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A priori unstable Hamiltonian systems

Instability for a priori unstable Hamiltonian systems

We consider a periodic in time perturbation of n pendula and a
d-dimensional rotor described by the non-autonomous Hamiltonian,

H(p, q, I , ϕ, t, ε) = P(p, q) + h(I ) + εQ(p, q, I , ϕ, t, ε), (1)

with

P(p, q) =

n∑

j=1

Pj(pj , qj ), Pj (pj , qj) = ±
(

1

2
p2
j + Vj(qj)

)
,

where I ∈ I ⊂ R
d , ϕ ∈ T

d , I an open set, p, q ∈ R
n, t ∈ T

1, and
Pj(pj , qj ) is a pendulum for the saddle variables pj , qj .

For ǫ = 0, the d-dimensional action I remains constant.

Main question: What happens to I (t) for small ǫ 6= 0? Is there global
instability? i.e., I (t) − I (0) = O(1), or even does I (t) perform rather
arbitrary excursions in I?
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The Hamiltonian, assumptions and results

Elementary and regularity assumptions

H1 We will assume that the functions h,Vj ,Q are C r in their
corresponding domains with r ≥ r0 sufficiently large.

H2 We will assume that the potentials Vj have non-degenerate local
maxima, say at qj = 0, each of which gives rise to a homoclinic orbit
(p∗

j (t), q
∗
j (t)) of the pendulum Pj :

d

dt
q∗
j (t) = p∗

j (t);
d

dt
p∗
j (t) = −V ′

j (q
∗
j (t));

lim
t→±∞

(p∗
j (t), q

∗
j (t)) = (0, 0).

(2)

H3 The mapping I → ω(I ) := ∂
∂I

h(I ) is a local diffeomorphism from
I to its image.
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The Hamiltonian, assumptions and results

Simplifying assumption

We will furthermore assume the simplifying hypothesis:

H4 The function Q in (1) is a trigonometric polynomial on (ϕ, t):

Q(p, q, I , ϕ, t, ε) =
∑

(k,l)∈NQ

Qk,l (p, q, I , ε) exp(2π i(k · ϕ + lt)) (3)

with NQ ⊂ Z
d × Z a finite set, with Qk,l 6= 0 in I × U , if (k, l) ∈ NQ .

Remark

For the case d = 1, n = 1, Hypothesis H4 appeared in [D-Llave-Seara06],
and was eliminated in [D-Huguet09], [Gidea-Llave06], under generic
assumptions. Similar improvements are clearly possible in this higher
dimensional case.
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The Hamiltonian, assumptions and results

Melnikov potential

L(τ, I , ϕ, s) = −
∫ ∞

−∞

[
Q(p∗(τ + σ), q∗(τ + σ)I , ϕ + σω(I ), s + σ)

− Q(0, 0, I , ϕ + σω(I )σ, s + σ)
]
dσ

(4)

where τ = (τ1, · · · , τn), p∗(τ + σ) = (p∗
1(τ1 + σ), . . . , p∗

n(τn + σ)),
q∗(τ + σ) = (q∗

1(τ1 + σ), . . . , q∗
n(τn + σ)).

H5 Assume that the system of equations

∂

∂τ
L(τ, I , ϕ, s) = 0 (5)

admits a non degenerate solution. That is, there exists (τ0, I0, ϕ0, s0)
such that:

∂

∂τ
L(τ0, I0, ϕ0, s0) = 0, det

(
∂2

∂τ2
L(τ0, I0, ϕ0, s0)

)
6= 0. (6)
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The Hamiltonian, assumptions and results

Poincaré reduced function

By the implicit function theorem, we can find a branch of solutions
τ = τ∗(I , ϕ, s) in a domain I ∈ I∗, ϕ ∈ G∗, s ∈ [a, b], such that the point
(τ∗(I , ϕ, s), I , ϕ, s) also verifies (6).
Define the Poincaré reduced function

L∗(I , θ) = L(τ∗(I , θ, 0), I , θ, 0) (7)

which satisfies

L(τ∗(I , ϕ, s), I , ϕ, s) = L∗(I , ϕ − ω(I )s)

H6 Assume that the function L∗(I , ϕ − ω(I )s) satisfies some
non-degeneracy conditions, stated later, in the domain
I∗ × G∗ × [a, b].
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The Hamiltonian, assumptions and results

Non-degeneracy assumptions

H7 Assume that the perturbation Q satisfies some non-degeneracy
conditions, stated later, in the connected domain I∗ × G∗ × [a, b].

H8
Consider the set N [≤2] = N1 ∪ N2 ⊂ Z

d+1 where N1 is the support
of the Fourier series of Q(I , ϕ, p, q, t, 0), N2 = (N1 + N1) ∪ N̄ , and
N̄ is the support of the Fourier series of ∂Q

∂ε
(I , ϕ, p, q, t, 0).

Assume that for any for any (k, l) ∈ N [≤2] the set

{I ∈ I,Dh(I )k + l = 0, k⊤D2h(I )k = 0} (8)

is a codimension 2 set in I.

Remark

If h̃(I0, I ) = I0 + h(I ) is a quasi convex function the set (8) is an empty
set. Therefore Hypothesis H8 is true for any perturbation in this case.
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Statement of the main result

Main Result

Theorem

Let H be a Hamiltonian of the form (1) satisfying the elementary
assumptions H1, H2, the regularity assumption H3, the simplifying
assumption H4 and the nondegeneracy asumptions H5, H6, H7, H8.
Then, for every δ > 0, there exists ε0 > 0, such that for every
0 < |ε| < ε0, given I± ∈ I∗,there exists a solution
x̃(t) = (p(t), q(t), I (t), ϕ(t)) of (1) and T > 0, such that

|I (0) − I−| ≤ Cδ and |I (T ) − I+| ≤ Cδ (9)
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Statement of the main result

One can forget about δ and prescribe arbitrary paths on a set I∗.
This set I∗ is described precisely in the course of the proof, and is
determined by the non-degeneracy assumptions H5-H8. The main
idea is that I∗ is obtained from the domain of definition, just
eliminating some sets of codimension 2, like double resonances, from
the open set described in H5 (where the intersection of stable and
unstable manifolds of a normally hyperbolic invariant manifold is
transversal).

All the conditions H5-H8 are generic: C 2 open and hold except in
sets of infinite codimension. The only non-generic hypothesis is the
assumption H4, maintained here to simplify the exposition.

Codimension 2 objects do not separate the regions and can be
contoured so that they do not obstruct the change along the paths.
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Statement of the main result
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Statement of the main result

It is customary to refer to models of the form (1) as a-priori-unstable
models [Chierchia-Gallavotti94]. This distinction makes sense for
analytic models depending only on one parameter. The results we will
present could be applied just as well for µVi instead of Vi in (1) and
0 < µ ≪ 1, but require to choose ε very small (even exponentially
small) with respect to µ. In particular, one could use this method to
produce systems that present instability but which are as close to
integrable as desired. This procedure was pioneered in [Arnold64].

Hamiltonian (1) can be considered as a simplified model of what
happens in a neighborhood of a resonance of multiplicity n in a near
integrable Hamiltonian. The averaging method shows that near a
resonance, one can reduce the system to a Hamiltonian of the form

h(I ) +
n∑

i=1

p2
i

2
+ εV (q1, . . . , qn, I ) + O(ε2). (10)

The assumption that the averaged system is given by uncoupled
pendula is not general, but is made often [Holmes-Marsden82,Haller].
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Statement of the main result

Figure: Regions of regular motion (grey) and chaotic motion (black) in the (p, I )
plane, from Global dynamics and fast indicators, C. Simó
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Proof

Sketch of the proof

Part I: Existence of a normally hyperbolic invariant manifold with
associated stable and unstable manifolds.

Part II: Outer dynamics.

Part III: Inner dynamics.

Part IV: Combination of both dynamics.
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Proof I: A NHIM with transverse manifolds

ǫ = 0

Normally hyperbolic invariant manifold (2d + 1)-dimensional:

Λ̃ = {(0, 0, I , ϕ, s) : (I , ϕ, s) ∈ R × T
2}

Invariant manifolds (2d + n + 1)-dimensional:

W s Λ̃ = W uΛ̃ = {(p∗(τ), q∗(τ), I , ϕ, s) : τ ∈ R
n, I ∈ I, (ϕ, s) ∈ T

(d+1)}
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Proof I: A NHIM with transverse manifolds

0 < ǫ ≪ 1

Λ̃ persists to Λ̃ǫ, which is ǫ-close to Λ̃.

W s Λ̃ǫ and W uΛ̃ǫ are ǫ-close to the unperturbed ones.

Using the Melnikov potential L(τ, I , ϕ, s), one has to check that
W s Λ̃ǫ ⋔ W uΛ̃ǫ along a homoclinic manifold Γ̃ǫ.
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Proof I: A NHIM with transverse manifolds

Like in [D-Llave-Seara06], for any (I , ϕ, s) ∈ I × T
(d+1) and for any

non-degenerate critical point τ∗ = τ∗(I , ϕ, s) of

τ ∈ R
n 7→ L(τ, I , ϕ, s) ∈ R (11)

there exists a locally unique point z ,

z = z(I , ϕ, s; ǫ) = (p∗(τ∗) + O(ǫ), q∗(τ∗) + O(ǫ), I , ϕ, s), (12)

such that z ∈ W s(Λ̃ǫ) ⋔ W u(Λ̃ǫ).

By hypothesis H5 there exists an open set (I , ϕ, s) ∈ I ∗×G∗ × [a, b],
such that the function (11) has non-degenerate critical points at
τ = τ∗(I , ϕ, s).
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Proof II: Outer dynamics

Scattering map (outer map)

Ingredients:

Consider the foliations Fs,u:

W s,u

Λ̃ǫ

= ∪
x∈Λ̃ǫ

W s,u
x

Define the wave operators Ω+, Ω−:

Ω± : W s,u

Λ̃ǫ

→ Λ̃ǫ

x 7→ Ω±(x)

defined by x ∈ W s,u
Ω±(x).

Ω− is a diffeomorphism from Γ̃ǫ to H Γ̃ǫ

− ≡ Ω−(Γ̃ǫ).

Define
S Γ̃

ǫ = Ω+ ◦ (ΩΓ̃ǫ

− )−1
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Proof II: Outer dynamics

Scattering map (outer map):

Sǫ : H Γ̃ǫ

− ⊂ Λ̃ǫ → H Γ̃ǫ

+ ⊂ Λ̃ǫ

x− 7→ x+

defined by x+ = Sǫ(x−) ⇔ ∃ z ∈ Γ̃ǫ, such that

dist(Φt(z),Φt(x±)) → 0 for t → ±∞

Sǫ is exact symplectic [D-Llave-Seara08].
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Proof II: Outer dynamics

Perturbative formula for the Hamiltonian Sǫ generating the
deformation of the scattering map Sǫ:

Sǫ(I , ϕ, s) = −L∗(I , ϕ − sω(I )) + O(ǫ). (13)

where the reduced Poincaré function L∗(I , θ) satisfies

L(τ∗(I , ϕ, s), I , ϕ, s) = L∗(I , ϕ − sω(I )). (14)

Up to first order in ǫ, Sǫ is the ǫ-time flow of −L∗(I , θ), where
θ = ϕ − sω(I ):

Sǫ(I , ϕ, s) = (I , ϕ, s) + ǫJ∇ (L∗(I , ϕ − sω(I ))) + O(ǫ2), (15)

The scattering map can jump distances of O(ǫ) along the trajectories
of the Hamiltonian L∗(I , θ).
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Proof III: Inner dynamics

We need now to study the inner dynamics in Λ̃ǫ and more precisely its
invariant tori T to construct a transition chain along Λ̃ǫ, i.e., a
sequence of whiskered tori {T1}N

i=1 such that

W u
Ti

⋔ W s
Ti+1

Standard shadowing methods [Fontich-Martin00] provide orbits
connecting arbitrary small neighborhoods of T1 and TN .

The key point is to use the property

Sǫ(Ti) ⋔
Λ̃ǫ

Ti+1 ⇒ W u
Ti

⋔ W s
Ti+1

to choose convenient transition chains.
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Proof III: Inner dynamics

Inner Dynamics

The flow of Hamiltonian (1) restricted to the NHIM Λ̃ǫ can be
parameterized on Λ̃0 = Λ̃ and is generated by a Cr−1 time dependent
Hamiltonian vector field with Hamiltonian of the form

Kε(I , ϕ, s) = h(I ) +
N∑

i=1

εiK i(I , ϕ, s) + OC r−N−2(εN+1), (16)

where each of the terms K i is a trigonometric polynomial in the ϕ, s
variables.
Moreover, K i is an algebraic expression in terms of
∇ℓQ(p = 0, q = 0, I , ϕ, s; ε = 0), for ℓ = 0, . . . , i − 1. In particular,
K 1(I , ϕ, s) = Q(0, 0, I , ϕ, s, 0).
Standard averaging far from resonances and close to single secular
resonances provide adequate approximations for KAM tori.
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Proof III: Inner dynamics

Non resonant KAM tori

For ǫ > 0, KAM theorem ensures the preservation, with some
deformation, of the invariant tori with frequency vector (ω(I ), 1)
satisfying Diophantine conditions.

The invariant tori with frequency vector (ω(I ), 1) satisfying
Diophantine conditions fill a Cantorian set of relative measure
1 −O(

√
ǫ), called the non-resonant region.

Since these invariant tori are just deformed by the perturbation, they
are called primary tori. Moreover, they are given by the level sets of a
d-dimensional vector function F = (F1, . . . ,Fd) of the form

F (I , ϕ, s) = I + O(ǫ).
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Proof III: Inner dynamics

Primary and secondary tori in the resonant region

Resonant tori (corresponding to resonances, i.e., values of I such that
ω(I ) · k + l = 0, for some (k, l) ∈ Z

d+1) are typically destroyed by the
perturbation, creating gaps in the foliation of the persistent primary
tori of size up to O(

√
ǫ) centered around resonances. Other invariant

objects are created inside these gaps, like secondary tori, which are
(d+1)-dimensional invariant KAM tori contractible to d-dimensional
invariant tori.

Given any (k, l) ∈ Z
d+1, k 6= 0, gcd(k, l) = 1, determining a single

resonant region around ω(I ) · k + l = 0, for simplicity of notation,
assume kd 6= 0 and write k = (k̂, kd ) with k̂ ∈ Z

d−1.

By averaging theory, the invariant tori in this resonant region can be
approximated by the level sets of a vector function
F = (F1, . . . ,Fd) = (F̂ ,Fd) where F̂ = Ĵ − Id

kd
Î , and Fd = Kε + Id

kd
l .

Once fixed the value of F̂ , thanks to hypothesis H4, Fd is the
Hamiltonian of a pendulum.
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Proof III: Inner dynamics

There are two types of resonant regions depending whether the size of the
gaps created by the single resonances is bigger or smaller than the size ǫ of
the heteroclinic jumps of the Scattering map S :

Big gaps region It corresponds to those secular resonances centered
around ω(I ) · k + l = 0. For this region we have the large
gap problem. In these regions, we will include primary as well
as secondary KAM tori.

Small gaps region Centered around ω(I ) · k + l = 0 for non-secular
resonances, the gaps are of size strictly smaller than ǫ in
terms of the I variable, so that it is possible to connect two
primary tori on both sides of the gap. This case does not
present the large gap problem and can be treated
analogously as in the non-resonant region.

Flat tori region The union of the small gaps region and the non-resonant
region. The dominant term in ǫ of the invariant tori is given
there in first order by the function

F ∗(I , ϕ) = I . (17)
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Proof III: Inner dynamics

Which of them survive and at what distance when we add the perturbation
term?
KAM theorem (Quantitative version)

Flat tori region. We can apply KAM Theorem straightforwardly. Tori
at a distance ǫ1+η, with 0 < η ≪ 1 (after m averaging steps).

Big gaps region. The integrable system is a (d-1)-dimensional rotor
plus a pendulum. We need to write the Hamiltonian in action-angle
variables. Tori at a distance ǫ1+η, with 0 < η ≪ 1 (after m′ averaging
steps).

For I ∈ I, there exists in Λ̃ǫ a discrete sequence of invariant tori Ti (some
primary and some secondary) which are ǫ1+η-closely spaced, with
0 < η ≪ 1. They are given by the leaves LF∗

E of a foliation FF∗ , with F ∗

close to F .
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Proof III: Inner dynamics

Invariant objects in the NHIM Λ̃ǫ

ǫγ1

ǫ
1+η

ǫ
1+η

ǫ
1+η

ǫγ2

primary tori

secondary tori
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Proof IV: Combination of both dynamics

The image under the scattering map
Sǫ of a leaf LF∗

E satisfies

F ∗ ◦ Sǫ = F ∗ − ǫ{F ∗,L∗} + h.o.t

For any j = 1, . . . , d , at points

{Fj ,L∗} < 0 (18)

the scattering map increases the value
of Fj by order ǫ.

The non-degeneracy hypothesis
H6-H7 provide explicit conditions to
ensure that {{Fj ,L∗},L∗} 6≡ 0 when
{Fj ,L∗} = 0. For instance, for Fi ,

I = 1, . . . , d − 1, i.e., for F̂ , they

amount to det

(
∂2L∗

∂θ̂2

)
6≡ 0.

ǫγ1

ǫ
1+η

ǫ
1+η

ǫ
1+η

ǫ
1+η

ǫγ2

ǫ

ǫ

ǫ
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Proof IV: Combination of both dynamics

The end of the proof

By the hypotheses of the theorem, for any I± ∈ I and for every δ > 0,
there exists a path from I− to I+ in the set I∗ = Iδ at a distance δ of
the codimension 2 sets where the hypotheses of the Main Theorem
are not fulfilled. By the construction presented, there exists ε0 > 0
such that for any 0 < |ε| < ε0, this path is in an ǫ-neighborhood of
(primary and secondary) transition tori Ti forming a transition chain,
so there exists an orbit x̃(t) = (p(t), q(t), I (t), ϕ(t)) of (1) which
shadows the transition chain, so that, for some T > 0:

|I (0) − I−| ≤ Cδ

|I (T ) − I+| ≤ Cδ
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Proof IV: Combination of both dynamics

Illustration of the transport of invariant tori under the

scattering map

Hǫ(p, q, I , ϕ, t) = ±
(

p2

2
+ cos q − 1

)
+

I⊤ · I
2

+ǫ cos q
∑

|k|+|l |=1

akl cos(k·ϕ+lt).

Red curves: Invariant tori (primary and secondary) around I = 0
Green curves: Images of these invariant tori under the scattering map.

2ππ0

 0.5

 0

-0.5

θ

I

2ππ0

 0.5

 0

-0.5

θ

I
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Proof IV: Combination of both dynamics

Illustration of how to combine the two dynamics to cross the big gaps
region. Invariant tori for the inner dynamics (red curves) and invariant sets
for the outer dynamics (blue curves). Inner dynamics is represented by
dashed lines whereas outer dynamics is represented by solid lines.

0 π 2π
−0.5

 0

 0.5

θ

I

0 π 2π
−0.5

 0

 0.5

θ

I

0 π 2π
−0.5

 0

 0.5

θ

I
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