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• We consider theRestricted Planar Elliptic 3 Body Problem.

• Namely, we study the motionq(t) of a massless body (Asteroid)

under the influence of two primariesq1(t) andq2(t) of massesµ and

1− µ, which move along ellipses of eccentricitye0 > 0 around their

center of mass.

• We consider

– µ = 10−3 which is a realistic value for the Sun-Jupiter model.

– e0 > 0 arbitrarily small.
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The 2 Body Problem

• If we omit the influence of Jupiter (µ = 0), the system is reduced to

two uncoupled 2 Body Problems (Sun-Jupiter and Sun-Asteroid).

• The motion of the Asteriod is given by Kepler Laws.

• First Kepler Law: Orbits of the 2BP are conic sections

• Assume that the Asteroid is moving along an ellipse.

• An ellipse can be given by its semimajor axisa and its eccentricity

0 < e < 1.

• For the 2BP these parameters are constants of motion.
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The mean motion resonances

• Third Kepler Law: Period of motion of the ellipse is2πa3/2 wherea

is the semimajor axis of the ellipse.

• Mean motion resonanceis resonance between the period of the

Asteroid and the period of Jupiter

• If we normalize the period of Jupiter to2π (and its semimajor axis to

1), mean motion resonance appears whena3/2 is rational.
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• We want to see the influence of Jupiter (µ = 10−3) on the shape of

the ellipse when the Asteroid is in mean motion resonance.

• We have focused our study in the mean motion resonance1 : 7

(period of the Asteroid is seven times the period of Jupiter).

• We expect that analogous phenomena take place in the other mean

motion resonances.
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Theorem For the Restricted Planar Elliptic 3 Body Problem with mass

ratioµ = 10−3 and eccentricitye0 small enough, there existT > 0 and a

trajectory whose (osculating) semimajora(t) and eccentricitye(t) satisfy

that

a(t) ∼ 72/3 for all t ∈ [0, T ]

and

e(0) < 0.48 and e(T ) > 0.66.

Namely,

• The Asteroid keeps the semimajor axis almost constant and thus it

remains in mean motion resonance.

• It drifts along the resonance, undergoing considerable changes in the

eccentricity and thus in the shape of the ellipse.
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• Schematically, we obtain orbits:

• Even though we have focused on the resonance1 : 7, we expect the

same to happen in the other mean motion resonances.
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The Kirkwood gaps

• The Asteroid Belt is

the region of the Solar

System located roughly

between the orbits of

the planets Mars and

Jupiter.

• At mean motion resonances of small order3 : 1, 2 : 1, 5 : 2, 7 : 3,

there are visible gaps in the distribution of the Asteroids,called

Kirkwood gaps.
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• This diffusing mechanism could give a justification of its existence.

• The eccentricity of Jupiter ise0 ∼ 1/20 and we neede0 arbitrarily

small.

• Another mechanism of instability in the3 : 1 Kirkwood gap based on

Adiabatic chaos can be seen in Neishtadt-Sidorenko (2004).
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General comments on the proof

• The proof relies on geometric methods commonly used in the study

of Arnol’d diffusion.

• This problem doesnothavebig gaps.

• Some parts rely on high-accuracy numerical computations.

• We expect that these parts can be turned into a Computer Assisted

Proof.
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Sketch of the proof

Main steps:

• Step 1: Consider the Action-Angle coordinates for the 2BP inelliptic

regime (Delaunay coordinates)

• Step 2: Geometrical features of the Circular Problem (µ = 10−3 and

e0 = 0).

• Step 3: Study of the Elliptic Problem (e0 > 0) as a perturbation of

the Circular One.
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The two body problem

• Whenµ = 0, the Hamiltonian becomes

H(q, p) =
‖p‖2

2
−

1

‖q‖
.

• The Delaunay coordinates are the Action-Angle coordinatesfor the
2BP in elliptic regime:

– ℓ is the mean anomaly.

– L is the square of the semimajor axis.

– g̃ is the argument of the perihelion.

– G is the angular momentum.

• One can define the eccentricity of the Asteroid using these
coordinates as

e =

√
1−

G2

L2
.
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• In these coordinates the Hamiltonian of the 2BP become

H2BP (ℓ, L, g̃, G) = −
1

2L2
.

• If we apply the change to the RPE3BP we obtain

H(ℓ, L, g̃, G) =−
1

2L2
+ µ∆Hcirc(ℓ, L, g̃ − t, G)

+ µe0∆Hell(ℓ, L, g̃ − t, G, t)

• The circular perturbating term only depends ont throughg̃ − t.
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Rotating Delaunay coordinates

• One can define a new system of coordinates withg = g̃ − t: Rotating

Delaunay coordinates.

• New Hamiltonian

H(ℓ, L, g,G, t) =−
1

2L2
−G+ µ∆Hcirc(ℓ, L, g,G)

+ µe0∆Hell(ℓ, L, g,G, t)

• Since∆Hcirc is independent oft, whene0 = 0 the system has 2

degrees of freedom and the energy is preserved.

• This corresponds to the preservation of the Jacobi constant.

• We will look for diffusing orbits in this Hamiltonian whene0 > 0.
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The mean motion resonance in Rotating Delaunay coordinates

• Whenµ = 0 we have the Hamiltonian

H(ℓ, L, g,G, ) = −
1

2L2
−G

• Frequencies:

ℓ̇ =
1

L3
andġ = −1

• The mean motion resonance1 : 7 corresponds to takeL = 71/3 so

that

ℓ̇ =
1

7
andġ = −1
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• We want to obtain diffusing orbits along the mean motion resonance.

• Namely we will keepL ∼ 71/3 (which implies keeping the

semimajor axis almost constant)

• Since

e =

√
1−

G2

L2
,

big changes inG are equivalent to big changes ine.
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The extended system

• In fact, we will consider the full 3 dof freedom system introducing

the variableI conjugate oft

H(ℓ, L, g,G, t, I) =−
1

2L2
−G+ µ∆Hcirc(ℓ, L, g,G)

+ µe0∆Hell(ℓ, L, g,G, t) + I

• We restrict ourselves at the energy levelH = 0.

• Since the perturbating terms are small andL almost constant, to

obtain an orbit with big changes inG is equivalent to obtain an orbit

with big changes inI .

• We look for orbits with big changes inI .
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The circular problem

• For a moment let us forget aboutI andt.

• The Hamiltonian for the circular problem is

H(ℓ, L, g,G) = −
1

2L2
−G+ µ∆Hcirc(ℓ, L, g,G)

• The energy is conserved.

• It has two degrees of freedom so it is impossible to obtain diffusion.

• We study the mean motion resonance numerically.

• We take advantage of the fact that this system is reversible with

respect to the involution

R(ℓ, L, g,G) = (−ℓ, L,−g,G).
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Theorem Consider the Hamiltonian

H(ℓ, L, g,G) = −
1

2L2
−G+ µ∆Hcirc(ℓ, L, g,G)

Then, at each energy levelH ∈ [H−, H+] = [−1.81,−1.56],

• There exists a hyperbolic periodicγH orbit whose period satisfies

|T − 14π| < 60µ = 60 · 10−3

• γH has two branches of stable and unstable invariant manifolds.

• At each energy level either one set of branches ofγH or the other

intersect transversally at the symmetry axis.
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Remarks on the theorem

• H → H− implies thate decreases (the orbit becomes more circular).

• In this regime the periodic orbit becomes weakly hyperbolicand the

angle between the invariant manifolds decreases exponentially.

• It becomes harder to detect.

• WhenH → H+ the periodic orbit approaches the invariant

manifolds of the point Lagrangian Equilibrium PointL2.

• The period of the periodic orbit explodes and thus we move away

from the resonance.
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A priori chaotic versus a priori stable

• This theorem gives us at every energy level a periodic orbit which has

a transversal homoclinic orbit forµ = 10−3.

• We will use this hyperbolic structure to obtain diffusing orbits when

e0 > 0.

• This type of systems are usually calleda priori chaotic, since for the

unperturbed problem (e0 = 0) they present chaotic motion at each

energy level (but not global instabilities).

• It presents similar features to the so-called Mather Problem:

existence of orbits whose energy grows arbitrarily in geodesic flows

with a periodic potential.
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• Whenµ → 0, the system becomes nearly completely integrable: it is

ana priori stable system.

• The splitting angle at the homoclinic points is exponentially small

with respect toµ and therefore it is very difficult to prove the

transversality of the invariant manifolds.
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The extended circular problem

• Hamiltonian for the extended circular problem

H(ℓ, L, g,G, t, I) = −
1

2L2
−G+ µ∆Hcirc(ℓ, L, g,G) + I

at the energy levelH = 0.

• Now the dynamics is restricted to planesI = constant.

• If we take into account the variablet, the periodic orbits of the

circular problem are now 2 dimensional tori

• The union of the periodic orbits form a 3 dimensional Normally

Hyperbolic Invariant ManifoldΛ0.

• We want to define inner and outer dynamics associated to it.
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• To this end we consider a Poincaré map.

• We fix the Poincaŕe section{g = 0} and the map

P0 : {g = 0} −→ {g = 0}
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γJ(t) Λ̃1
0 ∩ {J = cst}

Λ̃7
0 ∩ {J = cst}

...

{g = 0} • The Poincaŕe mapP0 has a 2

dimensional NHIMΛ̃0

• It has seven connected compo-

nents

Λ̃0 = ∪6
j=0Λ̃

j
0

• In fact,P0(Λ̃
j
0) = Λ̃j+1

0 .

• They are invariant byP7
0 .

• P7
0 has seven NHIMs:

Λ̃j
0 , j = 0, . . . , 6.
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• (I, t) are global coordinates for each of these connected components.

• We can use them to define the inner and outer dynamics.

• One could also have used the Poincaré map associated to{t = 0} and

use coordinates(G, g).

• The advantage of using(I, t) is thatI is constant for the circular

problem and therefore it will be easier to study the influenceof the

elliptic perturbation in order to prove diffusion.
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Inner and outer dynamics of the circular problem

• We chose one of the cylinders:̃Λ3
0.

• Recall that it is invariant byP7
0 .

• By P7
0 it has heteroclinic connections with̃Λ2

0 andΛ̃4
0.

• We choose it because the heteroclinic connections betweenΛ̃3
0 and

Λ̃4
0 intersect transversally at the symmetry axis and thus are easier to

compute.

• We want to define:

– Inner dynamics

– Outer dynamics
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Inner map of the circular problem

• It is given by the Poincaré mapP7
0 restricted tõΛ3

0.

• SinceI is constant, it is integrable.

• Then, it is of the form

F in
0 :


 I

t


 7→


 I

t+ T0(I)


 .

• 14π + T0(I) is the period of the periodic orbit we have obtained for

the circular problem.

• It can be checked (numerically) that it is twist.
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Outer map of the circular problem

• At each energy level eitherW u(Λ̃3
0) ⋔ W s(Λ̃4

0) or

W u(Λ̃4
0) ⋔ W s(Λ̃3

0).

• Associated to the transversal homoclinic points we can define a

scattering map, which we call forward or backward.

S f
0 : Λ̃3

0 → Λ̃4
0

Sb
0 : Λ̃4

0 → Λ̃3
0

• S∗
0 (x−) = x+ if the homoclinic orbit tends tox− in the past and to

x+ in the future.
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• We want to define outer maps from̃Λ3
0 to itself Λ̃3

0.

• We compose the scattering map with the Poincaré map

Fout,f
0 = P6

0 ◦ S f
0

Fout,b
0 = Sb ◦ P0

• As I is a first integral, the outer maps (wherever they are defined)are

of the form

F in,∗
0 :


 I

t


 7→


 I

t+ ω∗(I)


 ∗ = f, b

• We computeω∗(I) numerically.
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Conclusion

• We have inner and (two) outer dynamics associated toΛ3
0 for the

circular problem.

• They are given by

F in
0 :


 I

t


 7→


 I

t+ T0(I)




and

Fout,∗
0 :


 I

t


 7→


 I

t+ ω∗(I)


 ∗ = f, b

• They are all integrable.
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The elliptic problem

• We study the elliptic problem (e0 > 0) as a perturbation of the

circular one (e0 = 0).

• For e0 small enough

– The NHIM Λ̃j
0 are preserved, slightly deformed, asΛ̃j

e0 .

– Roughly speaking, for eachI , W u(Λ̃3
0) ⋔ W s(Λ̃4

0) or

W u(Λ̃4
0) ⋔ W s(Λ̃3

0) are transversal.

– We can associate inner and outer dynamics toΛ̃3
0: F in

e0 , Fout,f
e0 and

Fout,b
e0 as in the circular problem.

– We study them perturbatively.
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A particular feature of the elliptic Hamiltonian

• Hamiltonian

H(ℓ, L, g,G, t, I) =−
1

2L2
−G+ µ∆Hcirc(ℓ, L, g,G)

+ µe0∆Hell(ℓ, L, g,G, t) + I

• We can expand

∆Hell = ∆H1
ell + e0∆H2

ell +O
(
e20
)

• ∆H1
ell only has thet-harmonics{±1}.

• ∆H2
ell only has thet-harmonics{0,±1,±2}.
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The perturbed inner map

• Is of the form

F in
e0 :


 I

t


 7→


 I + e0A1(I, t) + e20A2(I, t) +O

(
e30
)

t+ T0(I) + e0T1(I, t) + e20T2(I, t) +O
(
e30
)


 .

• A1 andT1 only havet-harmonics{±1}.

• A2 andT2 only havet-harmonics{0,±1,±2}.

• As we will see later, we only need to know explicitly

A1(I, t) = A+
1 (I)e

it +A−

1 (I)e
−it.

• We computeA±

1 (I) numerically.
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The perturbed outer maps

• Are of the form

Fout,∗
e0 :


 I

t


 7→


 I + e0B

∗
1(I, t) +O

(
e20
)

t+ ω∗(I) +O(e0)


 ∗ = f, b.

• B∗
1 are computed (numerically) through Melnikov integrals.

• B∗
1 only hast-harmonics{±1}.

36



• We have defined inner and outer dynamics.

• We want to combine them to obtain a transition chain of tori.

• Namely, we want to obtain a sequence of invariant tori of the inner

map{Tj}j=1...N such that

W u (Tj) ⋔ W s (Tj+1)

• It is equivalent to see that for each toriTj either

Fout,f
e0 (Tj) ∩ Tj+1 6= ∅ or Fout,b

e0 (Tj) ∩ Tj+1 6= ∅

• To obtain it we perform two steps of averaging to the inner map.
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Two steps of averaging

• Inner map:

F in
e0 :


 I

t


 7→


 I + e0A1(I, t) + e20A2(I, t) +O

(
e30
)

t+ T0(I) + e0T1(I, t) + e20T2(I, t) +O
(
e30
)


 .

• Thee0 ande20 terms of the inner map only havet-harmonics

{0,±1,±2}.

• If we perform two steps of averaging, the small divisors thatappear

are only

e±T0(I) − 1 ande±2T0(I) − 1

• The bounds we know forT0(I) show that these small divisors never

vanish.

38



The inner map in the new variables

• Then, we can perform the two steps of averaging globally.

• Inner map in the new variables:

F in
e0 :


 I

τ


 7→


 I +O

(
e30
)

τ + T0(I) + e20T2(I) +O
(
e30
)


 .

• The new inner map ise30-close to integrable.

• It is a twist map.

• We can apply KAM Theorem.

• We obtain a sequence of tori{Tj}j=1,...,N , which aree3/20 -close to

each other.
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The outer map in the new variables

• To obtain the transition chain, we consider the outer maps inthe new
variables:

F̃out,∗
e0 :


 I

τ


 7→


 I + e0B̃

∗ (I, τ) +O
(
e20
)

τ + ω∗(I) +O(e0)


 , ∗ = f, b

where
B̃∗ (I, τ) = B̃∗,+ (I) eiτ + B̃∗,− (I) e−iτ

with

B̃∗,± (I) = B∗,± (I)−
e±iω∗(I) − 1

e±iT0(I) − 1
A±

1 (I) .

• We want the outer map to connect tori which aree
3/2
0 -close.

• It is enough to check that̃B∗,± (I) 6= 0.

• Namely,B̃∗,± is defined through the functionsA±

1 , B∗,±, T0 andω∗,
which have been already computed.
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• SinceB̃∗,± (I) 6= 0, the jumps of the outer maps are bigger than the

distance between tori.

• Namely, there are nobig gaps.

• Therefore,{Tj}j=1,...,N is a transition chain.

• Once we have the transition chain, it is enough to use a shadowing

method to obtain the true orbit.
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Time of diffusion

• The used methods do not give any estimate on the time of diffusion.

• We expect that it is of the form

T ∼
ln(µe0)

µe0
.
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