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Perturbation theory for the (1 +n)-BP

1 + n gravitational point masses with mo = 1 (“Sun”) and, for ¢ > 1, m; < 1 (n planets)
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Perturbation theory for the (1 + n)-BP

I. KAM theory

e Construction of the Kolmogorov set

(:= union of Diophantine, Lagrangian tori)
e measure estimates of the Kolmogorov’s set
e non—degenerate normal forms around the tori
e lower—dimensional elliptic tori surrounded by the Lagrangian ones

e stable periodic orbits cumulating on tori (Birkhoff-Lewis)
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II. Long time stability of actions

e exponential stability of the semi-major axes (non-degenerate
actions)

o exponential stability of the eccentricities and mutual inclinations

(secular or degenerate actions)

© Item I: “main” results achieved (1963-2011)
® Item II: partial results (1977 ...... )

A UNIVERSITA RoMA TRE

|
|
nnnl



Brief history and references (Lagrangian tori)

[A63] V.I. Arnold. Small denominators and problems of stability of motion in
classical and celestial mechanics. Russian Math. Surveys, 18(6):85-191, 1963

@ general properly-degenerate KAM; proof for n = 2, planar (well separated regime)
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@ general properly-degenerate KAM; proof for n = 2, planar (well separated regime)

[R95] P. Robutel. Stability of the planetary three-body problem. II. KAM theory

and existence of quasiperiodic motions. Celestial Mech. Dynam. Astronom.,
62(3):219-261, 1995 and 84(3):317, 2002

@& proof for n = 2, spatial + computer—aided extension of the major-semiaxes regime
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[R95] P. Robutel. Stability of the planetary three-body problem. II. KAM theory

and existence of quasiperiodic motions. Celestial Mech. Dynam. Astronom.,
62(3):219-261, 1995 and 84(3):317, 2002
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[F04] J. Féjoz. Démonstration du ‘théoréme d’Arnold’ sur la stabilité du systeme

planétaire (d’aprés Herman). Ergodic Theory Dyn. Syst., 24(5):1521-1582, 2004
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Brief history and references (Lagrangian tori)

[A63] V.I. Arnold. Small denominators and problems of stability of motion in
classical and celestial mechanics. Russian Math. Surveys, 18(6):85-191, 1963
@ general properly-degenerate KAM; proof for n = 2, planar (well separated regime)

[R95] P. Robutel. Stability of the planetary three-body problem. II. KAM theory

and existence of quasiperiodic motions. Celestial Mech. Dynam. Astronom.,
62(3):219-261, 1995 and 84(3):317, 2002

@& proof for n = 2, spatial + computer—aided extension of the major-semiaxes regime

[F04] J. Féjoz. Démonstration du ‘théoréme d’Arnold’ sur la stabilité du systeme

planétaire (d’aprés Herman). Ergodic Theory Dyn. Syst., 24(5):1521-1582, 2004

@ first general proof any n; “first order” KAM (non—planarity of frequency map) +

“Poincaré trick”

[CP11a] L. C. and G. Pinzari. The planetary n-body problem: Symplectic foliation,

reductions and invariant tori. Invent. Math., 1-77, 2011

@ direct, “second order” KAM (full non—degeneracies and Kolmogorov’s normal forms)

A UNIVERSITA RoMA TRE

|
|
nnnl



Brief history and references (elliptic tori)
[F02] J. Féjoz. Quasiperiodic motions in the planar three-body problem. J.
Differential Equations, 183(2):303-341, 2002
@ planar, n = 2;
[BCVO03] L. Biasco, L. C., and E. Valdinoci. Elliptic two-dimensional invariant tori for

the planetary three-body problem. Arch. Rational Mech. Anal., 170:91-135,
2003. and 180: 507-509, 2006.

@& spatial, n = 2;
[IBCVO06] L. Biasco, L. C., and E. Valdinoci. n-dimensional elliptic invariant tori for the

planar (n + 1)-body problem. SIAM Journal on Mathematical Analysis,
37(5):1560-1588, 2006.

@ planar, any n;

[CP11a] L. C. and G. Pinzari. The planetary n-body problem: Symplectic foliation,

reductions and invariant tori. Invent. Math., 1-77, 2011

@& gspatial, any n;
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Brief history and references (exponential stability)

IN77] N. N. NehoroSev. An exponential estimate of the time of stability of
nearly integrable Hamiltonian systems. Uspehi Mat. Nauk,
32(6(198)):5-66, 287, 1977.

@ exponential stability of semi-major axes
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INi96| Stability over exponentially long times in the planetary problem.
Nonlinearity, 9(6):1703-1751, 1996.

@& exponential stability of semi-major axes with improvement on constants
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Brief history and references (exponential stability)

IN77] N. N. NehoroSev. An exponential estimate of the time of stability of
nearly integrable Hamiltonian systems. Uspehi Mat. Nauk,
32(6(198)):5-66, 287, 1977.

@ exponential stability of semi-major axes

INi96| Stability over exponentially long times in the planetary problem.
Nonlinearity, 9(6):1703-1751, 1996.

@& exponential stability of semi-major axes with improvement on constants

[CP11b] L. C. and G. Pinzari. Planetary Birkhoff normal forms. Preprint, 2011

@ aymptotic stability of secular actions (eccentricities and mutual inclinations) in

non—-resonant phase sets
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Degeneracies I

Classical setting (used by Arnold, Nehorosev, Robutel, Niederman, Herman, Féjoz):

Poincaré symplectic variables (regularization of Delaunay action-angle variables

around zero eccentricities and inclinations):
((Aa}\)7 (na 5)7 <p7q)) S MSTL = {O < a; < 5 CLi—l—l} X Tn X Bélna
(AZ- — M/ 6 < 1 ﬁxed) dA A dA + dn A dE + dp A dq

MF+E&)/2=A-Gj=A(1—,/1—€) ~ e (Gj = |j*" ang. mom-!)

(p? +q?)/2 =G;—0; =G;(1—cost;) ~ % L? (@j — vert. comp. j'" ang. mom.)
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Degeneracies I

Classical setting (used by Arnold, Nehorosev, Robutel, Niederman, Herman, Féjoz):

Poincaré symplectic variables (regularization of Delaunay action-angle variables

around zero eccentricities and inclinations):

((AN),(,8),(p,q)) € M :={0<ai <6 ait1} x T" x B",

(Ai = Miyimiai;d < 1fixed ) dAAdA+dnAdE+dpAdg
MF+E&)/2=A-Gj=A(1—,/1—€) ~ e (Gj = |j*" ang. mom-!)

(p? +q?)/2 =G;—0; =G;(1—cost;) ~ % L? (@j — vert. comp. j'" ang. mom.)

H = h(A) +puf(A,m,&Dp,q)| proper degeneracy

[ mo=1, mi=pm; =0 <1
n -
h(A) = hKepler(A) = z_zl 2A3
n 2 | 2 2, 2
(fIn =co(A) + Z Q? anj + Q" w + O(4) (up to rotation)

\ =1
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Arnold’s properly degenerate KAM theory'

The general proper degeneracy problem was overcome by Arnold [A63] with a
general (“second order”) KAM theory for (real-analytic) Hamiltonians of the

yf-k:c?

form h(A) + pf (A, Ay, ) with (f)x = co(A) + 3 Q252 + o(|(y, z)[?)
provided:
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Arnold’s properly degenerate KAM theory'

The general proper degeneracy problem was overcome by Arnold [A63] with a

general (“second order”) KAM theory for (real-analytic) Hamiltonians of the
2 2
yj ‘|‘ij

form h(A) + pf (A, Ay, ) with (f)x = co(A) + 3 Q252 + o(|(y, z)[?)
provided:

(i) A — h'(A) is a diffeo v

(ii) the “secular” frequencies €2; (1st order Birkhoff invariants) are

non—resonant up to order 4 so that (f) — co+Q-r+ %7‘ r-r+o(|r?)

y32+x?
2

Wlth ’I“j =

(iii) the matrix 7 of the second order Birkhoff invariants is non—degenerate

(full torsion)
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Arnold’s properly degenerate KAM theory'

The general proper degeneracy problem was overcome by Arnold [A63] with a
general (“second order”) KAM theory for (real-analytic) Hamiltonians of the

yf-k:c?

form h(A) + pf (A, Ay, ) with (f)x = co(A) + 3 Q252 + o(|(y, z)[?)
provided:

(i) A — h'(A) is a diffeo v

(ii) the “secular” frequencies €2; (1st order Birkhoff invariants) are
non-resonant up to order 4 so that (f) — co+ Q-7+ 37 -7+ o(|r|?)

y32+x?
2

Wlth ’I“j =

(iii) the matrix 7 of the second order Birkhoff invariants is non—degenerate

(full torsion)

= for p small enough, can find positive measure Kolmogorov’s set

(Lagrangian, Diophantine invariant tori with non-degenerate normal form)
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Back to the planetary problem
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Back to the planetary problem

v Planar case is ok (checked by Arnold for n = 2).

But for the general case:

secular degeneracies @ <

y

Q=0
1 vI —
ZQ? +QT =0

\ det7 =0

UNIVERSITA RoMA TRE

(rotational resonance)

(Herman resonance)

([CP11b))
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Back to the planetary problem

v Planar case is ok (checked by Arnold for n = 2).

But for the general case:

y

V=0 (rotational resonance)
secular degeneracies @ < > Q?l 4+ Q}r =0 (Herman resonance)
| det7 =0 ([CP11b])

M. Herman computed det 75 (n = 2) in the asymptotic a; — 0,a2 = 1 and
found 0 and writes

“J’ignore si det 79 est identiquement nulle!”

[H?] M.R. Herman. Torsion du probléme planétaire, edited by J. Fejéz in

2009. Electronic Archives Michel Herman on Yoccoz’ web page

UNIVERSITA RoMA TRE

10

|
|
nnnl



Herman’s strategy [FO04]

@ (1) Use a weaker (“first order”) KAM theory:
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Herman’s strategy [FO04] I

@ (1) Use a weaker (“first order”) KAM theory:
(i) A — h'(A) is a diffeo (as above)

(ii) the frequencies (), are non-resonant up to order 2 =
(f) = cot+ Q-7 +o(r)

(iii) Riissmann condition: the secular frequency map A — (A) is non—planar

i.e. Q(A) is not identically lying in any hyperplane.
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Herman’s strategy [FO04]

@ (1) Use a weaker (“first order”) KAM theory:
(i) A — hA'(A) is a diffeo (as above)

(ii) the frequencies (), are non-resonant up to order 2 =
(f) = cot+ Q-7 +o(r)

(iii) Riissmann condition: the secular frequency map A — (A) is non—planar

i.e. Q(A) is not identically lying in any hyperplane.

= positive measure of Lagrangian, Diophantine invariant tori

(but no non-degenerate normal form)

But because of rotational and Herman resonances, Riissmann’s condition is

violated in the planetary problem.
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@ (2) Use Poincaré’s trick:
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@ (2) Use Poincaré’s trick:

e modify the Hamiltonian

Hs = H + p6Cs |

Cs = Z?:l (Aj _ %(E? +n? +q? —I—p?))
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@ (2) Use Poincaré’s trick:

e modify the Hamiltonian

Hs:=H+pCs,  Cs=3,, (Aj — (& +nj +Q?+P?>)

J:

e check Riissmann nondegeneracy for Hs and apply first order KAM
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@ (2) Use Poincaré’s trick:

e modify the Hamiltonian

Hs:=H+pdCs,  Cy=3", (Aj — L(E 2+ 2 +p§))

e check Riissmann nondegeneracy for Hs and apply first order KAM

e use the fact that if {H, F'} =0 and 7 is an invariant, Lagrangian and
transitive torus for H then it is invariant also for F' to conclude that the
KAM invariant tori for Hs are also invariant tori for H (since

{H,Hs} =0). B
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Recovering the torsion'

@ Use different symplectic “RPS” variables: (A, \,n,&, p, q) defined as follows:
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Recovering the torsion'

@ Use different symplectic “RPS” variables: (A, \,n,&, p, q) defined as follows:

(i) start with Deprit’s symplectic reduction of the nodes (1983): in such

variables, two momenta correspond to |C| and Cs

(ii) pass to their action-angle version (which will play the role of Delaunay

variables) (L, ', W, ¢, ~, )

(Li = piv/M;ai, £i=mean anomaly, I'; = |CV]).

1+1

U, = ‘ C(j)

(for1<i<n-—-1), ¥, :=

Cs (note : ¥,,_; =

)

(Recall: Delaunay actions are (A,I',©) with ©, = Cé“)

UNIVERSITA RoMA TRE
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Recovering the torsion'

@ Use different symplectic “RPS” variables: (A, \,n,&, p, q) defined as follows:

(i) start with Deprit’s symplectic reduction of the nodes (1983): in such

variables, two momenta correspond to |C| and Cs

(ii) pass to their action-angle version (which will play the role of Delaunay
variables) (L,T, U, /4, ~,1) € R3" x T where: (L;,/;) and I'; = G; are Delaunay
(Li = piv/M;ai, £i=mean anomaly, I'; = |CV]).

1+1

U, = ‘ C(j)

(Recall: Delaunay actions are (A,I',©) with ©, = Cé“)

(for1<i<n-1), ¥,:=0Cs (note : ¥,,_1 = |C)

(iii) regularize around co-circular and co-planar motions
— (M 1,6,p,9) € M = {0 < a; <8 aiy1} x T" x BE"

|
|
nnnl

UNIVERSITA RoMA TRE



n=/2(|C
@ Key point is that P \/ (¢

— (C'3) cos

- —/2(0T-

1, = total angular momentum node

Cs) sin Yy,

with
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pn = /2(|C| — C3) cospn,
¢n = —/2(|C] — C3) sin 1y,

1, = total angular momentum node

@ Key point is that

with

= p, and g, are both integrals hence both cyclic!
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pn = /2(|C| — C3) cospn,
¢n = —/2(|C] — C3) sin 1y,

1, = total angular momentum node

with

@ Key point is that

= p, and g, are both integrals hence both cyclic!

= the phase space M°" is foliated by symplectic invariant manifolds MSZ});?% with
symplectic variables (A, A\, n,&,0,q), P = (P1, s Pn-1), ¢ = (q1,---, Gn—1)

UNIVERSITA RoMA TRE
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Relation between RPS and Poincaré variables:

¢: (AN 2)— (ANz) ., z:=0¢&pq, z=ME&Dpq)
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Relation between RPS and Poincaré variables:

¢: (AN 2)— (ANz) ., z:=0¢&pq, z=ME&Dpq)

e (A, N\, 1,£,0,0) = (A, \,n, &,0,0)= planar Poincaré variables

e more in general ¢ has the form

A=)+ p(A,z2), z=Z(A,z) with
e o(A,0)=0
e z— Z(A,z)is 1:1, symplectic and 3 U = U(A) € SO(n):
mZ =1+ 0(|z%) mpZ = Up + O(|z]°)
7 Z =4 O0(|z%) mqZ = Uq+ O(|z]%)
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Theorem: on M°%" 2

€;Pndn

the torsion does not vanish (for an open dense set of a;’s).
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Theorem: on MS" 2  the torsion does not vanish (for an open dense set of a;’s).

€;Pndn

Proof H o Qb = h(A) + Mf(Aa )\777757]57 q_) )

(77757]37 q> —: zZ € B?”—QQR@@—Q

and, fsec := (f)x can be put in Birkhoff normal form up to order 4:

_ i 1
ffec =co(A)+Q-r+ 57" r.-r-+ O(|r\3)

re R (r; =|z*/2) and

det 7T #0

in the well spaced regime (a; < as < -+ < an) and hence (analytic continuation) in

an open dense subset of {0 < a; < d ajy1}. B
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Theorem: on MS" 2  the torsion does not vanish (for an open dense set of a;’s).

€;Pndn

Proof Ho ¢ = h(A) + puf(AAn,60,4) , (1,&p,q) = z€ B *CR™?

and, fsec := (f)x can be put in Birkhoff normal form up to order 4:

foce = co(A) + Q-7+ %7_‘ ror+O(r’)| reR (r; =|%]?/2) and |det T # 0

in the well spaced regime (a; < as < -+ < an) and hence (analytic continuation) in

an open dense subset of {0 < a; < d ajy1}. B

e Comparing with Poincaré variables on M%": by uniqueness,

T 0
Q= (Qpl, (QFF, ..., ‘,;r_l)) , T = hence det 7 = 0 as claimed above.
0 O
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Theorem: on MS" 2  the torsion does not vanish (for an open dense set of a;’s).

€;Pndn

Proof Ho ¢ = h(A) + puf(AAn,60,4) , (1,&p,q) = z€ B *CR™?

and, fsec := (f)x can be put in Birkhoff normal form up to order 4:

foce = co(A) + Q-7+ %7_‘ ror+O(r’)| reR (r; =|%]?/2) and |det T # 0

in the well spaced regime (a; < as < -+ < an) and hence (analytic continuation) in

an open dense subset of {0 < a; < d ajy1}. B

e Comparing with Poincaré variables on M%": by uniqueness,

7T 0
Q= (Qpl, (QFF, ..., ‘,;r_l)) , T = hence det 7 = 0 as claimed above.
0 O

e G = |C] is still an integral and in the RPS variables G is symply > A; — 2> r;
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Theorem: on MS" 2  the torsion does not vanish (for an open dense set of a;’s).

€;Pndn

Proof Ho ¢ = h(A) + puf(AAn,60,4) , (1,&p,q) = z€ B *CR™?

and, fsec := (f)x can be put in Birkhoff normal form up to order 4:

foce = co(A) + Q-7+ %7_‘ ror+O(r’)| reR (r; =|%]?/2) and |det T # 0

in the well spaced regime (a; < as < -+ < an) and hence (analytic continuation) in

an open dense subset of {0 < a; < d ajy1}. B

e Comparing with Poincaré variables on M%": by uniqueness,

7T 0
Q= (Qpl, (QFF, ..., ‘,;r_l)) , T = hence det 7 = 0 as claimed above.
0 O

e G = |C] is still an integral and in the RPS variables G is symply > A; — 2> r;

e Herman resonance is the only exact resonance and { fsee, G} =0 =
to construct the Birkhoff normal form is enough €2 -k # 0 , V integer k such that
> k; # 0. Thus the planetary BNF exists at any order (and in Poincaré variables is

degenerate at any order).
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Corollaries '
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Corollaries '

(1) For p < € <€), the Kolmogorov’s set KC M2 satisfies
meas K > (1 — /€) meas M2 ~ 2(2n—1)
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Corollaries '

(1) For p < € <€), the Kolmogorov’s set KC M2 satisfies

meas K > (1 — y/€) meas M2~ 2(2n—1)

€;Pn,4n

(2) The tori 7 € K are Kolmogorov’s tori i.e. 3 a symplectic map

v: B3l x T3 MO=2 guch that | Hov=FE+w-y+Q

€,Pn,qn
e @=0(lyl*)
o 1T = V(O,TSn_l)

O(1) for1<j<n

e w Diophantine , with: w; =
O(p) form+1<j<2n-1

° det(ny(O, ')>T3n—1 7& 0
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(3) By Conley-Zehnder’s [1983] argument (based on non degenerate
Kolmogorov’s NF as in (2) + Birkhoff-Lewis):

meas (cls{periodic orbits in MS;?);,Q% }) > meas C > const €2(2n—1)
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18

(3) By Conley-Zehnder’s [1983] argument (based on non degenerate
Kolmogorov’s NF as in (2) + Birkhoff-Lewis):

meas (cls{periodic orbits in MS;TTL);;QQW, }) > meas C > const €2(2n—1)

(4) K surrounds a family of positive n—dimensional measure of elliptic

invariant tori bifurcating from z = 0.

(For this result is not needed non-vanishing torsion; enough Melnikov’s
condition on Q: Q -k # 0 for 0 < k| < 2)

p e // o \ \ ///, - / N \\ \\\
/ / . T \\ - \\\
J // / \\ [/ ‘/. {\
x [ { L & x - [ / ) gy x
e T
\ \ / // / \\\ YN
\ L / \\ / /
- /’//

|
|
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II. Long time action stability'

UNIVERSITA RoMA TRE

19

|
|
nnnl



II. Long time action stability'

Theorem (Nehorosev 1977) 4 C,a,b,a, e, >0 : for any 0 < p < € < €9
any motion starting in M%" (with a; < a2 < --- < a,) satisfies

a;(t) — a;(0)] < Cie?
2(t)] < e

V|t < O%Lexp(cia).
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Theorem (Nehorosev 1977) 4 C,a,b,a, e, >0 : for any 0 < p < € < €9
any motion starting in M%" (with a; < a2 < --- < a,) satisfies

a;(t) — a;(0)] < Cie?
2(t)] < e

V|t < & exp(c1 )

Proof based on Nehorosev’s celebrated general result on exponential stability

of nearly—integrable, convex (steep) Hamiltonians, regarding the Z’s as

dummy variables and using the conservation of C5 = ) A; — ‘5- to confine

the secular variables. W
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II. Long time action stability'

Theorem (Nehorosev 1977) 4 C,a,b,a, e, >0 : for any 0 < p < € < €9
any motion starting in M%" (with a; < a2 < --- < a,) satisfies

a;(t) — a;(0)] < Cie?
2(t)] < e

V|t < & exp(c1 )

Proof based on Nehorosev’s celebrated general result on exponential stability
of nearly—integrable, convex (steep) Hamiltonians, regarding the Z’s as
dummy variables and using the conservation of C5 = ) A; — ‘5- to confine

the secular variables. W

Niederman 1996 improves significantly the constants using Lochack’s
approach through approximation by periodic motions and Dirichlet

simultaneous Diophantine approximation.
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L4 ) ) y 2
é Behaviour of the secular actions = |232| ?

Secular variation of r; are related to changes in eccentricities and inclinations

on the ecliptic — basic question:

Outside K X {(pn,qn)}, do the |z;|’s move around BZ" or do they stay
close to their initial values |z;(0)| (say ||z;(¢)| — |z;(0)|| < o(e)) for times
of the order CLM exp (i) (“exponential stability”) or at least for times

of order u—i’f for arbitrary k (“asymptotic stability”)?
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Asymptotic stability in non-resonant zones'
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Asymptotic stability in non-resonant zones'

Theorem ([CP11b]) Fix k > 1. For p and € small enough, there exists a
neighborhood N of KC such that any motion starting in N satisfies

A;() = A0 <€, ry(t) —5(0)] = o(€”)

1
fOl“ ‘t‘ < —
JE
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Asymptotic stability in non-resonant zones'

Theorem ([CP11b]) Fix k > 1. For p and € small enough, there exists a
neighborhood N of KC such that any motion starting in N satisfies

A;() = A0 <€, ry(t) —5(0)] = o(€”)

1
fOl“ ‘t‘ < —
JE

Proof Use: existence of BNF up to any order and “properly—degenerate
averaging theory” (analytic part of Nehorosev’s theorem in the

properly—degenerate setting) . B
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A closer look to 2. :=co(A)+Q-r+ %f r-r 4+ O(|r|*)
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A closer look to 2. :=co(A)+Q-r+ %f r-r 4+ O(|r|*)

Asymptotically and up to a unitary matrix:
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Asymptotically and up to a unitary matrix:

[ (viT 0 0
| 0 —VIT 0
4 A2
0 0 S
F o~
e
0

\

with ¢; > 0
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A closer look to 2. :=co(A)+Q-r+ %% r-r 4+ O(|r|*)
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A closer look to 2. :=co(A)+Q-r+ %% r-r 4+ O(|r|*)

Asymptotically and up to a unitary matrix:

[ (viT 0 0 \
C2 0 —/ 17 0
4 A2
0 0 ﬁA_%
=~y
__Mn 0
Cn mnp—1
0 5mn—1 an—1
with ¢; > 0

@ In particular, the integrable truncation co(A) + Q- r + 57" T -7 1S non—convex.
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A list of problems/ questions'
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A list of problems/ questions'

Stability:

e Prove steepness for a suitable BNF of ficc

e Prove exponential stability for secular actions in B2" but still for A—non

resonant regions

e Study stability of secular actions in resonant A—regions

Intability:

e Find lower dimensional hyperbolic tori (or at least hyperbolic trajectories) in
ME"\ (K X {(pn,qn)}) “co-existing” with the elliptic ones

e Do there exist “fast drift planes” in the secular actions?

e and, of course , Arnold’s diffusion...
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