Diffusion along mean motion resonances in the restricted three body problem

Jacques Féjoz, Marcel Guardia, Pablo Roldán, Vadim Kaloshin

- We consider the Restricted Planar Elliptic 3 Body Problem.
- Namely, we study the motion $q(t)$ of a massless body (Asteroid) under the influence of two primaries $q_{1}(t)$ and $q_{2}(t)$ of masses μ and $1-\mu$, which move along ellipses of eccentricity $e_{0}>0$ around their center of mass.
- We consider
- $\mu=10^{-3}$ which is a realistic value for the Sun-Jupiter model.
- $e_{0}>0$ arbitrarily small.

The 2 Body Problem

- If we omit the influence of Jupiter $(\mu=0)$, the system is reduced to two uncoupled 2 Body Problems (Sun-Jupiter and Sun-Asteroid).
- The motion of the Asteriod is given by Kepler Laws.
- First Kepler Law: Orbits of the 2BP are conic sections
- Assume that the Asteroid is moving along an ellipse.
- An ellipse can be given by its semimajor axis a and its eccentricity $0<e<1$.
- For the 2BP these parameters are constants of motion.

The mean motion resonances

- Third Kepler Law: Period of motion of the ellipse is $2 \pi a^{3 / 2}$ where a is the semimajor axis of the ellipse.
- Mean motion resonance is resonance between the period of the Asteroid and the period of Jupiter
- If we normalize the period of Jupiter to 2π (and its semimajor axis to 1), mean motion resonance appears when $a^{3 / 2}$ is rational.
- We want to see the influence of Jupiter $\left(\mu=10^{-3}\right)$ on the shape of the ellipse when the Asteroid is in mean motion resonance.
- We have focused our study in the mean motion resonance 1:7 (period of the Asteroid is seven times the period of Jupiter).
- We expect that analogous phenomena take place in the other mean motion resonances.

Theorem For the Restricted Planar Elliptic 3 Body Problem with mass ratio $\mu=10^{-3}$ and eccentricity e_{0} small enough, there exist $T>0$ and a trajectory whose (osculating) semimajor $a(t)$ and eccentricity $e(t)$ satisfy that

$$
a(t) \sim 7^{2 / 3} \quad \text { for all } t \in[0, T]
$$

and

$$
e(0)<0.48 \text { and } e(T)>0.66
$$

Namely,

- The Asteroid keeps the semimajor axis almost constant and thus it remains in mean motion resonance.
- It drifts along the resonance, undergoing considerable changes in the eccentricity and thus in the shape of the ellipse.
- Schematically, we obtain orbits:

- Even though we have focused on the resonance $1: 7$, we expect the same to happen in the other mean motion resonances.

The Kirkwood gaps

- The Asteroid Belt is the region of the Solar System located roughly between the orbits of the planets Mars and Jupiter.
- At mean motion resonances of small order $3: 1,2: 1,5: 2,7: 3$, there are visible gaps in the distribution of the Asteroids, called Kirkwood gaps.
- This diffusing mechanism could give a justification of its existence.
- The eccentricity of Jupiter is $e_{0} \sim 1 / 20$ and we need e_{0} arbitrarily small.
- Another mechanism of instability in the 3:1 Kirkwood gap based on Adiabatic chaos can be seen in Neishtadt-Sidorenko (2004).

General comments on the proof

- The proof relies on geometric methods commonly used in the study of Arnol'd diffusion.
- This problem does not have big gaps.
- Some parts rely on high-accuracy numerical computations.
- We expect that these parts can be turned into a Computer Assisted Proof.

Sketch of the proof

Main steps:

- Step 1: Consider the Action-Angle coordinates for the 2BP in elliptic regime (Delaunay coordinates)
- Step 2: Geometrical features of the Circular Problem ($\mu=10^{-3}$ and $e_{0}=0$).
- Step 3: Study of the Elliptic Problem $\left(e_{0}>0\right)$ as a perturbation of the Circular One.

The two body problem

- When $\mu=0$, the Hamiltonian becomes

$$
H(q, p)=\frac{\|p\|^{2}}{2}-\frac{1}{\|q\|}
$$

- The Delaunay coordinates are the Action-Angle coordinates for the 2BP in elliptic regime:
- ℓ is the mean anomaly.
- L is the square of the semimajor axis.
- \widetilde{g} is the argument of the perihelion.
- G is the angular momentum.
- One can define the eccentricity of the Asteroid using these coordinates as

$$
e=\sqrt{1-\frac{G^{2}}{L^{2}}}
$$

- In these coordinates the Hamiltonian of the 2BP become

$$
H_{2 B P}(\ell, L, \tilde{g}, G)=-\frac{1}{2 L^{2}}
$$

- If we apply the change to the RPE3BP we obtain

$$
\begin{aligned}
H(\ell, L, \widetilde{g}, G)= & -\frac{1}{2 L^{2}}+\mu \Delta H_{\mathrm{circ}}(\ell, L, \widetilde{g}-t, G) \\
& +\mu e_{0} \Delta H_{\mathrm{ell}}(\ell, L, \widetilde{g}-t, G, t)
\end{aligned}
$$

- The circular perturbating term only depends on t through $\widetilde{g}-t$.

Rotating Delaunay coordinates

- One can define a new system of coordinates with $g=\widetilde{g}-t$: Rotating Delaunay coordinates.
- New Hamiltonian

$$
\begin{aligned}
H(\ell, L, g, G, t)= & -\frac{1}{2 L^{2}}-G+\mu \Delta H_{\mathrm{circ}}(\ell, L, g, G) \\
& +\mu e_{0} \Delta H_{\mathrm{ell}}(\ell, L, g, G, t)
\end{aligned}
$$

- Since $\Delta H_{\text {circ }}$ is independent of t, when $e_{0}=0$ the system has 2 degrees of freedom and the energy is preserved.
- This corresponds to the preservation of the Jacobi constant.
- We will look for diffusing orbits in this Hamiltonian when $e_{0}>0$.

The mean motion resonance in Rotating Delaunay coordinates

- When $\mu=0$ we have the Hamiltonian

$$
H(\ell, L, g, G,)=-\frac{1}{2 L^{2}}-G
$$

- Frequencies:

$$
\dot{\ell}=\frac{1}{L^{3}} \quad \text { and } \dot{g}=-1
$$

- The mean motion resonance $1: 7$ corresponds to take $L=7^{1 / 3}$ so that

$$
\dot{\ell}=\frac{1}{7} \quad \text { and } \dot{g}=-1
$$

- We want to obtain diffusing orbits along the mean motion resonance.
- Namely we will keep $L \sim 7^{1 / 3}$ (which implies keeping the semimajor axis almost constant)
- Since

$$
e=\sqrt{1-\frac{G^{2}}{L^{2}}}
$$

big changes in G are equivalent to big changes in e.

The extended system

- In fact, we will consider the full 3 dof freedom system introducing the variable I conjugate of t

$$
\begin{aligned}
H(\ell, L, g, G, t, I)= & -\frac{1}{2 L^{2}}-G+\mu \Delta H_{\mathrm{circ}}(\ell, L, g, G) \\
& +\mu e_{0} \Delta H_{\mathrm{ell}}(\ell, L, g, G, t)+I
\end{aligned}
$$

- We restrict ourselves at the energy level $H=0$.
- Since the perturbating terms are small and L almost constant, to obtain an orbit with big changes in G is equivalent to obtain an orbit with big changes in I.
- We look for orbits with big changes in I.

The circular problem

- For a moment let us forget about I and t.
- The Hamiltonian for the circular problem is

$$
H(\ell, L, g, G)=-\frac{1}{2 L^{2}}-G+\mu \Delta H_{\mathrm{circ}}(\ell, L, g, G)
$$

- The energy is conserved.
- It has two degrees of freedom so it is impossible to obtain diffusion.
- We study the mean motion resonance numerically.
- We take advantage of the fact that this system is reversible with respect to the involution

$$
R(\ell, L, g, G)=(-\ell, L,-g, G)
$$

Theorem Consider the Hamiltonian

$$
H(\ell, L, g, G)=-\frac{1}{2 L^{2}}-G+\mu \Delta H_{\mathrm{circ}}(\ell, L, g, G)
$$

Then, at each energy level $H \in\left[H_{-}, H_{+}\right]=[-1.81,-1.56]$,

- There exists a hyperbolic periodic γ_{H} orbit whose period satisfies

$$
|T-14 \pi|<60 \mu=60 \cdot 10^{-3}
$$

- γ_{H} has two branches of stable and unstable invariant manifolds.
- At each energy level either one set of branches of γ_{H} or the other intersect transversally at the symmetry axis.

Remarks on the theorem

- $H \rightarrow H_{-}$implies that e decreases (the orbit becomes more circular).
- In this regime the periodic orbit becomes weakly hyperbolic and the angle between the invariant manifolds decreases exponentially.
- It becomes harder to detect.
- When $H \rightarrow H_{+}$the periodic orbit approaches the invariant manifolds of the point Lagrangian Equilibrium Point L_{2}.
- The period of the periodic orbit explodes and thus we move away from the resonance.

A priori chaotic versus a priori stable

- This theorem gives us at every energy level a periodic orbit which has a transversal homoclinic orbit for $\mu=10^{-3}$.
- We will use this hyperbolic structure to obtain diffusing orbits when $e_{0}>0$.
- This type of systems are usually called a priori chaotic, since for the unperturbed problem $\left(e_{0}=0\right)$ they present chaotic motion at each energy level (but not global instabilities).
- It presents similar features to the so-called Mather Problem: existence of orbits whose energy grows arbitrarily in geodesic flows with a periodic potential.
- When $\mu \rightarrow 0$, the system becomes nearly completely integrable: it is an a priori stable system.
- The splitting angle at the homoclinic points is exponentially small with respect to μ and therefore it is very difficult to prove the transversality of the invariant manifolds.

The extended circular problem

- Hamiltonian for the extended circular problem

$$
H(\ell, L, g, G, t, I)=-\frac{1}{2 L^{2}}-G+\mu \Delta H_{\mathrm{circ}}(\ell, L, g, G)+I
$$

at the energy level $H=0$.

- Now the dynamics is restricted to planes $I=$ constant.
- If we take into account the variable t, the periodic orbits of the circular problem are now 2 dimensional tori
- The union of the periodic orbits form a 3 dimensional Normally Hyperbolic Invariant Manifold Λ_{0}.
- We want to define inner and outer dynamics associated to it.
- To this end we consider a Poincaré map.
- We fix the Poincaré section $\{g=0\}$ and the map

$$
\mathcal{P}_{0}:\{g=0\} \longrightarrow\{g=0\}
$$

- The Poincaré map \mathcal{P}_{0} has a 2 dimensional NHIM $\widetilde{\Lambda}_{0}$
- It has seven connected components

$$
\widetilde{\Lambda}_{0}=\cup_{j=0}^{6} \widetilde{\Lambda}_{0}^{j}
$$

- In fact, $\mathcal{P}_{0}\left(\widetilde{\Lambda}_{0}^{j}\right)=\widetilde{\Lambda}_{0}^{j+1}$.
- They are invariant by \mathcal{P}_{0}^{7}.
- \mathcal{P}_{0}^{7} has seven NHIMs:

$$
\widetilde{\Lambda}_{0}^{j}, j=0, \ldots, 6 .
$$

- (I, t) are global coordinates for each of these connected components.
- We can use them to define the inner and outer dynamics.
- One could also have used the Poincaré map associated to $\{t=0\}$ and use coordinates (G, g).
- The advantage of using (I, t) is that I is constant for the circular problem and therefore it will be easier to study the influence of the elliptic perturbation in order to prove diffusion.

Inner and outer dynamics of the circular problem

- We chose one of the cylinders: $\widetilde{\Lambda}_{0}^{3}$.
- Recall that it is invariant by \mathcal{P}_{0}^{7}.
- By \mathcal{P}_{0}^{7} it has heteroclinic connections with $\widetilde{\Lambda}_{0}^{2}$ and $\widetilde{\Lambda}_{0}^{4}$.
- We choose it because the heteroclinic connections between $\widetilde{\Lambda}_{0}^{3}$ and $\widetilde{\Lambda}_{0}^{4}$ intersect transversally at the symmetry axis and thus are easier to compute.
- We want to define:
- Inner dynamics
- Outer dynamics

Inner map of the circular problem

- It is given by the Poincaré map \mathcal{P}_{0}^{7} restricted to $\widetilde{\Lambda}_{0}^{3}$.
- Since I is constant, it is integrable.
- Then, it is of the form

$$
\mathcal{F}_{0}^{\mathrm{in}}:\binom{I}{t} \mapsto\binom{I}{t+\mathcal{T}_{0}(I)}
$$

- $14 \pi+\mathcal{T}_{0}(I)$ is the period of the periodic orbit we have obtained for the circular problem.
- It can be checked (numerically) that it is twist.

Outer map of the circular problem

- At each energy level either $W^{u}\left(\widetilde{\Lambda}_{0}^{3}\right) \pitchfork W^{s}\left(\widetilde{\Lambda}_{0}^{4}\right)$ or $W^{u}\left(\widetilde{\Lambda}_{0}^{4}\right) \pitchfork W^{s}\left(\widetilde{\Lambda}_{0}^{3}\right)$.
- Associated to the transversal homoclinic points we can define a scattering map, which we call forward or backward.

$$
\begin{aligned}
& \mathcal{S}_{0}^{\mathrm{f}}: \widetilde{\Lambda}_{0}^{3} \rightarrow \widetilde{\Lambda}_{0}^{4} \\
& \mathcal{S}_{0}^{\mathrm{b}}: \widetilde{\Lambda}_{0}^{4} \rightarrow \widetilde{\Lambda}_{0}^{3}
\end{aligned}
$$

- $\mathcal{S}_{0}^{*}\left(x_{-}\right)=x_{+}$if the homoclinic orbit tends to x_{-}in the past and to x_{+}in the future.
- We want to define outer maps from $\widetilde{\Lambda}_{0}^{3}$ to itself $\widetilde{\Lambda}_{0}^{3}$.
- We compose the scattering map with the Poincaré map

$$
\begin{aligned}
& \mathcal{F}_{0}^{\text {out,f }}=\mathcal{P}_{0}^{6} \circ \mathcal{S}_{0}^{\mathrm{f}} \\
& \mathcal{F}_{0}^{\text {out,b }}=\mathcal{S}^{\mathrm{b}} \circ \mathcal{P}_{0}
\end{aligned}
$$

- As I is a first integral, the outer maps (wherever they are defined) are of the form

$$
\mathcal{F}_{0}^{\mathrm{in}, *}:\binom{I}{t} \mapsto\binom{I}{t+\omega^{*}(I)} *=\mathrm{f}, \mathrm{~b}
$$

- We compute $\omega^{*}(I)$ numerically.

Conclusion

- We have inner and (two) outer dynamics associated to Λ_{0}^{3} for the circular problem.
- They are given by

$$
\mathcal{F}_{0}^{\text {in }}:\binom{I}{t} \mapsto\binom{I}{t+\mathcal{T}_{0}(I)}
$$

and

$$
\mathcal{F}_{0}^{\text {out,* }}:\binom{I}{t} \mapsto\binom{I}{t+\omega^{*}(I)} *=\mathrm{f}, \mathrm{~b}
$$

- They are all integrable.

The elliptic problem

- We study the elliptic problem $\left(e_{0}>0\right)$ as a perturbation of the circular one $\left(e_{0}=0\right)$.
- For e_{0} small enough
- The NHIM $\widetilde{\Lambda}_{0}^{j}$ are preserved, slightly deformed, as $\widetilde{\Lambda}_{e_{0}}^{j}$.
- Roughly speaking, for each $I, W^{u}\left(\widetilde{\Lambda}_{0}^{3}\right) \pitchfork W^{s}\left(\widetilde{\Lambda}_{0}^{4}\right)$ or $W^{u}\left(\widetilde{\Lambda}_{0}^{4}\right) \pitchfork W^{s}\left(\widetilde{\Lambda}_{0}^{3}\right)$ are transversal.
- We can associate inner and outer dynamics to $\widetilde{\Lambda}_{0}^{3}: \mathcal{F}_{e_{0}}^{\text {in }}, \mathcal{F}_{e_{0}}^{\text {out,f }}$ and $\mathcal{F}_{e_{0}}^{\text {out,b }}$ as in the circular problem.
- We study them perturbatively.

A particular feature of the elliptic Hamiltonian

- Hamiltonian

$$
\begin{aligned}
H(\ell, L, g, G, t, I)= & -\frac{1}{2 L^{2}}-G+\mu \Delta H_{\mathrm{circ}}(\ell, L, g, G) \\
& +\mu e_{0} \Delta H_{\mathrm{ell}}(\ell, L, g, G, t)+I
\end{aligned}
$$

- We can expand

$$
\Delta H_{\mathrm{ell}}=\Delta H_{\mathrm{ell}}^{1}+e_{0} \Delta H_{\mathrm{ell}}^{2}+\mathcal{O}\left(e_{0}^{2}\right)
$$

- $\Delta H_{\text {ell }}^{1}$ only has the t-harmonics $\{ \pm 1\}$.
- $\Delta H_{\text {ell }}^{2}$ only has the t-harmonics $\{0, \pm 1, \pm 2\}$.

The perturbed inner map

- Is of the form

$$
\mathcal{F}_{e_{0}}^{\mathrm{in}}:\binom{I}{t} \mapsto\binom{I+e_{0} A_{1}(I, t)+e_{0}^{2} A_{2}(I, t)+\mathcal{O}\left(e_{0}^{3}\right)}{t+\mathcal{T}_{0}(I)+e_{0} \mathcal{T}_{1}(I, t)+e_{0}^{2} \mathcal{T}_{2}(I, t)+\mathcal{O}\left(e_{0}^{3}\right)}
$$

- A_{1} and \mathcal{T}_{1} only have t-harmonics $\{ \pm 1\}$.
- A_{2} and \mathcal{T}_{2} only have t-harmonics $\{0, \pm 1, \pm 2\}$.
- As we will see later, we only need to know explicitly

$$
A_{1}(I, t)=A_{1}^{+}(I) e^{i t}+A_{1}^{-}(I) e^{-i t}
$$

- We compute $A_{1}^{ \pm}(I)$ numerically.

The perturbed outer maps

- Are of the form

$$
\mathcal{F}_{e_{0}}^{\text {out,* }}:\binom{I}{t} \mapsto\binom{I+e_{0} B_{1}^{*}(I, t)+\mathcal{O}\left(e_{0}^{2}\right)}{t+\omega^{*}(I)+\mathcal{O}\left(e_{0}\right)} *=\mathrm{f}, \mathrm{~b}
$$

- B_{1}^{*} are computed (numerically) through Melnikov integrals.
- B_{1}^{*} only has t-harmonics $\{ \pm 1\}$.
- We have defined inner and outer dynamics.
- We want to combine them to obtain a transition chain of tori.
- Namely, we want to obtain a sequence of invariant tori of the inner map $\left\{\mathbb{T}_{j}\right\}_{j=1 \ldots N}$ such that

$$
W^{u}\left(\mathbb{T}_{j}\right) \pitchfork W^{s}\left(\mathbb{T}_{j+1}\right)
$$

- It is equivalent to see that for each tori \mathbb{T}_{j} either

$$
\mathcal{F}_{e_{0}}^{\text {out, } \mathrm{f}}\left(\mathbb{T}_{j}\right) \cap \mathbb{T}_{j+1} \neq \emptyset \text { or } \mathcal{F}_{e_{0}}^{\text {out, } \mathrm{b}}\left(\mathbb{T}_{j}\right) \cap \mathbb{T}_{j+1} \neq \emptyset
$$

- To obtain it we perform two steps of averaging to the inner map.

Two steps of averaging

- Inner map:

$$
\mathcal{F}_{e_{0}}^{\mathrm{in}}:\binom{I}{t} \mapsto\binom{I+e_{0} A_{1}(I, t)+e_{0}^{2} A_{2}(I, t)+\mathcal{O}\left(e_{0}^{3}\right)}{t+\mathcal{T}_{0}(I)+e_{0} \mathcal{T}_{1}(I, t)+e_{0}^{2} \mathcal{T}_{2}(I, t)+\mathcal{O}\left(e_{0}^{3}\right)}
$$

- The e_{0} and e_{0}^{2} terms of the inner map only have t-harmonics $\{0, \pm 1, \pm 2\}$.
- If we perform two steps of averaging, the small divisors that appear are only

$$
e^{ \pm \mathcal{T}_{0}(I)}-1 \text { and } e^{ \pm 2 \mathcal{T}_{0}(I)}-1
$$

- The bounds we know for $\mathcal{T}_{0}(I)$ show that these small divisors never vanish.

The inner map in the new variables

- Then, we can perform the two steps of averaging globally.
- Inner map in the new variables:

$$
\mathcal{F}_{e_{0}}^{\mathrm{in}}:\binom{\mathcal{I}}{\tau} \mapsto\binom{\mathcal{I}+\mathcal{O}\left(e_{0}^{3}\right)}{\tau+\mathcal{T}_{0}(\mathcal{I})+e_{0}^{2} \mathcal{T}_{2}(\mathcal{I})+\mathcal{O}\left(e_{0}^{3}\right)}
$$

- The new inner map is e_{0}^{3}-close to integrable.
- It is a twist map.
- We can apply KAM Theorem.
- We obtain a sequence of tori $\left\{\mathbb{T}_{j}\right\}_{j=1, \ldots, N}$, which are $e_{0}^{3 / 2}$-close to each other.

The outer map in the new variables

- To obtain the transition chain, we consider the outer maps in the new variables:

$$
\widetilde{\mathcal{F}}_{e_{0}}^{\text {out,*}}:\binom{\mathcal{I}}{\tau} \mapsto\binom{\mathcal{I}+e_{0} \widetilde{B}^{*}(\mathcal{I}, \tau)+\mathcal{O}\left(e_{0}^{2}\right)}{\tau+\omega^{*}(\mathcal{I})+\mathcal{O}\left(e_{0}\right)}, *=\mathrm{f}, \mathrm{~b}
$$

where

$$
\widetilde{B}^{*}(\mathcal{I}, \tau)=\widetilde{B}^{*,+}(\mathcal{I}) e^{i \tau}+\widetilde{B}^{*,-}(\mathcal{I}) e^{-i \tau}
$$

with

$$
\widetilde{B}^{*, \pm}(\mathcal{I})=B^{*, \pm}(\mathcal{I})-\frac{e^{ \pm i \omega^{*}(\mathcal{I})}-1}{e^{ \pm i \mathcal{T}_{0}(\mathcal{I})}-1} A_{1}^{ \pm}(\mathcal{I})
$$

- We want the outer map to connect tori which are $e_{0}^{3 / 2}$-close.
- It is enough to check that $\widetilde{B}^{*, \pm}(\mathcal{I}) \neq 0$.
- Namely, $\widetilde{B}^{*, \pm}$ is defined through the functions $A_{1}^{ \pm}, B^{*, \pm}, \mathcal{T}_{0}$ and ω^{*}, which have been already computed.
- Since $\widetilde{B}^{*, \pm}(\mathcal{I}) \neq 0$, the jumps of the outer maps are bigger than the distance between tori.
- Namely, there are no big gaps.
- Therefore, $\left\{\mathbb{T}_{j}\right\}_{j=1, \ldots, N}$ is a transition chain.
- Once we have the transition chain, it is enough to use a shadowing method to obtain the true orbit.

Time of diffusion

- The used methods do not give any estimate on the time of diffusion.
- We expect that it is of the form

$$
T \sim \frac{\ln \left(\mu e_{0}\right)}{\mu e_{0}}
$$

