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This talk is based on:

Reviews by C. Efthimiopoulos et al., D. Merritt et al.;

Papers in collaboration with C. Simó;

Works together with S. Ferraz–Mello;

Papers/reviews with my co–worker C. Giordano and our
students;

All that Carles attempted to teach me, although I am afraid,
failed to learn to the extent I should have;

Chirikov’s reviews and papers.

I’m very grateful to all of them for allowing me to borrow material
from their papers and lectures as well as for illuminating comments.
Thanks to our present and former students, N. Maffione, M.
Mestre, L. Darriba, F. Cachucho da Silva, M. J. Pérez, for
performing some of the figures included in this presentation and
useful discussions.
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Galaxies

A galaxy is a very complicated system:

∼ 1011 stars whose ρ(x, t) generates its own field;

rotating pattern, spiral arms, bars,

gas and dust: SPH codes (Smoothed–particle hydrodynamics),

star formation,

supernova explosions,

chemical evolution,

interaction with other galaxies and/or globular cluster system;

a super–massive black hole lies in the center?

are they in steady state?. Probably not · · ·
dark matter? Alternative theories · · ·
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Hubble Sequence
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Some pictures of real galaxies



Workshop on Instabilities in Hamiltonian Systems

Open Problems· · ·

In Galactic Dynamics the very nature of problems does not permit
a coarse classification in open and close. Almost all practically
interesting problems are still largely open. The main obstruction to
closing problems is the lack of sufficient observational data, which,
in many cases, is due to our fundamental inability to obtain such
data. For instance:
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What is the shape of an observed elliptical galaxy,
axisymmetric (oblate or prolate) or triaxial?

Can the central part of the velocity dispersion curve be
justified on the basis of the luminous matter distribution alone,
or we need to consider a central black hole and of what mass?

Is the distribution function of the galaxy best fitted by a
two–integral or three–integral model?

How do we understand the observed correlations between the
value of the central mass and the shape - velocity dispersion
of a galaxy? Are there observational traces of central black
hole - driven secular evolution?
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Idealization: a galaxy as a N – particle Hamiltonian
dynamical system

Collisionless approximation (Binney & Tremaine)

Let f (N)(x1, · · · ,xN ,p1, · · · ,pN , t) be the N–particle probability
density or distribution function (DF) on 2N–D phase space Γ, so it
satisfies Liouville theorem:

df (N)

dt
= 0.

Let’s define the 1 – particle DF:

f (1)(x1,p1, t) =

∫
f (N)d3x2 · · · d3xNd3p2 · · · d3pN ,

Assuming that:
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|(xi,pi)|kf (N) → 0 as |(xi,pi)| → ∞ ∀k, ∀i = 1, · · · , N,

f (N) is symmetric in x1, · · · ,xN ;p1, · · · ,pN ,

The 2–particle DF: f (2)(x1,p1,x2,p2, t) =

f (1)(x1,p1, t) f
(1)(x2,p2, t) + g(x1,p1,x2,p2, t),

the 2 – particle correlation function g ≈ 0,

N � 1,

and defining f(x,v, t) ≡ Nf (1)(x1,p1/m, t)

(x,v) ≡ (x1,p1/m)
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we arrive to the so-called collisionless Boltzmann (or Vlasov) eq.

∂f

∂t
+ [f,H] = 0, H(p,x) =

p2

2
+ Φ(x, t), p ≡ v,

being Φ(x, t) a smooth potential generated by the star distribution.
The Liouville theorem in the 6–D phase space, µ.

Thus we need to solve:

∂f

∂t
+∇xf · v −∇xΦ · ∇vf = 0

∇2Φ = 4πGm

∫
f(x,v, t)d3v
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Steady state solutions

Jeans Theorem: The DF of a steady–state galaxy in which
almost all orbits are regular with incommensurable frequencies may
presumed to be a function only of three independent isolating
integrals (Lynden–Bell).

An isolating integral I(x(t),v(t)) = c defines a manifold in µ of
dimension lower than dim(µ). In Jeans Theorem, the three
isolating integrals are, for instance, the three global actions of
H(p,x).

If the Hamiltonian of a collisionless stellar system in steady-state
equilibrium is Arnol’d–Liouville integrable, the distribution function
has a constant value at all the points of an invariant torus of the
system (Efthymiopoulos et al.).
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But galaxies should present a divided phase space.
So the implementation of Jeans theorem in realistic stellar systems
is problematic:

How to incorporate approximate integrals in the arguments of
the distribution function when the system is close to
integrability?;

Resonances and resonance intersections;

One or two integrals do not exist for the chaotic domains,
which co–exist with the regular ones within any energy
surface.

Generalization of D. Merritt to non–integrable potentials:
The phase space density of a stationary stellar system must
be constant within every well-connected region.
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The definition of ”well-connected” is ”...one that cannot be
decomposed into two finite regions such that all trajectories lie on
either one or the other (what the mathematicians call metric
transitivity)” (Merritt). Let us discuss this point later.

Focus our attention first in fully–integrable galactic potentials, like
for instance, the Perfect Ellipsoid, which is represented by a
stratified density function:

ρ(x, y, z) =
ρ0

(1 +m2(x, y, z))2
,

where ρ0 represents the central density and

m2(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
, a ≥ b ≥ c ≥ 0,

is constant on an ellipsoidal shell.
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Following Chandrasekhar, the the Perfect Ellipsoid in ellipsoidal
coordinates (λ, µ, ν) has the Stäckel form:

V (λ, µ, ν) = − 1

4h2λ

G(λ)

(λ+ β)
− 1

4h2µ

G(µ)

(µ+ β)
− 1

4h2ν

G(ν)

(ν + β)
,

where

β = −b2; and h2λ, h
2
µ, h

2
ν

are the metric coefficients of the ellipsoidal coordinates and G(τ) is
given in terms of an elliptical function of the third kind (de Zeeuw).

The Stäckel model has three explicit global analytic integrals,
namely, the integrals I2 and I3 besides the total energy H.
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The integrals can be considered as generalizations of the angular
momentum integrals that exist in axisymmetric and spherical
potentials, but also as generalizations of the energy integrals
always present in separable potentials in Cartesian coordinates.
The integrals I2 and I3 are, in fact, linear combinations of other
integrals J and K:

I2 =
α2H + αJ +K

α− γ
, I3 =

γ2H + γJ +K

γ − α
,

where α = −a2, β = −b2, γ = −c2 and the energy H,J and K are
functions of the ellipsoidal coordinates and conjugate momenta (de
Zeeuw).
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Figure: Structure of action or integral space in a completely integrable
elliptic potential of a galaxy model (perfect ellipsoid) for a given H, in
the plane I2, I3, after de Zeeuw. Main resonance structure of the system,
after J. Pérez et al.
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Typical regular orbital structure of elliptical galaxies
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Near–integrable elliptical potentials

If we add a ”small” (ε� 1), non–integrable smooth perturbation
to the Perfect Ellipsoid, the structure of phase space should look
like:
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A more realistic non–integrable triaxial potential, generated by a
N–body simulation, could be:

Φ(x, y, z) = −f0(r)− fx(r) · (x2 − y2)− fz(r) · (z2 − y2),

where

fs(r) =
Cs[

pks(r) + qkss
]ls/ks , s = 0, x, z,

p2s(r) = r2 + ε2 if s = 0, p2s(r) = r2 + 2 · ε2 if s = x, z,

Cs, ks, qs, ls, ε = 0.01 are constants, fixed by a quadrupolar

interpolation of the N–body simulation.
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Usual planes to display dynamics in general 3D elliptical galactic
potentials (Papaphilippou and Laskar, Schwarzschild):
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MEGNO values for T = 104 and T = 105 for 125 orbits in a
domain σ = 10−7 around the pointed orbit. Tc(E) ∼ 1. (Maffione
et. al.).

In a recent paper it was shown the strong relationship between the
MEGNO and the FLI (Mestre et al.).

clearly this a typical sticky orbit.
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Some Theoretical Considerations

Well–known mechanisms that lead to transition from
regularity to gross chaos (or gross instabilities) are overlap of
resonances (heteroclinic intersections) and Arnol’d
diffusion–like processes (we will discuss this later).

”Classical” Arnol’d diffusion, in our opinion, does not play any
role in galactic dynamics (even in asteroidal dynamics), since
in general ”the perturbation” is not small enough, and even if
it might work, its time–scale is quite large for any real system.
And we do not think that it could describe global instabilities.

Though one could get accurate values of any indicator of the
stability of the motion, they only provide the local rate of
exponential divergence.
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Chaos should be understood as large variation of the
unperturbed integrals (diffusion). Unfortunately, as far as we
know, it does not exist yet any theory that could describe
global diffusion (instability) in phase space.

A given orbit in a chaotic component could have for instance
two positive and large values of the LCN, but this does not
mean that the unperturbed integrals would change too much.

What is actually relevant is the extent of the domain over
which the unperturbed integrals would change and, physically,
the time–scale over which this diffusion may occur.
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For galaxies, time–scales less than the Hubble time
TH ∼ 103Tc, seem to be too short in order to any diffusion
may operate. Perhaps in some cases, overlap of resonances,
whose rate is ∼ some power of the perturbation parameter
could lead to some diffusion.

As far as we know, Arnol’d diffusion, or to be precise, Arnol’d
mechanism, only states that two point of the phase space
separated by a distance of O(1) could be connected. This
result does not imply any global instability and requires
exponentially large times. Thus, we believe that Arnol’d
diffusion does not play any role in galactic dynamics.

Arnol’d diffusion–like processes perhaps also could not operate
in galactic dynamics, as we shall see next.

Let’s consider a rather toy model:
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H(p, q) =
p2

2
+

1

4
(x4 + y4 + z4) + εx2(y + z).

It is easy to write it as H0(I) + εV (I,θ).
Now (I1, I2, I3)→ (hx, hy, hz)→ (e1, e2, e3) where e3– axis is
normal to the energy surface.
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Figure: Main resonances of the systems: computed analytically up to
O(ε2) and numerically by means of the MEGNO (Mestre et al., Simó).
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Figure: Blow-up around the origin in the contour plot displaying the
Y –levels on the energy surface for ε = 5× 10−3 (Simó).
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Figure: Zoom along a thin resonance channel (Simó).
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Figure: Theoretical estimation of fraction of chaotic motion Ar/AT (on
the left) and fraction of chaotic motion (on the right) both vs. ε, in
logarithmic scale (Mestre et al., Simó).
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Figure: Phase space structure of the system for two particular values of ε:
∼ moderate perturbation, ∼ large perturbation (Giordano et al.)
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Figure: Diffusion on the energy surface at moderate–to–high
perturbations after 3× 106Tc for 8 orbits with highest MEGNO values
(except the origin) for: [left] ε = 0.02, and [right] ε = 0.04.
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Figure: Diffusion on the energy surface at moderate–to–high
perturbations after 3× 108Tc of for the same orbits for: [left] ε = 0.02,
and [right] ε = 0.04.
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Some statements in the astrophysical literature

Observations with HST revealed the presence of very high
stellar densities at the centers of early-type galaxies,
suggesting a power law (r−γ) to fit them. The evidence for
large central masses was also reforced from high-resolution
kinematical studies of nuclear stars and gas, which disclosed
the presence of compact dark objects with masses in the rage
of 106.5 − 109.5M�, presumably super–massive black holes.
These observational results have produced a substantial
change in the classic ideas on dynamics in triaxial galaxies.

Results obtained from numerical simulations show that the
addition of a central mass to an integrable triaxial potential
has deep effects on its dynamics, at least for the boxlike orbits
which mainly cover the central region of triaxial galaxies.
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Black holes and central density cusps scatter these particular
orbits during each close passage giving rise to chaos in the
system. The sensitivity of boxlike orbits to deflexions also
drives to a rounder central distribution of mass. This slow
evolution towards axisymmetry suggests that stationary
triaxial configurations could not exist for a central density
cusp.

For such large value of Mbh, the box–orbit phase space is
almost completely stochastic and diffusive processes could
take place in very short timescales.

This result turned out to be substantially attractive because
this critical black hole mass was close to the observed one and
also close to the mass which induced a sudden evolution
towards the axisymmetry in N–body simulations.
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From recent works it has been known that the mass of black
holes in galaxies from the black hole demographic
relationships are 0.1− 0.2% of the ellipsoid mass in which
they are embedded.
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Merritt and Fridman, arrive to similar conclusions analyzing
two triaxial power law models r−γ : the steep (γ = 2) and the
weak (γ = 1) cusp. They find, in agreement with Gerhard and
Binney, and Schwarzschild, that triaxial galaxies with such
huge concentration of mass would evolve towards a central
axisymmetry, as box orbits loose their distinguishability.

For these models, in which a large fraction of phase space is
dominated by a chaotic dynamics, the construction of
self-consistent solutions requires the inclusion of stochastic
orbits besides the regular ones. A system thus built evolves,
mainly close to its center, as stochastic orbits mix through
phase space.

Though it is possible to build this kind of solutions for a weak
cusp model, this is not the case for a strongly concentrated
model. This would imply that triaxility is not consistent with
a high central density.
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Final Remarks

The question on nature’s ability to build stationary
non–axisymetric stellar systems is still open.

Merritt’s generalization of Jeans Theorem rests under a very
strong assumption: in a 3D systems with divided phase space,
a completely connected chaotic component must exist.

It seems that this could happen only when the chaotic
component has a large measure and ”t→∞”, which, from a
physical point of view, it would not be possible in galactic
systems, where the chaotic component has a small measure
and t . TH .
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An important fact to be stated is that when chaos sets up,
the unperturbed global integrals (or actions) have a
discontinuous dependence on phase space variables. Indeed,
close to resonant tori, despite the existence of three local
integrals, the unperturbed orbital structure is not preserved
and the topology of the phase space changes. Moreover, on
the stochastic layer at least one integral does not exist.

Close to strong non–resonant tori, the local integrals are just
corrections of order ε of the unperturbed global integrals. On
the other hand, when the system is close to a elliptic resonant
tori, new local integrals appear: the pendulum Hamiltonian
Hr and linear combinations, K2,K3, of the unperturbed
actions at the resonant point.
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It is not possible to assume that the DF, in the whole regular
component, has the form f(H, I2, I3). This could be true only
for strong non–resonant tori, but since resonances are dense in
phase space, the DF should be locally defined as:
fn(H, I2, I3) + εg(H, I2, I3) in a neighborhood of
non–resonant tori and fr(Hr,K2,K3) in a vicinity of an
elliptical resonant tori.

Nothing could be said about the dependence of f in the
chaotic domain. Since there is no theoretical support to argue
that the whole chaotic region is fully connected. Clearly, a
notorious discontinuous dependence of f on the integrals is
expected.

The introduction of a black hole (”singularity”) at the origin,
changes the approach to the problem · · ·
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Regarding diffusion, how to measure it? It seems natural to
be related with the variance of the integrals.

In which way the existence of barriers and ”accelerators” of
diffusion should be included in the coefficient?

How to know/predict the diffusion routes?

...the global instability properties of near integrable
Hamiltonian systems, thirty years after the pioneering work of
V.I. Arnold, are far from well–understood. It could almost be
said that little progress has been made, and new ideas are
definitely called for. (Lochak 1999).
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