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e \We consider th&estricted Planar Elliptic 3 Body Problem

e Namely, we study the motiog(¢) of a massless body (Asteroid)
under the influence of two primaries(t) andg,(t) of masses: and
1 — 1, which move along ellipses of eccentricy > 0 around their
center of mass.

e \We consider

— 1o = 1073 which is a realistic value for the Sun-Jupiter model.

— eg > 0 arbitrarily small.




The 2 Body Problem

If we omit the influence of Jupiter(= 0), the system is reduced to
two uncoupled 2 Body Problems (Sun-Jupiter and Sun-Agtgroi

The motion of the Asteriod is given by Kepler Laws.
First Kepler Law: Orbits of the 2BP are conic sections

Assume that the Asteroid is moving along an ellipse.

An ellipse can be given by its semimajor axiand its eccentricity
0<e<l.

For the 2BP these parameters are constants of motion.




The mean motion resonances

e Third Kepler Law: Period of motion of the ellipse2sa®/? wherea
IS the semimajor axis of the ellipse.

e Mean motion resonanas resonance between the period of the
Asteroid and the period of Jupiter

e If we normalize the period of Jupiter for (and its semimajor axis to
1), mean motion resonance appears W& is rational.




e We want to see the influence of Jupiter£ 10~3) on the shape of
the ellipse when the Asteroid is in mean motion resonance.

e \We have focused our study in the mean motion resonande
(period of the Asteroid is seven times the period of Jupiter)

e \We expect that analogous phenomena take place in the otlagr me
motion resonances.




Theorem For the Restricted Planar Elliptic 3 Body Problem with mass
ratio . = 10~ and eccentricity, small enough, there exigt > 0 and a

trajectory whose (osculating) semimajdtt) and eccentricitye(t) satisfy
that

a(t) ~ 7?3 forallt € [0, T]

and
e(0) < 0.48 and e(T) > 0.66.

Namely,

e The Asteroid keeps the semimajor axis almost constant argth
remains in mean motion resonance.

e |t drifts along the resonance, undergoing considerablagésin the
eccentricity and thus in the shape of the ellipse.




e Schematically, we obtain orbits:

e Even though we have focused on the resondnceg, we expect the
same to happen in the other mean motion resonances.




The Kirkwood gaps

Asteroid Main-Belt Distribution
Kirkwood Gaps

Me=an Motion Resonance
(A steraid: Jupiter) 11 ] 73

] B T 1 e The Asteroid Belt is

: the region of the Solar
' - System located roughly
between the orbits of
| : the planets Mars and
1 Jupiter.
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e At mean motion resonances of small or@er1,2:1,5:2,7: 3,
there are visible gaps in the distribution of the Asterocisled
Kirkwood gaps.




e This diffusing mechanism could give a justification of itss&nce.

e The eccentricity of Jupiter isy ~ 1/20 and we need, arbitrarily
small.

e Another mechanism of instability in tige: 1 Kirkwood gap based on
Adiabatic chaos can be seen in Neishtadt-Sidorenko (2004).




General comments on the proof

The proof relies on geometric methods commonly used in thayst
of Arnol’d diffusion.

This problem doesot havebig gaps

Some parts rely on high-accuracy numerical computations.

We expect that these parts can be turned into a Computerntédsis
Proof.




Sketch of the proof

Main steps:

e Step 1. Consider the Action-Angle coordinates for the 2B&lliptic
regime (Delaunay coordinates)

e Step 2: Geometrical features of the Circular Problem=(10—2 and
€ — O)

e Step 3: Study of the Elliptic Problened{ > 0) as a perturbation of
the Circular One.




The two body problem

e Whenu = 0, the Hamiltonian becomes

lpl> 1
2 Il

e The Delaunay coordinates are the Action-Angle coordinimethe
2BP in elliptic regime:

H(q,p) =

— £ is the mean anomaly.

— L is the square of the semimajor axis.
— ¢ Is the argument of the perihelion.

— (G is the angular momentum.

e One can define the eccentricity of the Asteroid using these

coordinates as
/ G2
e = 1 — ﬁ




e In these coordinates the Hamiltonian of the 2BP become

1

HQBP(K, L,g, G) — —m
e If we apply the change to the RPE3BP we obtain

1
) A-P]Cil"c €7L7~_ t7G
57z T (4, L, g )

+ MBOAHGH (67 L7 g _ t) G7 t)

H({, L,g,G) =

e The circular perturbating term only dependstdhroughg — t¢.




Rotating Delaunay coordinates

One can define a new system of coordinates with g — ¢: Rotating
Delaunay coordinates

New Hamiltonian

1
H, L g, G, t)=— 577 G+ upAH (4, L, g, G)

+ peoAHean (4, L, g,G, t)

SinceA H.;,. Is independent of, wheney = 0 the system has 2
degrees of freedom and the energy is preserved.

This corresponds to the preservation of the Jacobi constant

We will look for diffusing orbits in this Hamiltonian wheg, > 0.




The mean motion resonance in Rotating Delaunay coordinates

e Whenu = 0 we have the Hamiltonian

1
H(é,L,g,G,):—ﬁ—G

e Frequencies:
1

E:ﬁ andg = —1

e The mean motion resonante 7 corresponds to take = 71/3 so

that

|
¢ =— andg=—1
- 9




e \We want to obtain diffusing orbits along the mean motion nesce.

e Namely we will keepL ~ 71/3 (which implies keeping the
semimajor axis almost constant)

e Since

/ G2
€ = 1—ﬁ,

big changes itz are equivalent to big changesdn




The extended system

In fact, we will consider the full 3 dof freedom system intumihg
the variablel conjugate ot

1
H/{, L,gG,it,])=— — — G+ pAHg (4, L, g,G
2172

+ peoAHen (4, L, g, G, t) + 1

We restrict ourselves at the energy le¥el= 0.

Since the perturbating terms are small dndlmost constant, to
obtain an orbit with big changes @ is equivalent to obtain an orbit
with big changes id.

We look for orbits with big changes ih




The circular problem
For a moment let us forget aboliandt.

The Hamiltonian for the circular problem is

1
H(E,L,g, G) = —m — G+ MAHcirc(ngvga G)

The energy is conserved.
It has two degrees of freedom so it is impossible to obtaifusidn.
We study the mean motion resonance numerically.

We take advantage of the fact that this system is reversiible w
respect to the involution

R, L,g,G)=(—¢,L,—qg,G).




Theorem Consider the Hamiltonian

1
H(ﬁ, L,g,G) = —ﬁ — G+ MAHcirc(€7 LagaG)

Then, at each energy lev®l ¢ |[H_, H,| = |[—1.81, —1.56],

e There exists a hyperbolic periodig; orbit whose period satisfies

T — 147| < 60 = 60 - 10~°

e vy has two branches of stable and unstable invariant manifolds

e At each energy level either one set of branchegpbr the other
Intersect transversally at the symmetry axis.




Remarks on the theorem

H — H_ implies thate decreases (the orbit becomes more circulan).

In this regime the periodic orbit becomes weakly hyperbahd the
angle between the invariant manifolds decreases expaiignti

It becomes harder to detect.

WhenH — H . the periodic orbit approaches the invariant
manifolds of the point Lagrangian Equilibrium Poibs.

The period of the periodic orbit explodes and thus we moveyawa
from the resonance.
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A priori chaotic versus a priori stable

This theorem gives us at every energy level a periodic orbitlwhas
a transversal homoclinic orbit for = 1075,

We will use this hyperbolic structure to obtain diffusindpiis when
eg > 0.

This type of systems are usually calla@riori chaotic, since for the
unperturbed problemef = 0) they present chaotic motion at each
energy level (but not global instabilities).

It presents similar features to the so-called Mather Prable
existence of orbits whose energy grows arbitrarily in gsoxiffows
with a periodic potential.




e Whenu — 0, the system becomes nearly completely integrable: it|s
anapriori stable system.

e The splitting angle at the homoclinic points is exponettiamall
with respect tq: and therefore it is very difficult to prove the
transversality of the invariant manifolds.
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The extended circular problem

Hamiltonian for the extended circular problem

1
H/{ L ,gGt,])=—— -G+ pAHg (4, L,g,G)+ 1
2172

at the energy leveli = 0.
Now the dynamics is restricted to planks-= constant.

If we take into account the variabtethe periodic orbits of the
circular problem are now 2 dimensional tori

The union of the periodic orbits form a 3 dimensional Noryall
Hyperbolic Invariant Manifold\y.

We want to define inner and outer dynamics associated to it.




e To this end we consider a Poinéamap.

e \We fix the Poincar section{g = 0} and the map

Po:{9g=0} — {g =0}
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The Poincag map?P, has a 2
dimensional NHII\/I/N\O

It has seven connected compo-
nents

~ 6 ~ .

In fact, Py (A)) = AT,

They are invariant byP/.

e P/ has seven NHIMs:

Al j=0,...,6




(I,t) are global coordinates for each of these connected commneg

We can use them to define the inner and outer dynamics.

One could also have used the Poirgcarap associated @ = 0} and
use coordinate§=, g).

The advantage of usind, ¢) is that! is constant for the circular
problem and therefore it will be easier to study the influeoicide
elliptic perturbation in order to prove diffusion.




Inner and outer dynamics of the circular problem
We chose one of the cylinderas.
Recall that it is invariant byP{.
By P it has heteroclinic connections wifkg andA¢.

We choose it because the heteroclinic connections betwgamd

7\3 intersect transversally at the symmetry axis and thus aierca
compute.

We want to define:
— Inner dynamics

— Quter dynamics




Inner map of the circular problem

It is given by the Poincé& mapP{ restricted ta\?.

Sincel is constant, it is integrable.

Then, it is of the form

I

]:(i)n:
t+ To(I)

147 + To (1) is the period of the periodic orbit we have obtained for
the circular problem.

It can be checked (numerically) that it is twist.




Outer map of the circular problem

o Ateach energy level eithdt “(A2) m W=(A2) or
W (AS) h W= (A).

e Associated to the transversal homoclinic points we can defin
scattering map, which we call forward or backward.

f . A3 A4
St A3 — A
b. A4 A3
Sh AL A3

o S;(x_) = x4 if the homoclinic orbit tends te_ in the past and to
x In the future.




We want to define outer maps frog to itself A?.

We compose the scattering map with the Poiacaap
Fo =g 0 S
Fgut,b _ Sb o 7)0

As I is a first integral, the outer maps (wherever they are defiaexl)
of the form

in,* _
Fo

We computev* () numerically.




Conclusion

e We have inner and (two) outer dynamics associatetittor the
circular problem.

e They are given by

. I
Fo
(t

out,* I
Fo —
t

e They are all integrable.




The elliptic problem

e \We study the elliptic probleme( > 0) as a perturbation of the
circular one ¢; = 0).

e Forey small enough
— The NHIM /N\{, are preserved, slightly deformed,zﬁgso.

— Roughly speaking, for each W*(A3) th W*(A2) or
W (AS) h W(A3) are transversal.

— We can associate inner and outer dynamiczsgto]—“ég, ]:gglt,f and
Foutb as in the circular problem.

— We study them perturbatively.




A particular feature of the elliptic Hamiltonian

Hamiltonian

1
H(€7L7ga G7t7-[) — ﬁ o G+ILLAHC11"C(€7 L797G>

+ peoAHen (4, L, g, G, t) + 1

We can expand

AH. = AHéu + eOA]_Ie211 + O (6(2))

AHY, only has the-harmonics{+1}.
AH?, only has the-harmonics{0, +1, +2}.




The perturbed inner map
|s of the form

in I R I +egAi(I,t)+e§As(1,t)+ O (ef)
R t+To(I) 4+ eoTi(1,t) + 2Ta(I,6) + O () |

A; and7; only havet-harmonics{+1}.

As and7z only havet-harmonics{0, £1, +2}.

As we will see later, we only need to know explicitly

Ai(I,t) = AT (e + A7 (I)e ™.

We computed (1) numerically.




The perturbed outer maps

e Are of the form

I I +eyBi(1,t)+ O (€
Foue - oBILO+O() )y,

t t+w*(I) + O(e)

e B7 are computed (numerically) through Melnikov integrals.

e Bj only hast-harmonics{+1}.




We have defined inner and outer dynamics.
We want to combine them to obtain a transition chain of tori.

Namely, we want to obtain a sequence of invariant tori of tmer
map{T;};—1. ~ such that

W (T;) M W* (T41)

It is equivalent to see that for each tdij either

FOUN T N T # 0 or FOUP(T;) N T4y # 0

To obtain it we perform two steps of averaging to the inner map




Two steps of averaging

e Inner map:

[T [ T HeoA ) +eAa(l,t) + O (ef)
R t+ To(I) + eoTi(L,t) + edTa(1,t) + O (ef)

e Theeg ande? terms of the inner map only haveharmonics
{0, +1, +2}.

e If we perform two steps of averaging, the small divisors tygtear

are only
etToll) _ 1 andet?7o) _ 1

e The bounds we know foF,(7) show that these small divisors never
vanish.




The inner map in the new variables
Then, we can perform the two steps of averaging globally.

Inner map in the new variables:

]__;)1 : 7 . Z+ 0O (ed)
T T+ To(Z) + e§T2(Z) + O (ef)

The new inner map is;-close to integrable.
It is a twist map.

We can apply KAM Theorem.

each other.




The outer map in the new variables

e To obtain the transition chain, we consider the outer mapisamew
variables:
- 7 T +eoB* (Z,7)+ O (€2
Fé)out,* : — 0 ( ) ( O) Cx=1b
T T+ w*(Z) + O(ep)
where
B*(Z,7) =Bt (I)e" + B* (Z)e "

with o
e:l:zw (Z) _ 1

B** (T) = B™* (T) AE(T).

C eEiT(T)

e \We want the outer map to connect tori which a%éQ-close.
e Itis enough to check thas** (Z) # 0.

e Namely, B*¥ is defined through the function$, B**, T, andw*
which have been already computed.




SinceB*=* (Z) # 0, the jumps of the outer maps are bigger than th§
distance between tori.

Namely, there are nbig gaps

Therefore{T,},—1 .. n is atransition chain.

Once we have the transition chain, it is enough to use a shagow
method to obtain the true orbit.




Time of diffusion
e The used methods do not give any estimate on the time of diffus

e \We expect that it is of the form

In(pee0)
HEO

T ~




