Full torsion in the planetary N-body problem

Luigi Chierchia

Università Roma Tre

1 + n gravitational point masses with $m_0 = 1$ ("Sun") and, for $i \ge 1$, $m_i \ll 1$ (n planets)

I. KAM theory

• Construction of the Kolmogorov set (:= union of Diophantine, Lagrangian tori)

- Construction of the Kolmogorov set (:= union of Diophantine, Lagrangian tori)
- measure estimates of the Kolmogorov's set

- Construction of the Kolmogorov set (:= union of Diophantine, Lagrangian tori)
- measure estimates of the Kolmogorov's set
- non-degenerate normal forms around the tori

- Construction of the Kolmogorov set (:= union of Diophantine, Lagrangian tori)
- measure estimates of the Kolmogorov's set
- non-degenerate normal forms around the tori
- lower-dimensional elliptic tori surrounded by the Lagrangian ones

- Construction of the Kolmogorov set (:= union of Diophantine, Lagrangian tori)
- measure estimates of the Kolmogorov's set
- non-degenerate normal forms around the tori
- lower-dimensional elliptic tori surrounded by the Lagrangian ones
- stable periodic orbits cumulating on tori (Birkhoff-Lewis)

- Construction of the Kolmogorov set (:= union of Diophantine, Lagrangian tori)
- measure estimates of the Kolmogorov's set
- non-degenerate normal forms around the tori
- lower-dimensional elliptic tori surrounded by the Lagrangian ones
- stable periodic orbits cumulating on tori (Birkhoff-Lewis)

• exponential stability of the semi-major axes (non-degenerate actions)

- exponential stability of the semi-major axes (non-degenerate actions)
- exponential stability of the eccentricities and mutual inclinations (secular or degenerate actions)

- exponential stability of the semi-major axes (non-degenerate actions)
- exponential stability of the eccentricities and mutual inclinations (secular or degenerate actions)

 \odot Item **I**: "main" results achieved (1963-2011)

- exponential stability of the semi-major axes (non-degenerate actions)
- exponential stability of the eccentricities and mutual inclinations (secular or degenerate actions)

- \odot Item **I**: "main" results achieved (1963-2011)
- © Item II: partial results (1977)

- [A63] V.I. Arnold. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys, 18(6):85–191, 1963
 - general properly-degenerate KAM; proof for n = 2, planar (well separated regime)

- [A63] V.I. Arnold. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys, 18(6):85–191, 1963
 - \blacksquare general properly-degenerate KAM; proof for n=2, planar (well separated regime)
- [R95] P. Robutel. Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions. Celestial Mech. Dynam. Astronom., 62(3):219–261, 1995 and 84(3):317, 2002
 - proof for n=2, spatial + computer-aided extension of the major-semiaxes regime

- [A63] V.I. Arnold. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys, 18(6):85–191, 1963
 - general properly-degenerate KAM; proof for n = 2, planar (well separated regime)
- [R95] P. Robutel. Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions. Celestial Mech. Dynam. Astronom., 62(3):219–261, 1995 and 84(3):317, 2002
 - proof for n = 2, spatial + computer-aided extension of the major-semiaxes regime
- [F04] J. Féjoz. Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman). Ergodic Theory Dyn. Syst., 24(5):1521–1582, 2004
 - first general proof any n; "first order" KAM (non-planarity of frequency map) + "Poincaré trick"

- [A63] V.I. Arnold. Small denominators and problems of stability of motion in classical and celestial mechanics. Russian Math. Surveys, 18(6):85–191, 1963
 - general properly-degenerate KAM; proof for n = 2, planar (well separated regime)
- [R95] P. Robutel. Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions. Celestial Mech. Dynam. Astronom., 62(3):219–261, 1995 and 84(3):317, 2002
 - proof for n = 2, spatial + computer-aided extension of the major-semiaxes regime
- [F04] J. Féjoz. Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman). Ergodic Theory Dyn. Syst., 24(5):1521–1582, 2004
 - first general proof any n; "first order" KAM (non-planarity of frequency map) + "Poincaré trick"
- [CP11a] L. C. and G. Pinzari. The planetary n-body problem: Symplectic foliation, reductions and invariant tori. Invent. Math., 1–77, 2011
 - direct, "second order" KAM (full non-degeneracies and Kolmogorov's normal forms)

Brief history and references (elliptic tori)

- [F02] J. Féjoz. Quasiperiodic motions in the planar three-body problem. J. Differential Equations, 183(2):303–341, 2002
- [BCV03] L. Biasco, L. C., and E. Valdinoci. Elliptic two-dimensional invariant tori for the planetary three-body problem. Arch. Rational Mech. Anal., 170:91–135, 2003. and 180: 507–509, 2006.
 - spatial, n=2;
- [BCV06] L. Biasco, L. C., and E. Valdinoci. n-dimensional elliptic invariant tori for the planar (n + 1)-body problem. SIAM Journal on Mathematical Analysis, $37(5):1560-1588,\ 2006.$
 - lacktriangle planar, any n;
- [CP11a] L. C. and G. Pinzari. The planetary n-body problem: Symplectic foliation, reductions and invariant tori. Invent. Math., 1–77, 2011
 - ightharpoonup spatial, any n;

Brief history and references (exponential stability)

- [N77] N. N. Nehorošev. An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Uspehi Mat. Nauk, 32(6(198)):5-66, 287, 1977.
 - exponential stability of semi-major axes

Brief history and references (exponential stability)

- [N77] N. N. Nehorošev. An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Uspehi Mat. Nauk, 32(6(198)):5-66, 287, 1977.
 - exponential stability of semi-major axes
- [Ni96] Stability over exponentially long times in the planetary problem. Nonlinearity, 9(6):1703–1751, 1996.
 - exponential stability of semi-major axes with improvement on constants

Brief history and references (exponential stability)

- [N77] N. N. Nehorošev. An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Uspehi Mat. Nauk, 32(6(198)):5-66, 287, 1977.
 - exponential stability of semi-major axes
- [Ni96] Stability over exponentially long times in the planetary problem. Nonlinearity, 9(6):1703–1751, 1996.
 - representation exponential stability of semi-major axes with improvement on constants
- [CP11b] L. C. and G. Pinzari. Planetary Birkhoff normal forms. Preprint, 2011
 - aymptotic stability of secular actions (eccentricities and mutual inclinations) in non-resonant phase sets

Degeneracies

Degeneracies

Classical setting (used by Arnold, Nehorošev, Robutel, Niederman, Herman, Féjoz):

<u>Poincaré symplectic variables</u> (regularization of Delaunay action-angle variables around zero eccentricities and inclinations):

$$((\Lambda, \lambda), (\eta, \xi), (p, q)) \in \mathcal{M}_{\epsilon}^{6n} := \{0 < a_i < \delta \ a_{i+1}\} \times \mathbb{T}^n \times B_{\epsilon}^{4n},$$

$$(\Lambda_i = M_i \sqrt{\overline{m}_i a_i}; \delta < 1 \text{ fixed }) \qquad d\Lambda \wedge d\lambda + d\eta \wedge d\xi + dp \wedge dq$$

$$(\eta_j^2 + \xi_j^2)/2 = \Lambda_j - G_j = \Lambda_j (1 - \sqrt{1 - e_j^2}) \simeq \frac{\Lambda_j}{2} e_j^2 \qquad \left(G_j = |j^{\text{th}} \text{ ang. mom.}|\right)$$

$$(p_j^2 + q_j^2)/2 = G_j - \Theta_j = G_j (1 - \cos \iota_j) \simeq \frac{G_j}{2} \iota_j^2 \qquad \left(\Theta_j = \text{vert. comp. } j^{\text{th}} \text{ ang. mom.}\right)$$

Degeneracies

Classical setting (used by Arnold, Nehorošev, Robutel, Niederman, Herman, Féjoz): Poincaré symplectic variables (regularization of Delaunay action-angle variables around zero eccentricities and inclinations):

$$((\Lambda, \lambda), (\eta, \xi), (p, q)) \in \mathcal{M}_{\epsilon}^{6n} := \{0 < a_i < \delta \ a_{i+1}\} \times \mathbb{T}^n \times B_{\epsilon}^{4n},$$

$$(\Lambda_i = M_i \sqrt{\bar{m}_i a_i}; \delta < 1 \text{ fixed }) \qquad d\Lambda \wedge d\lambda + d\eta \wedge d\xi + dp \wedge dq$$

$$(\eta_j^2 + \xi_j^2)/2 = \Lambda_j - G_j = \Lambda_j (1 - \sqrt{1 - e_j^2}) \simeq \frac{\Lambda_j}{2} e_j^2 \qquad \left(G_j = |j^{\text{th}} \text{ ang. mom.}|\right)$$

$$(p_j^2 + q_j^2)/2 = G_j - \Theta_j = G_j (1 - \cos \iota_j) \simeq \frac{G_j}{2} \iota_j^2 \qquad \left(\Theta_j = \text{vert. comp. } j^{\text{th}} \text{ ang. mom.}\right)$$

$$\mathcal{H} = h(\Lambda) + \mu f(\Lambda, \eta, \xi, p, q)$$
 proper degeneracy

$$\begin{cases} m_0 = 1, & m_i = \mu \bar{m}_i = O(\mu) \ll 1 \\ h(\Lambda) := h_{\text{Kepler}}(\Lambda) := \sum_{i=1}^n \frac{\kappa_i}{2\Lambda_i^2} \\ \langle f \rangle_{\lambda} = c_0(\Lambda) + \sum_{j=1}^n \Omega_j^{\text{pl}} \frac{\xi_j^2 + \eta_j^2}{2} + \Omega_j^{\text{vr}} \frac{q_j^2 + p_j^2}{2} + O(4) \quad \text{(up to rotation)} \end{cases}$$

Arnold's properly degenerate KAM theory

The general proper degeneracy problem was overcome by Arnold [A63] with a general ("second order") KAM theory for (real-analytic) Hamiltonians of the form $h(\Lambda) + \mu f(\Lambda, \lambda, y, x)$ with $\langle f \rangle_{\lambda} = c_0(\Lambda) + \sum \Omega_j \frac{y_j^2 + x_j^2}{2} + o(|(y, x)|^2)$ provided:

Arnold's properly degenerate KAM theory

The general proper degeneracy problem was overcome by Arnold [A63] with a general ("second order") KAM theory for (real-analytic) Hamiltonians of the form $h(\Lambda) + \mu f(\Lambda, \lambda, y, x)$ with $\langle f \rangle_{\lambda} = c_0(\Lambda) + \sum \Omega_j \frac{y_j^2 + x_j^2}{2} + o(|(y, x)|^2)$ provided:

- (i) $\Lambda \to h'(\Lambda)$ is a diffeo \checkmark
- (ii) the "secular" frequencies Ω_j (1st order Birkhoff invariants) are non-resonant up to order 4 so that $\langle f \rangle \to c_0 + \Omega \cdot r + \frac{1}{2}\tau \ r \cdot r + o(|r|^2)$ with $r_j = \frac{y_j^2 + x_j^2}{2}$
- (iii) the matrix τ of the second order Birkhoff invariants is non–degenerate (full torsion)

Arnold's properly degenerate KAM theory

The general proper degeneracy problem was overcome by Arnold [A63] with a general ("second order") KAM theory for (real-analytic) Hamiltonians of the form $h(\Lambda) + \mu f(\Lambda, \lambda, y, x)$ with $\langle f \rangle_{\lambda} = c_0(\Lambda) + \sum \Omega_j \frac{y_j^2 + x_j^2}{2} + o(|(y, x)|^2)$ provided:

- (i) $\Lambda \to h'(\Lambda)$ is a diffeo \checkmark
- (ii) the "secular" frequencies Ω_j (1st order Birkhoff invariants) are non-resonant up to order 4 so that $\langle f \rangle \to c_0 + \Omega \cdot r + \frac{1}{2}\tau \ r \cdot r + o(|r|^2)$ with $r_j = \frac{y_j^2 + x_j^2}{2}$
- (iii) the matrix τ of the second order Birkhoff invariants is non–degenerate (full torsion)
 - \Rightarrow for μ small enough, can find positive measure Kolmogorov's set (Lagrangian, Diophantine invariant tori with non-degenerate normal form)

✓ Planar case is ok (checked by Arnold for n = 2).

 \checkmark Planar case is ok (checked by Arnold for n=2).

But for the general case:

secular degeneracies
$$= \begin{cases} \Omega_n^{\rm vr} \equiv 0 & \text{(rotational resonance)} \\ \sum \Omega_j^{\rm pl} + \Omega_j^{\rm vr} \equiv 0 & \text{(Herman resonance)} \\ \det \tau \equiv 0 & \text{([CP11b])} \end{cases}$$

✓ Planar case is ok (checked by Arnold for n = 2).

But for the general case:

secular degeneracies
$$lacksquare$$
 $\begin{cases} \Omega_n^{\mathrm{vr}} \equiv 0 & \text{(rotational resonance)} \\ \sum \Omega_j^{\mathrm{pl}} + \Omega_j^{\mathrm{vr}} \equiv 0 & \text{(Herman resonance)} \\ \det \tau \equiv 0 & \text{([CP11b])} \end{cases}$

M. Herman computed det τ_2 (n=2) in the asymptotic $a_1 \to 0, a_2 = 1$ and found 0 and writes

"J'ignore si det τ_2 est identiquement nulle!"

[H?] M.R. Herman. Torsion du problème planètaire, edited by J. Fejóz in 2009. Electronic Archives Michel Herman on Yoccoz' web page

Herman's strategy [F04]

☞(1) Use a weaker ("first order") KAM theory:

Herman's strategy [F04]

- **☞**(1) Use a weaker ("first order") KAM theory:
- (i) $\Lambda \to h'(\Lambda)$ is a diffeo (as above)
- (ii) the frequencies Ω_j are non-resonant up to order $2 \Rightarrow \langle f \rangle \rightarrow c_0 + \Omega \cdot r + o(|r|)$
- (iii) Rüssmann condition: the secular frequency map $\Lambda \to \Omega(\Lambda)$ is non-planar i.e. $\Omega(\Lambda)$ is not identically lying in any hyperplane.

Herman's strategy [F04]

- **☞**(1) Use a weaker ("first order") KAM theory:
- (i) $\Lambda \to h'(\Lambda)$ is a diffeo (as above)
- (ii) the frequencies Ω_j are non-resonant up to order $2 \Rightarrow \langle f \rangle \rightarrow c_0 + \Omega \cdot r + o(|r|)$
- (iii) Rüssmann condition: the secular frequency map $\Lambda \to \Omega(\Lambda)$ is non-planar i.e. $\Omega(\Lambda)$ is not identically lying in any hyperplane.
 - ⇒ positive measure of Lagrangian, Diophantine invariant tori (but no non-degenerate normal form)

Herman's strategy [F04]

- **☞**(1) Use a weaker ("first order") KAM theory:
- (i) $\Lambda \to h'(\Lambda)$ is a diffeo (as above)
- (ii) the frequencies Ω_j are non-resonant up to order $2 \Rightarrow \langle f \rangle \rightarrow c_0 + \Omega \cdot r + o(|r|)$
- (iii) Rüssmann condition: the secular frequency map $\Lambda \to \Omega(\Lambda)$ is non-planar i.e. $\Omega(\Lambda)$ is not identically lying in any hyperplane.
 - ⇒ positive measure of Lagrangian, Diophantine invariant tori (but no non-degenerate normal form)

But because of rotational and Herman resonances, Rüssmann's condition is violated in the planetary problem.

☞(2) Use Poincaré's trick:

(2) Use Poincaré's trick:

• modify the Hamiltonian

$$\mathcal{H}_{\delta} := \mathcal{H} + \mu \delta C_3$$
, $C_3 = \sum_{j=1}^n \left(\Lambda_j - \frac{1}{2} (\xi_j^2 + \eta_j^2 + q_j^2 + p_j^2) \right)$

☞(2) Use Poincaré's trick:

• modify the Hamiltonian

$$\mathcal{H}_{\delta} := \mathcal{H} + \mu \delta C_3$$
, $C_3 = \sum_{j=1}^n \left(\Lambda_j - \frac{1}{2} (\xi_j^2 + \eta_j^2 + q_j^2 + p_j^2) \right)$

• check Rüssmann nondegeneracy for \mathcal{H}_{δ} and apply first order KAM

☞(2) Use Poincaré's trick:

• modify the Hamiltonian

$$\mathcal{H}_{\delta} := \mathcal{H} + \mu \delta C_3$$
, $C_3 = \sum_{j=1}^n \left(\Lambda_j - \frac{1}{2} (\xi_j^2 + \eta_j^2 + q_j^2 + p_j^2) \right)$

- check Rüssmann nondegeneracy for \mathcal{H}_{δ} and apply first order KAM
- use the fact that if $\{H, F\} = 0$ and \mathcal{T} is an invariant, Lagrangian and transitive torus for H then it is invariant also for F to conclude that the KAM invariant tori for \mathcal{H}_{δ} are also invariant tori for \mathcal{H} (since $\{\mathcal{H}, \mathcal{H}_{\delta}\} = 0$).

• Use different symplectic "RPS" variables: $(\Lambda, \lambda, \eta, \xi, p, q)$ defined as follows:

- Use different symplectic "RPS" variables: $(\Lambda, \lambda, \eta, \xi, p, q)$ defined as follows:
- (i) start with Deprit's symplectic reduction of the nodes (1983): in such variables, two momenta correspond to |C| and C_3

- Use different symplectic "RPS" variables: $(\Lambda, \lambda, \eta, \xi, p, q)$ defined as follows:
- (i) start with Deprit's symplectic reduction of the nodes (1983): in such variables, two momenta correspond to |C| and C_3
- (ii) pass to their action-angle version (which will play the rôle of Delaunay variables) $(L, \Gamma, \Psi, \ell, \gamma, \psi) \in \mathbb{R}^{3n}_+ \times \mathbb{T}^{3n}$ where: (L_i, ℓ_i) and $\Gamma_i = G_i$ are Delaunay $(L_i = \mu_i \sqrt{M_i a_i}, \ell_i = \text{mean anomaly}, \Gamma_i = |C^{(i)}|)$.

$$\Psi_i = \left| \sum_{j=1}^{i+1} C^{(j)} \right| \quad \text{(for } 1 \le i \le n-1) , \quad \Psi_n := C_3 \qquad \quad \text{(note : } \Psi_{n-1} = |C|)$$

(Recall: Delaunay actions are $(\Lambda, \Gamma, \Theta)$ with $\Theta_i = C_3^{(i)}$)

- Use different symplectic "RPS" variables: $(\Lambda, \lambda, \eta, \xi, p, q)$ defined as follows:
- (i) start with Deprit's symplectic reduction of the nodes (1983): in such variables, two momenta correspond to |C| and C_3
- (ii) pass to their action-angle version (which will play the rôle of Delaunay variables) $(L, \Gamma, \Psi, \ell, \gamma, \psi) \in \mathbb{R}^{3n}_+ \times \mathbb{T}^{3n}$ where: (L_i, ℓ_i) and $\Gamma_i = G_i$ are Delaunay $(L_i = \mu_i \sqrt{M_i a_i}, \ell_i = \text{mean anomaly}, \Gamma_i = |C^{(i)}|)$.

$$\Psi_i = \left| \sum_{j=1}^{i+1} C^{(j)} \right| \quad \text{(for } 1 \le i \le n-1) , \quad \Psi_n := C_3 \qquad \quad \text{(note : } \Psi_{n-1} = |C|)$$

(Recall: Delaunay actions are $(\Lambda, \Gamma, \Theta)$ with $\Theta_i = C_3^{(i)}$)

(iii) regularize around co-circular and co-planar motions $\longrightarrow (\Lambda, \lambda, \eta, \xi, p, q) \in \mathcal{M}_{\epsilon}^{6n} := \{0 < a_i < \delta \ a_{i+1}\} \times \mathbb{T}^n \times B_{\epsilon}^{4n}$

Key point is that $\begin{cases} p_n = \sqrt{2(|C| - C_3)} \cos \psi_n \\ q_n = -\sqrt{2(|C| - C_3)} \sin \psi_n \end{cases}$ with

 $\psi_n = \text{total angular momentum node}$

Key point is that
$$\begin{cases} p_n = \sqrt{2(|C| - C_3)} \cos \psi_n \\ q_n = -\sqrt{2(|C| - C_3)} \sin \psi_n \end{cases}$$
 with

 $\psi_n = \text{total angular momentum node}$

 $\Rightarrow p_n$ and q_n are both integrals hence both cyclic!

Key point is that $\begin{cases} p_n = \sqrt{2(|C| - C_3)} \cos \psi_n \\ q_n = -\sqrt{2(|C| - C_3)} \sin \psi_n \end{cases}$ with

 $\psi_n = \text{total angular momentum node}$

- $\Rightarrow p_n$ and q_n are both integrals hence both cyclic!
- $\Rightarrow \underline{\text{the phase space } \mathcal{M}_{\epsilon}^{6n} \text{ is foliated by symplectic invariant manifolds } \mathcal{M}_{\epsilon;p_{n},q_{n}}^{6n-2} \text{ with symplectic variables } (\Lambda, \lambda, \eta, \xi, \bar{p}, \bar{q}), \ \bar{p} = (p_{1}, ..., p_{n-1}), \ \bar{q} = (q_{1}, ..., q_{n-1})}$

$$\phi: (\Lambda, \lambda, z) \to (\Lambda, \lambda, z)$$
, $z := (\eta, \xi, p, q)$, $z = (\eta, \xi, p, q)$

$$\phi: (\Lambda, \lambda, z) \to (\Lambda, \lambda, z)$$
, $z := (\eta, \xi, p, q)$, $z = (\eta, \xi, p, q)$

• $\phi(\Lambda, \lambda, \eta, \xi, 0, 0) = (\Lambda, \lambda, \eta, \xi, 0, 0) = \text{planar Poincar\'e variables}$

$$\phi: (\Lambda, \lambda, z) \to (\Lambda, \lambda, z)$$
, $z := (\eta, \xi, p, q)$, $z = (\eta, \xi, p, q)$

• $\phi(\Lambda, \lambda, \eta, \xi, 0, 0) = (\Lambda, \lambda, \eta, \xi, 0, 0) = \text{planar Poincar\'e variables}$

• more in general ϕ has the form

$$\phi: (\Lambda, \lambda, z) \to (\Lambda, \lambda, z)$$
, $z := (\eta, \xi, p, q)$, $z = (\eta, \xi, p, q)$

• $\phi(\Lambda, \lambda, \eta, \xi, 0, 0) = (\Lambda, \lambda, \eta, \xi, 0, 0) = \text{planar Poincar\'e variables}$

• more in general ϕ has the form

$$\lambda = \lambda + \varphi(\Lambda, z)$$
, $z = Z(\Lambda, z)$ with

- $\varphi(\Lambda,0)=0$
- $z \to Z(\Lambda, z)$ is 1:1, symplectic and $\exists U = U(\Lambda) \in SO(n)$:

$$\begin{cases} \pi_{\eta} Z = \eta + O(|z|^3) \\ \pi_{\xi} Z = \xi + O(|z|^3) \end{cases} \begin{cases} \pi_{p} Z = Up + O(|z|^3) \\ \pi_{q} Z = Uq + O(|z|^3) \end{cases}$$

Proof $\mathcal{H} \circ \phi = h(\Lambda) + \mu \bar{f}(\Lambda, \lambda, \eta, \xi, \bar{p}, \bar{q}) , \quad (\eta, \xi, \bar{p}, \bar{q}) =: \bar{z} \in \bar{B}^{4n-2}_{\epsilon} \subseteq \mathbb{R}^{4n-2}$

and, $\bar{f}_{sec} := \langle \bar{f} \rangle_{\lambda}$ can be put in Birkhoff normal form up to order 4:

$$\bar{f}_{\text{sec}}^4 = c_0(\Lambda) + \bar{\Omega} \cdot r + \frac{1}{2}\bar{\tau} \ r \cdot r + O(|r|^3)$$
 $r \in \mathbb{R}^{2n-1}_+ \ (r_j = |\bar{z}_j|^2/2) \text{ and } \det \bar{\tau} \neq 0$

in the well spaced regime $(a_1 \ll a_2 \ll \cdots \ll a_n)$ and hence (analytic continuation) in an open dense subset of $\{0 < a_i < \delta \ a_{i+1}\}$.

Proof $\mathcal{H} \circ \phi = h(\Lambda) + \mu \bar{f}(\Lambda, \lambda, \eta, \xi, \bar{p}, \bar{q}) , \quad (\eta, \xi, \bar{p}, \bar{q}) =: \bar{z} \in \bar{B}^{4n-2}_{\epsilon} \subseteq \mathbb{R}^{4n-2}$

and, $\bar{f}_{sec} := \langle \bar{f} \rangle_{\lambda}$ can be put in Birkhoff normal form up to order 4:

$$\bar{f}_{\text{sec}}^4 = c_0(\Lambda) + \bar{\Omega} \cdot r + \frac{1}{2}\bar{\tau} \ r \cdot r + O(|r|^3)$$
 $r \in \mathbb{R}^{2n-1}_+ \ (r_j = |\bar{z}_j|^2/2) \text{ and } \det \bar{\tau} \neq 0$

in the well spaced regime $(a_1 \ll a_2 \ll \cdots \ll a_n)$ and hence (analytic continuation) in an open dense subset of $\{0 < a_i < \delta \ a_{i+1}\}$.

• Comparing with Poincaré variables on $\mathcal{M}_{\epsilon}^{6n}$: by uniqueness,

$$\bar{\Omega} = \left(\Omega^{\mathrm{pl}}, (\Omega_1^{\mathrm{vr}}, ..., \Omega_{n-1}^{\mathrm{vr}})\right), \ \tau = \begin{pmatrix} \bar{\tau} & 0 \\ 0 & 0 \end{pmatrix}$$
 hence $\det \tau = 0$ as claimed above.

Proof $\mathcal{H} \circ \phi = h(\Lambda) + \mu \bar{f}(\Lambda, \lambda, \eta, \xi, \bar{p}, \bar{q}) , \quad (\eta, \xi, \bar{p}, \bar{q}) =: \bar{z} \in \bar{B}^{4n-2}_{\epsilon} \subseteq \mathbb{R}^{4n-2}$

and, $\bar{f}_{sec} := \langle \bar{f} \rangle_{\lambda}$ can be put in Birkhoff normal form up to order 4:

$$\bar{f}_{\text{sec}}^4 = c_0(\Lambda) + \bar{\Omega} \cdot r + \frac{1}{2}\bar{\tau} \ r \cdot r + O(|r|^3)$$
 $r \in \mathbb{R}^{2n-1}_+ \ (r_j = |\bar{z}_j|^2/2) \text{ and } \det \bar{\tau} \neq 0$

in the well spaced regime $(a_1 \ll a_2 \ll \cdots \ll a_n)$ and hence (analytic continuation) in an open dense subset of $\{0 < a_i < \delta \ a_{i+1}\}$.

• Comparing with Poincaré variables on $\mathcal{M}_{\epsilon}^{6n}$: by uniqueness,

$$\bar{\Omega} = \left(\Omega^{\mathrm{pl}}, (\Omega_1^{\mathrm{vr}}, ..., \Omega_{n-1}^{\mathrm{vr}})\right), \ \tau = \begin{pmatrix} \bar{\tau} & 0 \\ 0 & 0 \end{pmatrix}$$
 hence $\det \tau = 0$ as claimed above.

• G = |C| is still an integral and in the RPS variables G is symply $\sum \Lambda_i - 2 \sum r_j$

Proof $\mathcal{H} \circ \phi = h(\Lambda) + \mu \bar{f}(\Lambda, \lambda, \eta, \xi, \bar{p}, \bar{q}) , \quad (\eta, \xi, \bar{p}, \bar{q}) =: \bar{z} \in \bar{B}^{4n-2}_{\epsilon} \subseteq \mathbb{R}^{4n-2}$

and, $\bar{f}_{\text{sec}} := \langle \bar{f} \rangle_{\lambda}$ can be put in Birkhoff normal form up to order 4:

$$\bar{f}_{\text{sec}}^4 = c_0(\Lambda) + \bar{\Omega} \cdot r + \frac{1}{2}\bar{\tau} \ r \cdot r + O(|r|^3)$$
 $r \in \mathbb{R}^{2n-1}_+ \ (r_j = |\bar{z}_j|^2/2) \text{ and } \det \bar{\tau} \neq 0$

in the well spaced regime $(a_1 \ll a_2 \ll \cdots \ll a_n)$ and hence (analytic continuation) in an open dense subset of $\{0 < a_i < \delta \ a_{i+1}\}$.

• Comparing with Poincaré variables on $\mathcal{M}_{\epsilon}^{6n}$: by uniqueness,

$$\bar{\Omega} = \left(\Omega^{\mathrm{pl}}, (\Omega_1^{\mathrm{vr}}, ..., \Omega_{n-1}^{\mathrm{vr}})\right), \ \tau = \begin{pmatrix} \bar{\tau} & 0 \\ 0 & 0 \end{pmatrix}$$
 hence $\det \tau = 0$ as claimed above.

- G = |C| is still an integral and in the RPS variables G is symply $\sum \Lambda_i 2 \sum r_j$
- Herman resonance is the only exact resonance and $\{\bar{f}_{sec}, G\} = 0 \Rightarrow$ to construct the Birkhoff normal form is enough $\Omega \cdot k \neq 0$, \forall integer k such that $\sum k_j \neq 0$. Thus the planetary BNF exists at any order (and in Poincaré variables is degenerate at any order).

Corollaries

Corollaries

(1) For $\mu < \epsilon^6 < \epsilon_*^6$, the Kolmogorov's set $\mathcal{K} \subseteq \mathcal{M}_{\epsilon;p_n,q_n}^{6n-2}$ satisfies

meas
$$\mathcal{K} > (1 - \sqrt{\epsilon})$$
 meas $\mathcal{M}_{\epsilon;p_n,q_n}^{6n-2} \sim \epsilon^{2(2n-1)}$

Corollaries

(1) For $\mu < \epsilon^6 < \epsilon_*^6$, the Kolmogorov's set $\mathcal{K} \subseteq \mathcal{M}_{\epsilon;p_n,q_n}^{6n-2}$ satisfies

meas
$$\mathcal{K} > (1 - \sqrt{\epsilon}) \operatorname{meas} \mathcal{M}_{\epsilon;p_n,q_n}^{6n-2} \sim \epsilon^{2(2n-1)}$$

(2) The tori $\mathcal{T} \in \mathcal{K}$ are Kolmogorov's tori i.e. \exists a symplectic map

$$\nu: B^{3n-1} \times \mathbb{T}^{3n-1} \to \mathcal{M}^{6n-2}_{\epsilon;p_n,q_n}$$
 such that $\mathcal{H} \circ \nu = E + \omega \cdot y + Q$ with

- $Q = O(|y|^2)$
- $\mathcal{T} = \nu(0, \mathbb{T}^{3n-1})$

•
$$\omega$$
 Diophantine, with: $\omega_j = \begin{cases} O(1) & \text{for } 1 \leq j \leq n \\ O(\mu) & \text{for } n+1 \leq j \leq 2n-1 \end{cases}$

• $\det \langle Q_{yy}(0,\cdot) \rangle_{\mathbb{T}^{3n-1}} \neq 0$

(3) By Conley-Zehnder's [1983] argument (based on non degenerate Kolmogorov's NF as in (2) + Birkhoff-Lewis):

meas $\left(\operatorname{cls}\left\{\operatorname{periodic\ orbits\ in\ }\mathcal{M}_{\epsilon;p_n,q_n}^{6n-2}\right\}\right) \geq \operatorname{meas} \mathcal{K} \geq \operatorname{const} \epsilon^{2(2n-1)}$

(3) By Conley-Zehnder's [1983] argument (based on non degenerate Kolmogorov's NF as in (2) + Birkhoff-Lewis):

meas
$$\left(\operatorname{cls}\left\{\operatorname{periodic\ orbits\ in\ }\mathcal{M}_{\epsilon;p_n,q_n}^{6n-2}\right\}\right) \geq \operatorname{meas} \mathcal{K} \geq \operatorname{const} \epsilon^{2(2n-1)}$$

(4) \mathcal{K} surrounds a family of positive n-dimensional measure of elliptic invariant tori bifurcating from $\bar{z} = 0$.

(For this result is not needed non-vanishing torsion; enough Melnikov's condition on $\bar{\Omega}$: $\bar{\Omega} \cdot k \neq 0$ for $0 < |k| \leq 2$)

Theorem (Nehorošev 1977) $\exists C, a, b, \alpha, \epsilon_* > 0 : \text{for any } 0 < \mu < \epsilon^{\alpha} \leq \epsilon_*^{\alpha}$ any motion starting in $\mathcal{M}_{\epsilon}^{6n}$ (with $a_1 \ll a_2 \ll \cdots \ll a_n$) satisfies

$$\begin{cases} |a_j(t) - a_j(0)| < C\mu^b \\ |z(t)| \le \epsilon \end{cases} \quad \forall |t| < \frac{1}{C\mu} \exp\left(\frac{1}{C\mu^a}\right).$$

Theorem (Nehorošev 1977) $\exists C, a, b, \alpha, \epsilon_* > 0$: for any $0 < \mu < \epsilon^{\alpha} \le \epsilon_*^{\alpha}$ any motion starting in $\mathcal{M}_{\epsilon}^{6n}$ (with $a_1 \ll a_2 \ll \cdots \ll a_n$) satisfies

$$\begin{cases} |a_j(t) - a_j(0)| < C\mu^b \\ |z(t)| \le \epsilon \end{cases} \quad \forall |t| < \frac{1}{C\mu} \exp\left(\frac{1}{C\mu^a}\right).$$

Proof based on Nehorošev's celebrated general result on exponential stability of nearly-integrable, convex (steep) Hamiltonians, regarding the z's as dummy variables and using the conservation of $C_3 = \sum \Lambda_j - \frac{|z|^2}{2}$ to confine the secular variables.

Theorem (Nehorošev 1977) $\exists C, a, b, \alpha, \epsilon_* > 0 : \text{ for any } 0 < \mu < \epsilon^{\alpha} \leq \epsilon_*^{\alpha}$ any motion starting in $\mathcal{M}_{\epsilon}^{6n}$ (with $a_1 \ll a_2 \ll \cdots \ll a_n$) satisfies

$$\begin{cases} |a_j(t) - a_j(0)| < C\mu^b \\ |z(t)| \le \epsilon \end{cases} \quad \forall |t| < \frac{1}{C\mu} \exp\left(\frac{1}{C\mu^a}\right).$$

Proof based on Nehorošev's celebrated general result on exponential stability of nearly-integrable, convex (steep) Hamiltonians, regarding the z's as dummy variables and using the conservation of $C_3 = \sum \Lambda_j - \frac{|z|^2}{2}$ to confine the secular variables.

Niederman 1996 improves significantly the constants using Lochack's approach through approximation by periodic motions and Dirichlet simultaneous Diophantine approximation.

¿ Behaviour of the secular actions $r_j = \frac{|z_j|^2}{2}$?

Secular variation of r_j are related to changes in eccentricities and inclinations on the ecliptic \longrightarrow basic question:

Outside $\mathcal{K} \times \{(p_n, q_n)\}$, do the $|z_j|$'s move around B_{ϵ}^{4n} or do they stay close to their initial values $|z_j(0)|$ (say $||z_j(t)| - |z_j(0)|| < o(\epsilon)$) for times of the order $\frac{1}{C\mu} \exp\left(\frac{1}{C\epsilon}\right)$ ("exponential stability") or at least for times of order $\frac{1}{\mu\epsilon^k}$ for arbitrary k ("asymptotic stability")?

Asymptotic stability in non-resonant zones

Asymptotic stability in non-resonant zones

Theorem ([CP11b]) Fix $k \geq 1$. For μ and ϵ small enough, there exists a neighborhood \mathcal{N} of \mathcal{K} such that any motion starting in \mathcal{N} satisfies

$$|\Lambda_j(t) - \Lambda_j(0)| < \epsilon^2$$
, $|r_j(t) - r_j(0)| = o(\epsilon^2)$

for
$$|t| < \frac{1}{\mu \epsilon^k}$$
.

Asymptotic stability in non-resonant zones

Theorem ([CP11b]) Fix $k \geq 1$. For μ and ϵ small enough, there exists a neighborhood \mathcal{N} of \mathcal{K} such that any motion starting in \mathcal{N} satisfies

$$|\Lambda_j(t) - \Lambda_j(0)| < \epsilon^2$$
, $|r_j(t) - r_j(0)| = o(\epsilon^2)$

for
$$|t| < \frac{1}{\mu \epsilon^k}$$
.

Proof Use: existence of BNF up to any order and "properly–degenerate averaging theory" (analytic part of Nehorošev's theorem in the properly–degenerate setting) .

A closer look to $\bar{f}_{\mathrm{sec}}^4 := c_0(\Lambda) + \bar{\Omega} \cdot r + \frac{1}{2}\bar{\tau} \ r \cdot r + O(|r|^3)$

A closer look to $\bar{f}_{\mathrm{sec}}^4 := c_0(\Lambda) + \bar{\Omega} \cdot r + \frac{1}{2}\bar{\tau} \ r \cdot r + O(|r|^3)$

Asymptotically and up to a unitary matrix:

A closer look to
$$\bar{f}_{\mathrm{sec}}^4 := c_0(\Lambda) + \bar{\Omega} \cdot r + \frac{1}{2}\bar{\tau} \ r \cdot r + O(|r|^3)$$

Asymptotically and up to a unitary matrix:

$$c_n \begin{pmatrix} -\frac{m_n}{m_{n-1}} & 0 \\ 0 & 5\frac{m_{n-1}}{m_n} \frac{a_{n-1}}{a_n} \end{pmatrix}$$

with $c_i > 0$

A closer look to
$$\bar{f}_{\mathrm{sec}}^4 := c_0(\Lambda) + \bar{\Omega} \cdot r + \frac{1}{2}\bar{\tau} \ r \cdot r + O(|r|^3)$$

Asymptotically and up to a unitary matrix:

$$\bar{\tau} \sim \begin{pmatrix}
c_2 & \sqrt{17} & 0 & 0 \\
0 & -\sqrt{17} & 0 \\
0 & 0 & \frac{4}{17} \frac{\Lambda_1^2}{\Lambda_2^2}
\end{pmatrix}$$

$$c_n & c_n & c_n & c_n & c_n \frac{m_n}{m_{n-1}} & c_n \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
c_n & c_n & c_n & c_n & c_n & c_n \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots &$$

with $c_i > 0$

• In particular, the integrable truncation $c_0(\Lambda) + \bar{\Omega} \cdot r + \frac{1}{2}\bar{\tau} \ r \cdot r$ is <u>non-convex</u>.

Stability:

Stability:

ullet Prove steepness for a suitable BNF of $ar{f}_{
m sec}$

Stability:

- ullet Prove steepness for a suitable BNF of $ar{f}_{
 m sec}$
- Prove exponential stability for secular actions in B_{ϵ}^{4n} but still for Λ -non resonant regions

Stability:

- ullet Prove steepness for a suitable BNF of $ar{f}_{
 m sec}$
- Prove exponential stability for secular actions in B_{ϵ}^{4n} but still for Λ -non resonant regions
- Study stability of secular actions in resonant Λ -regions

Stability:

- ullet Prove steepness for a suitable BNF of $ar{f}_{
 m sec}$
- Prove exponential stability for secular actions in B_{ϵ}^{4n} but still for Λ -non resonant regions
- Study stability of secular actions in resonant Λ -regions

Intability:

Stability:

- ullet Prove steepness for a suitable BNF of $ar{f}_{
 m sec}$
- Prove exponential stability for secular actions in B_{ϵ}^{4n} but still for Λ -non resonant regions
- Study stability of secular actions in resonant Λ -regions

Intability:

• Find lower dimensional <u>hyperbolic tori</u> (or at least hyperbolic trajectories) in $\mathcal{M}_{\epsilon}^{6n}\setminus (\mathcal{K}\times \{(p_n,q_n)\})$ "co-existing" with the elliptic ones

Stability:

- ullet Prove steepness for a suitable BNF of $ar{f}_{
 m sec}$
- Prove exponential stability for secular actions in B_{ϵ}^{4n} but still for Λ -non resonant regions
- Study stability of secular actions in resonant Λ -regions

Intability:

- Find lower dimensional <u>hyperbolic tori</u> (or at least hyperbolic trajectories) in $\mathcal{M}_{\epsilon}^{6n} \setminus (\mathcal{K} \times \{(p_n, q_n)\})$ "co-existing" with the elliptic ones
- Do there exist "fast drift planes" in the secular actions?

Stability:

- ullet Prove steepness for a suitable BNF of $ar{f}_{
 m sec}$
- Prove exponential stability for secular actions in B_{ϵ}^{4n} but still for Λ -non resonant regions
- Study stability of secular actions in resonant Λ -regions

Intability:

- Find lower dimensional <u>hyperbolic tori</u> (or at least hyperbolic trajectories) in $\mathcal{M}_{\epsilon}^{6n} \setminus (\mathcal{K} \times \{(p_n, q_n)\})$ "co-existing" with the elliptic ones
- Do there exist "fast drift planes" in the secular actions?
- and, of course, <u>Arnold's diffusion</u>...

