# Diffusion along mean motion resonances in the restricted three body problem

Jacques Féjoz, Marcel Guardia, Pablo Roldán, Vadim Kaloshin

- We consider the Restricted Planar Elliptic 3 Body Problem.
- Namely, we study the motion q(t) of a massless body (Asteroid) under the influence of two primaries q<sub>1</sub>(t) and q<sub>2</sub>(t) of masses μ and 1 μ, which move along ellipses of eccentricity e<sub>0</sub> > 0 around their center of mass.
- We consider
  - $\mu = 10^{-3}$  which is a realistic value for the Sun-Jupiter model.
  - $e_0 > 0$  arbitrarily small.

#### **The 2 Body Problem**

- If we omit the influence of Jupiter ( $\mu = 0$ ), the system is reduced to two uncoupled 2 Body Problems (Sun-Jupiter and Sun-Asteroid).
- The motion of the Asteriod is given by Kepler Laws.
- First Kepler Law: Orbits of the 2BP are conic sections
- Assume that the Asteroid is moving along an ellipse.
- An ellipse can be given by its semimajor axis a and its eccentricity 0 < e < 1.</li>
- For the 2BP these parameters are constants of motion.

# The mean motion resonances

- Third Kepler Law: Period of motion of the ellipse is  $2\pi a^{3/2}$  where a is the semimajor axis of the ellipse.
- Mean motion resonance is resonance between the period of the Asteroid and the period of Jupiter
- If we normalize the period of Jupiter to  $2\pi$  (and its semimajor axis to 1), mean motion resonance appears when  $a^{3/2}$  is rational.

- We want to see the influence of Jupiter ( $\mu = 10^{-3}$ ) on the shape of the ellipse when the Asteroid is in mean motion resonance.
- We have focused our study in the mean motion resonance 1 : 7 (period of the Asteroid is seven times the period of Jupiter).
- We expect that analogous phenomena take place in the other mean motion resonances.

**Theorem** For the Restricted Planar Elliptic 3 Body Problem with mass ratio  $\mu = 10^{-3}$  and eccentricity  $e_0$  small enough, there exist T > 0 and a trajectory whose (osculating) semimajor a(t) and eccentricity e(t) satisfy that

$$a(t) \sim 7^{2/3}$$
 for all  $t \in [0, T]$ 

and

$$e(0) < 0.48$$
 and  $e(T) > 0.66$ .

Namely,

- The Asteroid keeps the semimajor axis almost constant and thus it remains in mean motion resonance.
- It drifts along the resonance, undergoing considerable changes in the eccentricity and thus in the shape of the ellipse.

• Schematically, we obtain orbits:



• Even though we have focused on the resonance 1 : 7, we expect the same to happen in the other mean motion resonances.

# The Kirkwood gaps



The Asteroid Belt is the region of the Solar System located roughly between the orbits of the planets Mars and Jupiter.

• At mean motion resonances of small order 3 : 1, 2 : 1, 5 : 2, 7 : 3, there are visible gaps in the distribution of the Asteroids, called Kirkwood gaps.

- This diffusing mechanism could give a justification of its existence.
- The eccentricity of Jupiter is  $e_0 \sim 1/20$  and we need  $e_0$  arbitrarily small.
- Another mechanism of instability in the 3 : 1 Kirkwood gap based on Adiabatic chaos can be seen in Neishtadt-Sidorenko (2004).

# **General comments on the proof**

- The proof relies on geometric methods commonly used in the study of Arnol'd diffusion.
- This problem does not have big gaps.
- Some parts rely on high-accuracy numerical computations.
- We expect that these parts can be turned into a Computer Assisted Proof.

# Sketch of the proof

Main steps:

- Step 1: Consider the Action-Angle coordinates for the 2BP in elliptic regime (Delaunay coordinates)
- Step 2: Geometrical features of the Circular Problem ( $\mu = 10^{-3}$  and  $e_0 = 0$ ).
- Step 3: Study of the Elliptic Problem (*e*<sub>0</sub> > 0) as a perturbation of the Circular One.

### The two body problem

• When  $\mu = 0$ , the Hamiltonian becomes

$$H(q,p) = \frac{\|p\|^2}{2} - \frac{1}{\|q\|}.$$

- The Delaunay coordinates are the Action-Angle coordinates for the 2BP in elliptic regime:
  - $\ell$  is the mean anomaly.
  - -L is the square of the semimajor axis.
  - $\widetilde{g}$  is the argument of the perihelion.
  - -G is the angular momentum.
- One can define the eccentricity of the Asteroid using these coordinates as

$$e = \sqrt{1 - \frac{G^2}{L^2}}.$$

• In these coordinates the Hamiltonian of the 2BP become

$$H_{2BP}(\ell, L, \widetilde{g}, G) = -\frac{1}{2L^2}.$$

• If we apply the change to the RPE3BP we obtain

$$H(\ell, L, \tilde{g}, G) = -\frac{1}{2L^2} + \mu \Delta H_{\text{circ}}(\ell, L, \tilde{g} - t, G) + \mu e_0 \Delta H_{\text{ell}}(\ell, L, \tilde{g} - t, G, t)$$

• The circular perturbating term only depends on t through  $\tilde{g} - t$ .

#### **Rotating Delaunay coordinates**

- One can define a new system of coordinates with  $g = \tilde{g} t$ : Rotating Delaunay coordinates.
- New Hamiltonian

$$\begin{split} H(\ell,L,g,G,t) &= -\frac{1}{2L^2} - G + \mu \Delta H_{\rm circ}(\ell,L,g,G) \\ &+ \mu e_0 \Delta H_{\rm ell}(\ell,L,g,G,t) \end{split}$$

- Since  $\Delta H_{\text{circ}}$  is independent of t, when  $e_0 = 0$  the system has 2 degrees of freedom and the energy is preserved.
- This corresponds to the preservation of the Jacobi constant.
- We will look for diffusing orbits in this Hamiltonian when  $e_0 > 0$ .

# **The mean motion resonance in Rotating Delaunay coordinates**

• When  $\mu = 0$  we have the Hamiltonian

$$H(\ell, L, g, G,) = -\frac{1}{2L^2} - G$$

• Frequencies:

$$\dot{\ell} = \frac{1}{L^3}$$
 and  $\dot{g} = -1$ 

• The mean motion resonance 1:7 corresponds to take  $L = 7^{1/3}$  so that

$$\dot{\ell} = \frac{1}{7}$$
 and  $\dot{g} = -1$ 

- We want to obtain diffusing orbits along the mean motion resonance.
- Namely we will keep  $L \sim 7^{1/3}$  (which implies keeping the semimajor axis almost constant)
- Since

$$e = \sqrt{1 - \frac{G^2}{L^2}},$$

big changes in G are equivalent to big changes in e.

#### The extended system

• In fact, we will consider the full 3 dof freedom system introducing the variable *I* conjugate of *t* 

$$\begin{split} H(\ell,L,g,G,t,I) &= -\frac{1}{2L^2} - G + \mu \Delta H_{\rm circ}(\ell,L,g,G) \\ &+ \mu e_0 \Delta H_{\rm ell}(\ell,L,g,G,t) + I \end{split}$$

- We restrict ourselves at the energy level H = 0.
- Since the perturbating terms are small and L almost constant, to obtain an orbit with big changes in G is equivalent to obtain an orbit with big changes in I.
- We look for orbits with big changes in *I*.

#### The circular problem

- For a moment let us forget about I and t.
- The Hamiltonian for the circular problem is

$$H(\ell, L, g, G) = -\frac{1}{2L^2} - G + \mu \Delta H_{\text{circ}}(\ell, L, g, G)$$

- The energy is conserved.
- It has two degrees of freedom so it is impossible to obtain diffusion.
- We study the mean motion resonance numerically.
- We take advantage of the fact that this system is reversible with respect to the involution

$$R(\ell, L, g, G) = (-\ell, L, -g, G).$$

Theorem Consider the Hamiltonian

$$H(\ell, L, g, G) = -\frac{1}{2L^2} - G + \mu \Delta H_{\text{circ}}(\ell, L, g, G)$$

Then, at each energy level  $H \in [H_{-}, H_{+}] = [-1.81, -1.56]$ ,

• There exists a hyperbolic periodic  $\gamma_H$  orbit whose period satisfies

$$|T - 14\pi| < 60\mu = 60 \cdot 10^{-3}$$

- $\gamma_H$  has two branches of stable and unstable invariant manifolds.
- At each energy level either one set of branches of  $\gamma_H$  or the other intersect transversally at the symmetry axis.

#### **Remarks on the theorem**

- $H \rightarrow H_{-}$  implies that *e* decreases (the orbit becomes more circular).
- In this regime the periodic orbit becomes weakly hyperbolic and the angle between the invariant manifolds decreases exponentially.
- It becomes harder to detect.
- When H → H<sub>+</sub> the periodic orbit approaches the invariant manifolds of the point Lagrangian Equilibrium Point L<sub>2</sub>.
- The period of the periodic orbit explodes and thus we move away from the resonance.



# A priori chaotic versus a priori stable

- This theorem gives us at every energy level a periodic orbit which has a transversal homoclinic orbit for  $\mu = 10^{-3}$ .
- We will use this hyperbolic structure to obtain diffusing orbits when  $e_0 > 0$ .
- This type of systems are usually called *a priori chaotic*, since for the unperturbed problem ( $e_0 = 0$ ) they present chaotic motion at each energy level (but not global instabilities).
- It presents similar features to the so-called Mather Problem: existence of orbits whose energy grows arbitrarily in geodesic flows with a periodic potential.

- When µ → 0, the system becomes nearly completely integrable: it is an *a priori stable* system.
- The splitting angle at the homoclinic points is exponentially small with respect to  $\mu$  and therefore it is very difficult to prove the transversality of the invariant manifolds.

#### The extended circular problem

• Hamiltonian for the extended circular problem

$$H(\ell, L, g, G, t, I) = -\frac{1}{2L^2} - G + \mu \Delta H_{\text{circ}}(\ell, L, g, G) + I$$

at the energy level H = 0.

- Now the dynamics is restricted to planes I = constant.
- If we take into account the variable *t*, the periodic orbits of the circular problem are now 2 dimensional tori
- The union of the periodic orbits form a 3 dimensional Normally Hyperbolic Invariant Manifold  $\Lambda_0$ .
- We want to define inner and outer dynamics associated to it.

- To this end we consider a Poincaré map.
- We fix the Poincaré section  $\{g = 0\}$  and the map

$$\mathcal{P}_0: \{g=0\} \longrightarrow \{g=0\}$$



- The Poincaré map *P*<sub>0</sub> has a 2 dimensional NHIM Λ̃<sub>0</sub>
- It has seven connected components

$$\widetilde{\Lambda}_0 = \cup_{j=0}^6 \widetilde{\Lambda}_0^j$$

• In fact, 
$$\mathcal{P}_0(\widetilde{\Lambda}_0^j) = \widetilde{\Lambda}_0^{j+1}$$
.

- They are invariant by  $\mathcal{P}_0^7$ .
- $\mathcal{P}_0^7$  has seven NHIMs:

$$\widetilde{\Lambda}_0^j$$
,  $j = 0, \dots, 6$ .

- (I, t) are global coordinates for each of these connected components.
- We can use them to define the inner and outer dynamics.
- One could also have used the Poincaré map associated to {t = 0} and use coordinates (G, g).
- The advantage of using (*I*, *t*) is that *I* is constant for the circular problem and therefore it will be easier to study the influence of the elliptic perturbation in order to prove diffusion.

# Inner and outer dynamics of the circular problem

- We chose one of the cylinders:  $\widetilde{\Lambda}_0^3$ .
- Recall that it is invariant by  $\mathcal{P}_0^7$ .
- By  $\mathcal{P}_0^7$  it has heteroclinic connections with  $\widetilde{\Lambda}_0^2$  and  $\widetilde{\Lambda}_0^4$ .
- We choose it because the heteroclinic connections between  $\widetilde{\Lambda}_0^3$  and  $\widetilde{\Lambda}_0^4$  intersect transversally at the symmetry axis and thus are easier to compute.
- We want to define:
  - Inner dynamics
  - Outer dynamics

#### **Inner map of the circular problem**

- It is given by the Poincaré map  $\mathcal{P}_0^7$  restricted to  $\widetilde{\Lambda}_0^3$ .
- Since *I* is constant, it is integrable.
- Then, it is of the form

$$\mathcal{F}_0^{\mathrm{in}}: \left(\begin{array}{c}I\\t\end{array}\right) \mapsto \left(\begin{array}{c}I\\t+\mathcal{T}_0(I)\end{array}\right).$$

- $14\pi + \mathcal{T}_0(I)$  is the period of the periodic orbit we have obtained for the circular problem.
- It can be checked (numerically) that it is twist.

#### Outer map of the circular problem

- At each energy level either  $W^u(\widetilde{\Lambda}^3_0) \pitchfork W^s(\widetilde{\Lambda}^4_0)$  or  $W^u(\widetilde{\Lambda}^4_0) \pitchfork W^s(\widetilde{\Lambda}^3_0)$ .
- Associated to the transversal homoclinic points we can define a scattering map, which we call forward or backward.

$$\mathcal{S}_0^{\mathrm{f}}: \widetilde{\Lambda}_0^3 \to \widetilde{\Lambda}_0^4$$
$$\mathcal{S}_0^{\mathrm{b}}: \widetilde{\Lambda}_0^4 \to \widetilde{\Lambda}_0^3$$

S<sub>0</sub><sup>\*</sup>(x<sub>−</sub>) = x<sub>+</sub> if the homoclinic orbit tends to x<sub>−</sub> in the past and to x<sub>+</sub> in the future.

- We want to define outer maps from  $\widetilde{\Lambda}_0^3$  to itself  $\widetilde{\Lambda}_0^3$ .
- We compose the scattering map with the Poincaré map

$$\mathcal{F}_0^{\mathrm{out,f}} = \mathcal{P}_0^6 \circ \mathcal{S}_0^{\mathrm{f}}$$
  
 $\mathcal{F}_0^{\mathrm{out,b}} = \mathcal{S}^{\mathrm{b}} \circ \mathcal{P}_0$ 

• As *I* is a first integral, the outer maps (wherever they are defined) are of the form

$$\mathcal{F}_{0}^{\mathrm{in},*}: \left(\begin{array}{c} I\\ t \end{array}\right) \mapsto \left(\begin{array}{c} I\\ t+\omega^{*}(I) \end{array}\right) *=\mathrm{f},\mathrm{b}$$

• We compute  $\omega^*(I)$  numerically.

# Conclusion

- We have inner and (two) outer dynamics associated to  $\Lambda_0^3$  for the circular problem.
- They are given by

$$\mathcal{F}_0^{\mathrm{in}}: \left(\begin{array}{c} I\\ t \end{array}\right) \mapsto \left(\begin{array}{c} I\\ t+\mathcal{T}_0(I) \end{array}\right)$$

and

$$\mathcal{F}_0^{\text{out},*}: \left(\begin{array}{c} I\\ t\end{array}\right) \mapsto \left(\begin{array}{c} I\\ t+\omega^*(I)\end{array}\right) \ *=\text{f},\text{b}$$

• They are all integrable.

# The elliptic problem

- We study the elliptic problem ( $e_0 > 0$ ) as a perturbation of the circular one ( $e_0 = 0$ ).
- For  $e_0$  small enough
  - The NHIM  $\widetilde{\Lambda}_0^j$  are preserved, slightly deformed, as  $\widetilde{\Lambda}_{e_0}^j$ .
  - Roughly speaking, for each I,  $W^u(\widetilde{\Lambda}^3_0) \pitchfork W^s(\widetilde{\Lambda}^4_0)$  or  $W^u(\widetilde{\Lambda}^4_0) \pitchfork W^s(\widetilde{\Lambda}^3_0)$  are transversal.
  - We can associate inner and outer dynamics to  $\widetilde{\Lambda}_0^3$ :  $\mathcal{F}_{e_0}^{\text{in}}$ ,  $\mathcal{F}_{e_0}^{\text{out,f}}$  and  $\mathcal{F}_{e_0}^{\text{out,b}}$  as in the circular problem.
  - We study them perturbatively.

# A particular feature of the elliptic Hamiltonian

• Hamiltonian

$$H(\ell, L, g, G, t, I) = -\frac{1}{2L^2} - G + \mu \Delta H_{\text{circ}}(\ell, L, g, G) + \mu e_0 \Delta H_{\text{ell}}(\ell, L, g, G, t) + I$$

• We can expand

$$\Delta H_{\rm ell} = \Delta H_{\rm ell}^1 + e_0 \Delta H_{\rm ell}^2 + \mathcal{O}\left(e_0^2\right)$$

- $\Delta H^1_{\text{ell}}$  only has the *t*-harmonics  $\{\pm 1\}$ .
- $\Delta H_{\text{ell}}^2$  only has the *t*-harmonics  $\{0, \pm 1, \pm 2\}$ .

# The perturbed inner map

• Is of the form

$$\mathcal{F}_{e_0}^{\mathrm{in}}: \left(\begin{array}{c}I\\t\end{array}\right) \mapsto \left(\begin{array}{c}I+e_0A_1(I,t)+e_0^2A_2(I,t)+\mathcal{O}\left(e_0^3\right)\\t+\mathcal{T}_0(I)+e_0\mathcal{T}_1(I,t)+e_0^2\mathcal{T}_2(I,t)+\mathcal{O}\left(e_0^3\right)\end{array}\right)$$

- $A_1$  and  $\mathcal{T}_1$  only have *t*-harmonics  $\{\pm 1\}$ .
- $A_2$  and  $\mathcal{T}_2$  only have t-harmonics  $\{0, \pm 1, \pm 2\}$ .
- As we will see later, we only need to know explicitly

$$A_1(I,t) = A_1^+(I)e^{it} + A_1^-(I)e^{-it}.$$

• We compute  $A_1^{\pm}(I)$  numerically.

#### The perturbed outer maps

• Are of the form

$$\mathcal{F}_{e_0}^{\mathrm{out},*}: \left(\begin{array}{c}I\\t\end{array}\right) \mapsto \left(\begin{array}{c}I+e_0B_1^*(I,t)+\mathcal{O}\left(e_0^2\right)\\t+\omega^*(I)+\mathcal{O}(e_0)\end{array}\right) \quad *=\mathrm{f},\mathrm{b}.$$

- $B_1^*$  are computed (numerically) through Melnikov integrals.
- $B_1^*$  only has *t*-harmonics  $\{\pm 1\}$ .

- We have defined inner and outer dynamics.
- We want to combine them to obtain a transition chain of tori.
- Namely, we want to obtain a sequence of invariant tori of the inner map {T<sub>j</sub>}<sub>j=1...N</sub> such that

 $W^{u}\left(\mathbb{T}_{j}\right) \pitchfork W^{s}\left(\mathbb{T}_{j+1}\right)$ 

• It is equivalent to see that for each tori  $\mathbb{T}_j$  either

 $\mathcal{F}_{e_0}^{\mathrm{out},\mathrm{f}}(\mathbb{T}_j) \cap \mathbb{T}_{j+1} \neq \emptyset \quad \text{or } \mathcal{F}_{e_0}^{\mathrm{out},\mathrm{b}}(\mathbb{T}_j) \cap \mathbb{T}_{j+1} \neq \emptyset$ 

• To obtain it we perform two steps of averaging to the inner map.

# Two steps of averaging

• Inner map:

$$\mathcal{F}_{e_0}^{\mathrm{in}}: \left(\begin{array}{c}I\\t\end{array}\right) \mapsto \left(\begin{array}{c}I+e_0A_1(I,t)+e_0^2A_2(I,t)+\mathcal{O}\left(e_0^3\right)\\t+\mathcal{T}_0(I)+e_0\mathcal{T}_1(I,t)+e_0^2\mathcal{T}_2(I,t)+\mathcal{O}\left(e_0^3\right)\end{array}\right)$$

- The  $e_0$  and  $e_0^2$  terms of the inner map only have *t*-harmonics  $\{0, \pm 1, \pm 2\}.$
- If we perform two steps of averaging, the small divisors that appear are only

$$e^{\pm \mathcal{T}_0(I)} - 1$$
 and  $e^{\pm 2\mathcal{T}_0(I)} - 1$ 

• The bounds we know for  $\mathcal{T}_0(I)$  show that these small divisors never vanish.

#### The inner map in the new variables

- Then, we can perform the two steps of averaging globally.
- Inner map in the new variables:

$$\mathcal{F}_{e_0}^{\mathrm{in}} : \left(\begin{array}{c} \mathcal{I} \\ \tau \end{array}\right) \mapsto \left(\begin{array}{c} \mathcal{I} + \mathcal{O}\left(e_0^3\right) \\ \tau + \mathcal{T}_0(\mathcal{I}) + e_0^2 \mathcal{T}_2(\mathcal{I}) + \mathcal{O}\left(e_0^3\right) \end{array}\right)$$

.

- The new inner map is  $e_0^3$ -close to integrable.
- It is a twist map.
- We can apply KAM Theorem.
- We obtain a sequence of tori  $\{\mathbb{T}_j\}_{j=1,...,N}$ , which are  $e_0^{3/2}$ -close to each other.

#### The outer map in the new variables

• To obtain the transition chain, we consider the outer maps in the new variables:

$$\widetilde{\mathcal{F}}_{e_0}^{\text{out},*}: \begin{pmatrix} \mathcal{I} \\ \tau \end{pmatrix} \mapsto \begin{pmatrix} \mathcal{I} + e_0 \widetilde{B}^* (\mathcal{I}, \tau) + \mathcal{O}(e_0^2) \\ \tau + \omega^* (\mathcal{I}) + \mathcal{O}(e_0) \end{pmatrix}, \ * = \text{f}, \text{b}$$

where

$$\widetilde{B}^{*}\left(\mathcal{I},\tau\right) = \widetilde{B}^{*,+}\left(\mathcal{I}\right)e^{i\tau} + \widetilde{B}^{*,-}\left(\mathcal{I}\right)e^{-i\tau}$$

with

$$\widetilde{B}^{*,\pm}(\mathcal{I}) = B^{*,\pm}(\mathcal{I}) - \frac{e^{\pm i\omega^{*}(\mathcal{I})} - 1}{e^{\pm i\mathcal{T}_{0}(\mathcal{I})} - 1}A_{1}^{\pm}(\mathcal{I}).$$

- We want the outer map to connect tori which are  $e_0^{3/2}$ -close.
- It is enough to check that  $\widetilde{B}^{*,\pm}(\mathcal{I}) \neq 0$ .
- Namely, B̃<sup>\*,±</sup> is defined through the functions A<sup>±</sup><sub>1</sub>, B<sup>\*,±</sup>, T<sub>0</sub> and ω<sup>\*</sup>, which have been already computed.

- Since B̃<sup>\*,±</sup> (I) ≠ 0, the jumps of the outer maps are bigger than the distance between tori.
- Namely, there are no big gaps.
- Therefore,  $\{\mathbb{T}_j\}_{j=1,\dots,N}$  is a transition chain.
- Once we have the transition chain, it is enough to use a shadowing method to obtain the true orbit.

### **Time of diffusion**

- The used methods do not give any estimate on the time of diffusion.
- We expect that it is of the form

$$T \sim \frac{\ln(\mu e_0)}{\mu e_0}.$$