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Tonelli Lagrangian

Let M be a smooth closed manifold, Throughout the talk,
M = Tn.

Let L = L(x, ẋ) : TTn → R be a Tonelli’s Lagrangian with
respect to the Hamitonian with the following standard as-
sumptions throughout the whole paper:

1 Smoothness: L : TTn → R is of class at least C2.
2 Convexity: The Hessian ∂2L

∂ẋ2 (x, ẋ) is positively definite
on each fibre TxTn

3 Superliearity:

lim
|ẋ|→∞

L(x, ẋ)
|ẋ|

= ∞, uniformly on x ∈ Tn.
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Minimal action

Let Φt : TTn ↪→ be the Euler-Lagrange flow defined by
Φt(x0, v0) = (x(t + t0), ẋ(t + t0) mod Z), where x : R → Tn

be the solution of the Euler-Lagrange equation with initial
conditions x(t0) = x0 and ẋ(t0) = v0.

Let M (L) the set of Φt-invariant Borel probability measure
on TTn. For every µ ∈ M (L), we can define its average
minimal action

A(µ) =
∫

L dµ.

The integral is defined since L is bounded below.
A Borel measure µ is said to be a minimal measure if

A(µ) = inf
µ∈M (L)

∫
L dµ.

A minimal measure is E-L flow Φt-invariant.
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β-function and α-function

If A(µ) < +∞, we may associate to µ its rotation vector
ρ(µ) ∈ H1(Tn, R) = Rn. The rotation vector ρ(µ) is uniquely
characterized by

〈c, ρ(µ)〉 =
∫

ηc dµ, for all c ∈ H1(Tn, R)

where [ηc] = c ∈ H1(Tn, R) = Rn.

For every h ∈ H1(Tn, R), we define Mather’s β-function, β :
H1(Tn, R) → R, as

β(h) = inf{A(µ) : µ ∈ M (L), ρ(µ) = h}.

β(h) is a convex function on H1(Tn, R) with superlinear growth.

We define Mather’s α-function, α : H1(Tn, R) → R, the
Fenchel’s transformation of β-function, i. e.,

α(c) = max{〈c, h〉−β(h) : h ∈ H1(Tn, R)}, c ∈ H1(Tn, R).
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More on α-function

From the basic facts in convex analysis, α(c) is also a convex
function on H1(Tn, R) with superlinear growth.

Some useful description of the α-function

α(c) = − inf
µ

∫
L− c dµ,

α(c) = inf
u∈C1(Tn)

max
x∈Tn

H(x, du(x) + c).

Actually, α(c) is the average of the Hamiltonian on the sup-
port of the c-minimal measures.
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Mañé’s critical potential and Peierls’ barrier

For t > 0, x, y ∈ Tn and c ∈ Rn, define

hc
t(x, y) = inf

∫ t

0
(L− c)(ξ(s), ξ̇(s)) ds,

where the infimum is taken over of the piecewise C1 curve
ξ : [0, t] → Tn such that ξ(0) = x and ξ(t) = y.

Define the Mañé’s critical potential and Peierls’ barrier re-
spectively as

φc(x, y) = inf
t>0

hc
t(x, y) + α(c)t,

hc(x, y) = lim inf
t→∞

hc
t(x, y) + α(c)t.
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Weak KAM solution

Before going on, let us introduce the weak KAM solutions of
the Hamilton-Jacobi equations

H(x, c + dxu) = α(c), x ∈ Tn,

Now we introduce the weak KAM solution from some type of
a Generalized Maupertuis’ principle.

For given c ∈ Rn, define the projected Aubry set

Ac = {x ∈ Tn|hc(x, x) = 0}.

It is well known that for any c, Ac is nonempty. For any
y ∈ Ac, φc(x, y) = hc(x, y), this let us define the weak KAM
solution of the H-J equation as φc(x, y) for any y.
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Jacobi-Finsler metric

Let us denote by L̄ = L− c for given c ∈ Rn, and H̄(x, p) =
H(x, p + c) its dual.
For any fixed x ∈ Tn and c ∈ Rn, Here is some notations.

Z̄c(x) = {p ∈ Rn : H̄(x, p) 6 α(c)}, c ∈ Rn,

δc(x, v) = σZ̄c(x)(v), x ∈ Tn, v ∈ Rn,

Sc(x, y) = inf
∫ 1

0
δc(ξ(t), ξ̇(t)) dt, x, y ∈ Tn

where the infimum is taken over of the piecewise C1 curve
ξ : [0, 1] → Tn such that ξ(0) = x and ξ(1) = y.

Theorem

φc(x, y) = Sc(x, y).
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A Generalized Maupertuis’ principle

The following formulae from convex analysis is useful: for any
coercive convex function f on Rn, C = {p ∈ Rn : f(p) 6 a}
for a > minp∈Rn f(p),

σC(v) = inf
t>0

(tf∗(v/t) + at),

where f∗ is the Legendre-Fenchel dual of f .

It is not hard to prove the equality φc(x, y) = Sc(x, y) by the
formulae above.

The quantity δc(x, v) is just the Jacobi-Finsler metric for the
generalized Maupertuis’ principle with the restriction of the
energy α(c). If the kinetic energy function is of the form
of Riemannian metric gx(v, v) = 〈v, v〉x, δc(x, v) is the usual
Jacobi metric

√
E − U(x), where E is the energy not less

than minc α(c).
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An application

For one-dimensional Tonelli Lagrangian L = `(v) − U(x),
x ∈ T1 and v ∈ TxT1, and H = h(p)+U(x) the Hamiltonian.

Without loss of generality, we assume that minp h(p) = h(p0) =
0 and such a minimizer is unique. When p > p0 or p 6 p0, h is
a strictly monotone function, define h−1

+ and h−1
− the inverse

of h on the intervals [p0,+∞) and (−∞, p0] respectively.
in this case,

Z̄c(x) = {p ∈ R : h−1
− (−U(x))− c 6 p 6 h−1

+ (−U(x))− c}

and

δc(x, v) = σZ̄c(x)(v) = max{pv : p ∈ Z̄c(x)}

=
{

(h−1
− (−U(x))− c)v, v 6 0;

(h−1
+ (−U(x))− c)v, v > 0.
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weak KAM solutions for 1-d mechanical systems

The explicit representation of the one-dimensional H-J equa-
tion is deduced from the observation that u(x) = Sc(x, x0),
where x0 ∈ Ac.

Choose x̄ ∈ [x0, x0 + 1] such that∫ x̄

x0

h−1
+ (−U(x))− c dx =

∫ 1+x0

x̄
−h−1

− (−U(x)) + c dx.

Then the weak KAM solution can deduced directly by the
Generalized Maupertuis’ principle above.

u(x) =

{ ∫ x
x0

h−1
+ (−U(s))− c ds, x0 6 x 6 x̄;∫ 1+x0

x −h−1
− (−U(s)) + c ds, x̄ 6 x 6 1 + x0.

Note that this implies that the α-function has a flat part on
the closed interval [

∫
h−1
− (−U(x)) dx,

∫
h−1

+ (−U(x)) dx].
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Problem

Now we turn to the problem of the relations between the
regularity property of the α-function and the integrability of
the systems.

This problem appeared firstly in [Burago, D., Ivanov, S.,
Kleiner, B.: On the structure of the stable norm of periodic
metrics. Math. Res. Lett., 4, 791–808 (1997)] in the context
of roundness of stable norm in geodesic flows.

The similar problem introduced by P. Bernard can also be
found in http://www.aimath.org/WWN/dynpde/articles/html/
20a/.

Problem: How does the variational structure of the system
determine the integrability of the system?

For the case of twist maps or geodesic flows on 2-torus, the
answer is affirmative. [Bangert and Mather]

http://www.aimath.org/WWN/dynpde/articles/html/20a/
http://www.aimath.org/WWN/dynpde/articles/html/20a/
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Suppose L = `(p) − U(x), here ` is strictly convex, U(x) 6
maxx∈Tn U(x) = 0.

Lemma

Let LU,`(x, ẋ) = `(ẋ) − U(x) be the mechanical Tonelli La-
grangian. Suppose U(x) 6 Ũ(x) for any x ∈ Tn and
`(ẋ) > ˜̀(ẋ) for any ẋ ∈ Rn, then the relation between the
α-function of systems LU,` and LŨ ,˜̀ satisfies αU,` 6 αŨ ,˜̀.

Theorem

Let L(x, v) = `(v)− U(x) be a mechanical system, E = {x ∈
Tn : U(x) = maxx∈Tn U(x) = 0}. If the natural lift of the set
E to the universal covering space Rn of Tn does not contain
n straight lines in linear independent rational directions, then
the α-function has a flat part near c0, minc α(c) = α(c0).
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Key idea:

If α(c) 6 α̂(c), α(c0) = α̂(c0), then if α̂(c) has a flat part
near c0, then α(c) does too.
one dimensional systems Li = `i − Ui, i = 1, . . . , n can
be chosen such that L > L̂ =

∑
Li, and α(c) 6 α̂(c).

α̂, the α-function of L̂, has (at least one-dimensional)
flat part near c0.

In particular, For Morse functions U , the α-function have flat
part.

Theorem

Let L be the mechanical Lagrangian, suppose that S̃ contains
a straight line given by h′(ξ(r)) + x1, x1 ∈ Rn in the rational
direction, where ξ(r) is the lift of a smooth curve on Tn, then
α(ξ(r)) = h(ξ(r)), r ∈ R.
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The strict convex assumption on h implies that h′ : Rn → Rn

is a diffeomorphism. Here we ignore the emphasis on the fact
that h′ is actually a map from a vector space to its dual. Thus
if the straight line in the covering space is {rn + x1 : r ∈ R}
for some n ∈ Zn, then ξ(r) = (h′)−1(rn).

Key idea:

for any c ∈ Rn,

−α(c) = inf
∫

`(ẋ)− 〈c, ẋ〉 − U(x) dµ

> inf
∫
−h(c) dµ = −h(c)

by Young’s inequality and U 6 0. So α(c) 6 h(c).
α(ξ(r)) > h(ξ(r)) since x(t) = rtn + x1 and ẋ(t) ≡
h′(ξ(r)), and use Young-Fenchel inequality.
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An alternative approach

Now let L(x, v) = 1
2 |v|

2 − U(x) with the potential U(x) 6 0
and maxx∈Tn U(x) = 0, we try to give an alternative ap-
proach of the problem. Here we use some idea from Novikov’s
work on multiple integral (topology of closed 1-forms there)
of Hamiltonian systems.

Now let us recall some basic facts on the construction of the
closed 1-form on a closed smooth manifold M .

Let f : M → T1 be a smooth map, the circle T1 is equipped
with canonical angular form dθ, dθ is a closed 1-form, which
cannot be represented as a differential of a smooth function
on T1. The pullback f∗(dθ) is a closed 1-form on M .

Theorem (see e.g book of Farber)

A closed 1-form ω on M can be represented by this form if
and only if the de Rham cohomology class [ω] ∈ H1(M, Z).



Contents

A brief
introduction
on Mather
theory and
weak KAM
theory

Integrability

Let κ(x) =
√

2(−U(x)), We want to find a C1 vector field
X(x) as a function X : Tn → Rn, such that

|X(x)| = κ(x) (1)

and
dX(x) = dX∗(x). (2)

Condition (2) means X is a gradient-like vector field corre-
sponding to a closed 1-form on Tn in the following sense: the
closed 1-form ω is defined by

ω(x)(v) = 〈X(x), v〉, v ∈ TxTn ∼= Rn.
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By Mañé’s Lagrangian

L1(x, v) =
1
2
|v −X(x)|2 = L0(x, v)− 〈X(x), v〉. (3)

Denote by α0 and α1 the α-function of L0 and L1 respectively.

Lemma

If for the potential U of L0, there exists a C1 vector field X
satisfying (1) and (2) and c =

∫
Tn X(x)dx, then

α0(c) = α1(0) = 0 (4)

It is well known that L−λ has the same Euler-Lagrange equa-
tion as L does if the 1-form λ is closed. It is clear from (3),
if c =

∫
Tn X(x)dx, then α1(0) = α0(c) = 0. |c| 6

∫
Tn κ(x)dx

follows easily from the definition of the vector field X. If
c 6= 0, then (4) implies α0(rc) = 0 for 0 6 r 6 1 since
α0(0) = minc∈Rn α0(c) and α-function is convex.
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Theorem

If there exist k vector fields Xi on Tn independently, 1 6 k 6
n such that Xi’s satisfy (1) and (2) with

∫
Tn Xi(x)dx 6= 0,

i = 1, . . . , k, then the α-function has k-dimensional flat part
near c = 0.

This is a direct consequence of Lemma.

Theorem

If the critical set E of U of the system L(x, v) = 1
2 |v|

2−U(x)
does not contain a simple closed homotopically nontrivial
smooth curve, the α-function has fully dimensional flat part
near c = 0.
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Example 1 when n = 1, and maxx∈Tn U(x) = 0, the flat
part |c| 6

∫
T1 κ(x)dx of the α-function is well known, see e.g.

the famous preprint of Lions-Papanicolaou-Varadhan. Let
Vε(x) = U(x)− ε for ε > 0, then

L0
ε(x, v)− 〈Xε(x), v〉 =

1
2
|v|2 − Vε(x)− 〈Xε(x), v〉 = L1

ε(x, v),

where Xε satisfies (1) and (2) for the potential Vε. The ex-
istence of such a Xε can be easily obtained by Xε =

√
−Vε.

Denote by α0
ε and α1

ε the α-function of L0
ε and L1

ε respec-
tively, then we have α1

ε(0) = α0
ε(cε) = 0 by Lemma , where

cε =
∫

T1 Xε(x)dx. This implies α0(cε)− ε = 0 for any ε > 0.
So α(c0) = 0 by the continuity of cε with respect to ε, and
c0 6= 0 if U 6≡ 0. Thus the α-function has flat part on [0, c0],
and the case of [−c0, 0] is similar by choosing Xε = −

√
−Vε.
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Proof of Theorem.
If the critical set E of U does not contain a simple closed
homotopically nontrivial smooth curve, then there exist n in-
dependent gradient-like vector fields {Xi,ε}n

i=1 for Vε(x) =
U(x) − ε as in Example 1. Apply the argument in Example
1 to each Xi,ε, we can see there exists c0,i 6= 0 such that the
α-function has flat part in the direction of c0,i. The indepen-
dency of Xi,ε means the independency of such c0,i’s, thus we
get the conclusion.
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Thank you.
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