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Summary.

Hyperbolic equilibrium point causes instabilities in small
perturbations of integrable Hamiltonian systems.

We illustrate this paradigm for one degree of freedom systems.
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One well potential

ẍ = −U ′(x)− εẋ

E =
(ẋ)2

2
+ U, Ė = −ε(ẋ)2.
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Averaging

ẍ = −U ′(x)− εẋ

Ė = −ε(ẋ)2

E (T )− E (0) ≈ −ε

∮
(ẋ)2dt = −ε

∮
ẋdt = −εArea(Int(γ(E ))

E ≈ Ē where
dĒ

dt
= −ε

Area(Int(γ(Ē ))

T (Ē )
.
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Double well potential

Which equilibrium point the orbit converges to?
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Multi well potential

Which equilibrium point the orbit converges to?
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O(ε) changes in initial conditions lead to different answers.
So it makes sense to consider convergence to O1 (O2) as random
events.
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Ways to define the probability of an event

1. Random initial condition regularization (Arnold): Take
initial conditions uniformly distributed on B(x0, δ). Compute
limε→0 Pε,δ(Oj) and then take δ → 0.

2. Small noise regularization (Freidlin): Consider

ż = ∇⊥H(z) + εb(z) + δ
√

εẇ

Compute limε→0 Pε,δ(Oj) and then take δ → 0.

In both definitions the results should not depend on the choice of
the Riemann metric.
Theorem (Neishtadt, Brin-Freidlin)

P(O1) =
Area(Int(Ω1))

Area(Int(Ω1)) + Area(Int(Ω2))
.
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Multiple separatrix passages

ż = ∇⊥H(z) + εb(z)

Question. Are multiple separatrix passages independent?
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Answer: (Brin-Freidlin)

I YES for small noise regularization

I SOMETIMES for initial condition regularization
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Restatement.

Consider the equation

ż = ∇⊥H(z) + εb(z)

on a plane or a compact surface.
Theorem. (Brin-Fredlin) Take τ = t/ε. Then the motion of the
slow component converges (after the small noise regularization) to
the Markov process such that

I The motion along the edges is deterministic and given by the
averaging principle

I The the process comes to a vertex it immediately moves to
the next edge.

I The next edge is chosen with probability proportional to
separatrix integrals.

Question 1. What is the limiting process for random initial
condition regularization?
Question 2. (Khanin, 1993) What if we consider perturbations of
area preserving (non Hamiltonian) flows on surfaces?
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Flows on surfaces.

Assume that
I Equilibrium points are non-degenerate;
I No saddle connections

Then ω(z) is
I equilibrium point or
I periodic orbit or
I suspension flow over an interval exchange transformation
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Flows on surfaces.

Periodic orbits can be divided into finitely many components where
each component is

I Disc or
I Cylinder or
I Sphere or
I Torus
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Main result.

ż = v + εb.

rk =

∫
Ωk

〈b,∇H〉dt where v = ∇⊥H near Ωk , H = 0 on Ωk .

Theorem. Take τ = t/ε. Then the motion of the slow component
converges (after the small noise regularization) to the Markov
process such that

I The motion along the edges is deterministic and given by the
averaging principle

I The the process comes to a vertex it
I leaves it immediately if the vertex corresponds to a saddle

point
I Stays for a random time having exponential distribution

with parameter λ(E ) =
∑

k
rk

Area(E) if the vertex

corresponds to a positive measure component E

I The next edge is chosen with probability proportional rk .
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Main result.

ż = v + εb.

rk =

∫
Ωk

〈b,∇H〉dt where v = ∇⊥H near Ωk , H = 0 on Ωk .

Theorem. The motion of the slow component converges (after
the small noise regularization) to the Markov process such that

I Motion along the edges is given by the averaging principle
I The the process comes to a vertex it

I leaves immediately if the vertex corresponds to saddle point
I Stays for a random time having exponential distribution

with parameter λ(E ) =
∑

k
rk

Area(E) if the vertex

corresponds to a positive measure component E

I The next edge is chosen with probability proportional rk .

Question 1. What about random initial condition regularization?

Dmitry Dolgopyat Small dissipative perturbations of area preserving flows on surfaces.



Intermittency.

In particular small dissipative perturbations of area preserving flows
can lead to an intermittent behavior if the corresponding graph has
cycles.
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Small random perturbations of area preserving flows

Our main result follows from
Theorem. Consider a Markov process with generator

Lε =
1

ε
〈v ,∇〉+ L

where L is a generator of a non-degenerate diffusion when as
ε → 0 the motion of the slow component converges to a Markov
process on the graph with explicit generator.
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Localization

We may assume that our graph is star-shaped.
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Diffusions with boundary conditions: Brownian motion.

Sn+1 − Sn = ±1 with equal probabilities.
SNt√

N
⇒ Brownian motion.

Density of the limiting process satisfies heat equation.
Weak (martingale) formulation:

E(u(w(T ))− u(W (0))) = E
(

1

2

∫ T

0
∆u(W (s))ds

)
for smooth test functions u.
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Diffusions with boundary conditions: skew Brownian
motion.

Sn+1 − Sn = ±1 with equal probabilities except if Sn = 0 then it
moves right with probability p and left with probability q.
SNt√

N
⇒ skew Brownian motion.

Martingale formulation:

E(u(w(T ))− u(W (0))) = E
(

1

2

∫ T

0
∆u(W (s))ds

)
if pu′+(0) = qu′−(0).

Dmitry Dolgopyat Small dissipative perturbations of area preserving flows on surfaces.



Diffusions with boundary conditions: slowly reflecting
Brownian motion.

Sn+1 − Sn = ±1 with equal probabilities except if Sn = 0 then it
moves right with probability p√

N
and stays at 0 with probability

1− p√
N

.
SNt√

N
⇒ skew Brownian motion.

Martingale formulation:

E(u(w(T ))− u(W (0))) = E
(

1

2

∫ T

0
∆u(W (s))ds

)
if pu′(0) = 1

2∆u(0).
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Diffusions with boundary conditions: general case.

Martingale formulation:

E(u(w(T ))− u(W (0))) = E
(

1

2

∫ T

0
(Lu)(W (s))ds

)
if

∑
j pju

′
j(0) = a(Lu)(0).

a = a(c) where the invariant measure satisfies

dµ = ρdx + cδ0.
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Key ingredient

We need to show that the limiting process is Markov that is for
x ∈ E and δ > 0

Px(τΩj
> 0) → 0 as ε → 0.
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Key ingredient

Berestycki–Hamel–Nadirashvili (2005):

Lε =
1

ε
〈v ,∇〉+ L

where L is a non-degenerate diffusion on a manifold M with non
empty boundary. Assume that Lebesgue measure is invariant. Then

P(τ∂M > δ) → 0 as ε → 0

iff v has no H1
0-eigenfunctions.

This result was improved in Constantin–Kiselev–Ryzhik–Zlatos
(2008) and Zlatos (2010)

In our case the absence of H1
0-eigenfunctions follows from Katok

(1973) whereas the absence of L2-eigenfunctions is only known for
almost all rotation numbers Khanin–Sinai (1992) and Ulcigrai
(2010) and is open in general.
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Open question
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