found in:

I normal forms of asteroids in the main belt (Morbidelli and Guzzo
1997, Pavlović and Guzzo 2008).

I Lagrangian points L4-L5 at different values of the mass ratio
satisfy different steepness conditions (Benettin, Fassó and
Guzzo 1998)

I Riemann ellipsoids (steady motions of incompressible
self-gravitating fluids) (Fassò and Lewis, 2001)

and also, stability issues in non convex systems discussed for:

I Hamiltonians of particle accelerators (Laskar)



A synthetic statement of the theorem
NEKHOROSHEV THEOREM (1977)
Let us consider Hamiltonian Systems:

H(I, ϕ) = h(I) + ε f (I, ϕ) ,

with I = (I1, . . . , In), ϕ = (ϕ1, . . . , ϕn) action-angle variables, and:
I h, f are analytic.
I h(I) is steep

There exist positive constants ε0,a,T0, α, β such that: for any |ε| ≤ ε0
and for any initial condition it is:

|I(t)− I(0)| ≤ a εα

for any time t satisfying:

|t | ≤ T0 exp
(ε0

ε

)β

The stability time is a stretched exponential, the value of the
stretching exponent β depends on the specific steepness
properties of h.



Already in Nekhoroshev 1977 paper:

I the value of the stretching exponent β depends only on the
number of the degrees of freedom and on the so called
steepness indices of h:

d1 , d2 , · · · , dn−1 ∈ {1,2,3, . . . , ....} ,

that is:
β(d1, . . . ,dn−1,n)

I β is a monotone decreasing function of the dj : larger
values of the indices correspond to shorter stability times.

I For convex and quasi–convex functions:

d1 = d2 = . . . = dn−1 = 1



To recall the definition of the steepness index dj let us fix:

I a point I in the action domain
I any plane Λ of dimension j , orthogonal to ω(I) = ∇h(I)

any integer vector λ ∈ Λ may define a
resonance:

λ · ω(I) = 0 ΠΛω(I) = 0



Ideally, one would require:

I′ ∈ I + Λ
∣∣ΠΛω(I′)

∣∣ ∼ ∣∣I − I′
∣∣dj

I The exponent (steepness index) dj characterizes the lower
bounded variation of j independent small denominators.

I The definition is complicated by a max/min condition



max
0≤η≤ξ

min
I′∈I+Λ: |I′−I|=η

∣∣ΠΛω(I′)
∣∣ > Cξdj ∀ ξ ∈ (0, ξ̃]



DEFINITION

dj is a steepness index (of order j) for h at the point I if there
exist C, ξ̃ > 0 such that for any j-dimensional linear space Λ
orthogonal to ω(I) = ∇h(I) it is:

max
0≤η≤ξ

min
I′∈I+Λ: |I−I′|=η

∣∣ΠΛω(I′)
∣∣ > Cξdj ∀ ξ ∈ (0, ξ̃]

where Πλ denotes the euclidean projection over Λ.

The functions with only positive steepness indices at any I are
called steep functions.



The Nekhoroshev theorem provides an upper bound to the
stability time: we do not know if, and in which other stronger
sense (i.e. with some lower bound), the stretched exponential
really characterizes the stability times.



A conjecture by N.N. Nekhoroshev

“The author conjectures that, in fact, if we compare system ....
with the same number s of frequencies, then those for which h
has smaller steepness indices are in a certain sense more
stable than the systems with larger indices. In particular,
systems with quasi–convex unperturbed Hamiltonian .... are
the most stable.” ..... “It would be interesting to verify this
dependence somehow, for example, on a computer”.
N.N. Nekhoroshev, Russian Mathematical Surveys, 1977.



But, how the conjecture can be investigated numerically?
Can we isolate the role of steepness in the instability properties
of a system? We now that many other things can influence the
long term stability:

I the local resonance properties of the initial conditions
I the for different systems, the analyticity properties of the

Hamiltonian are different
Therefore: we need to compare the stability properties of initial
conditions characterized by the same resonances, same
Hamiltonian, but only with different steepness indices.



Is it possible?

Yes it is, because for non quadratic Hamiltonians h(I), the
frequency map:

ω(I) = ∇h(I)

is not one-to-one, and therefore: there is the possibility of
choosing different points with the same frequencies, but
different steepness indices. (Guzzo, Lega, Froeschlé, to appear on Chaos,

2011)



The simplest examples of steep functions which are not
quasi–convex are found within the cubic ones.

In fact, the following three–jet non–degeneracy condition:

(h′ · u = 0 , h′′u · u = 0 ,
∑
i,j,k

∂3h
∂Ii∂Ij∂Ik

uiujuk = 0) ⇒ u = 0 .

is sufficient for steepness.



To be more specific, let us consider the n = 3 integrable
Hamiltonian:

h(I) =
I2
1
2
−

I2
2
2

+ m
I3
2
3

+ 2πI3

whose time-1 flow is the integrable map:

ϕ′1 = ϕ1 + I1 , ϕ′2 = ϕ2 − I2 + m I2
2

I′1 = I1 , I′2 = I2

For m = 0, it is not convex (nor steep) and the Nekhoroshev
theorem does not apply.



For m > 0, the system satisfies the three-jet condition,
therefore the Nekhoroshev theorem applies, but with different
steepness indices (GLF 2011):

I d1 = 1, d2 = 1 if I2 > 1
2m (h is quasi-convex)

I d1 = 2, d2 = 1 if I2 < 1
2m

I d1 = 2, d2 = 2 if I2 = 1
2m

The steepness indices change at the line:

I2 =
1

2m



Comparing the frequencies

The frequency vector:

ω(I1, I2) = (I1,−I2 + m I2
2 ,2π)

is symmetric with respect to the line:

I2 =
1

2m

that is:
ω(I1,

1
2m

− x) = ω(I1,
1

2m
+ x) ,

Points which are symmetric with respect to 1/(2m) have the
same frequencies, but different steepness indices.



The 1-1 resonance



A model of 4D steep maps

We consider perturbations of the previous map:

ϕ′1 = ϕ1 + I1 , ϕ′2 = ϕ2 − I2 + m I2
2

I′1 = I1 − ε
∂f
∂ϕ1

(ϕ′) , I′2 = I2 − ε
∂f
∂ϕ2

(ϕ′)

with a perturbation specifically designed to study the diffusion
in the 1-1 resonance:

εf = ε cos(ϕ1 + ϕ2) +
εa

cosϕ1 + cosϕ2 + 2.1

where:
I a = 10−6 is very small and fixed for all integrations
I ε changes



Comparing the perturbation on the two points

We chose two sets of points which are symmetric with respect
to: I2 = 1

2m and compute numerically the diffusion coefficient.
The two sets are characterized by:

I the same resonances
I the same perturbation
I different steepness indices

Any eventual difference in the long term stability of the two sets,
is due to the difference in the steepness indices.



A set of variables adapted to the resonance

With the following action-angle variables:

J1 = I2 , J2 = I2 − I1
ψ1 = ϕ1 + ϕ2 , ψ2 = −ϕ1

the map takes the form:

ψ′1 = ψ1 − J2 + mJ2
1

ψ′2 = ψ2 + J2 − J1
J ′1 = J1 − ε sin(ψ′1) +O(εa)
J ′2 = J2 +O(εa)

The action J2 may diffuse only if a 6= 0, and by Nekhoroshev
theorem the diffusion is exponentially slow.



Case: a = 0

ψ′1 = ψ1 − J2 + mJ2
1

J ′1 = J1 − ε sin(ψ′1)

ψ′2 = ψ2 + J2 − J1

J ′2 = J2

The resonance has an hyperbolic torus.



Numerical experiments confirm the existence of
diffusion for J2

Evolution of the action J2 for four
orbits near the hyperbolic torus
Parameters: ε = 10−3, a = 10−6, c = 2.1.

Evolution of the quadratic dispersion

< (J2(t)− J2(0))2 >

averaged over 1000 orbits.



Comparison of the diffusion between the convex and
non-convex initial conditions for many ε

With the help of normal form theory, for both convex and
non-convex initial conditions:

I we select a point on an hyperbolic torus of the resonance

I we compute an approximation of the unstable local
manifold

I we choose a set of 100 points aligned to the local unstable
manifold

I we compute the diffusion coefficient of this set of points



Diffusion coefficients for convex initial conditions

Guzzo, Lega, Froeschlé, to appear on Chaos, 2011.



An exponential best fit with parameters

Fit of:

log(1/D) = A + Bx + C10βx x = log(1/ε)

provides:
β ∼ 0.2...

Log(1/D)

1/ε

Log(1/D)

1/εβGuzzo, Lega, Froeschlé, to appear on Chaos.



The stability time of the actions for convex systems in a single
resonance of a n = 3 system (Pöschel 1992) are:

|t | ≤ exp
(ε0

ε

)β

with
β =

1
2 ν

=
1
4

which is compatible with β = 0.2....

Semi-analytic computer estimates of normal forms reminders
provided in similar conditions: β ∼ 0.21 (Efthymiopoulos 2008).



Diffusion coefficients

Guzzo, Lega, Froeschlé, to appear on Chaos, 2011.



Diffusion coefficients

Guzzo, Lega, Froeschlé, to appear on Chaos, 2011.



Diffusion coefficients



Diffusion coefficients



Unstable manifold of the resonant hyperbolic torus

We find correlations between the amplitude of the lobes of
unstable manifold of the resonant hyperbolic torus and the
oscillations of the diffusion coefficient



Unstable manifold for ε = 10−6 and a = 10−6

Phase portrait
Unstable manifold of the hyperbolic torus (GLF,

2011)



Comparison of the unstable manifolds

ε = 4 10−7, log D ∼ −27.9 ε = 10−6, log D ∼ −36.2

Guzzo, Lega, Froeschlé, to appear on Chaos, 2011.



Ratio Ds/Dc

Guzzo, Lega, Froeschlé, to appear on Chaos, 2011.



The 6D case: the double resonances

We consider the 6D symplectic map:

ϕ′1 = ϕ1 + I1
ϕ′2 = ϕ2 − I2 + m I2

2
ϕ′3 = ϕ3 + I3

I′j = Ij − ε
∂f
∂ϕj

(ϕ′) , j = 1,2,3 (1)

with:

f = cos(ϕ1)+
1
2

cos(ϕ1+ϕ2)+
a

cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + c



The 6D case: the double resonances

The frequencies are:

ω = (I1,−I2 + mI2
2 , I3) = ∇h(I)

with:

h =
I2
1
2
−

I2
2
2

+ m
I3
2
3

+
I2
3
2

The map is designed to study the diffusion in the 1-0-0 and
1-1-0 resonance:

f = cos(ϕ1)+
1
2

cos(ϕ1 + ϕ2)+
a

cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + c



The 6D case: the double resonances

We measure the diffusion of the action I3.



Diffusion coefficients

Guzzo, Lega, Froeschlé, to appear on Chaos, 2011.



Ratio Ds/Dc

Guzzo, Lega, Froeschlé, to appear on Chaos, 2011.



Conclusions

For both convex and non–convex initial conditions the
numerically measured diffusion decreases faster than a power
law, but with important differences:

I In single resonances: the diffusion curve in the non-convex
case is characterized by large oscillations: this behaviour
is confirmed also by computations done with other
perturbations and maps; the agreement of the numerical
computations with the conjecture is not sharp and it is
found after a sup over different initial conditions.

I In double resonances: the agreement of the numerical
computations with the conjecture is sharp.
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