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Let M be a smooth closed manifold, Throughout the talk,
M =T".

Let L = L(z,z) : TT" — R be a Tonelli’s Lagrangian with
respect to the Hamitonian with the following standard as-
sumptions throughout the whole paper:

@ Smoothness: L : TT" — R is of class at least C2.
@ Convezity: The Hessian %(m,i) is positively definite
on each fibre T, T"

@ Superliearity:

L(x, %)

. = 00, uniformly on x € T".
|i|—oo |2
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Let &; : TT"™ — be the Euler-Lagrange flow defined by
Dy (z0,v9) = (x(t + to), 2(t + to) mod Z), where x : R — T"
be the solution of the Euler-Lagrange equation with initial
conditions z(tg) = z¢ and Z(ty) = vo.

Let .# (L) the set of ®;-invariant Borel probability measure
on TT". For every u € # (L), we can define its average
minimal action

Aw = [ L dn

The integral is defined since L is bounded below.
A Borel measure p is said to be a minimal measure if

Aw) = inf [ L dp.
(w) uelffl/@)/ a

A minimal measure is E-L flow ®;-invariant.
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If A(u) < +oo, we may associate to p its rotation vector
p(p) € Hi(T™",R) = R™. The rotation vector p(u) is uniquely
characterized by

(c,p(p)) = /nc du, forall ce HY(T" R)
where [n.] = c € H(T", R) = R".

For every h € Hi(T",R), we define Mather’s -function, [ :
Hy(T",R) — R, as

B(h) = inf{A(p) : p € A (L), p(p) = h}.
B(h) is a convex function on Hy (T™, R) with superlinear growth.

We define Mather’s a-function, o : HY(T",R) — R, the
Fenchel’s transformation of G-function, i. e.,

alc) = max{{c,h)—B(h) : h € H;(T",R)},  c€ H(T" R).
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From the basic facts in convex analysis, a(c) is also a convex
function on H'(T" R) with superlinear growth.

Some useful description of the a-function

a(c):—inf/L—cdu,
o

= inf H(z,d .
a(c) i B (2, du(z) + ¢)

Actually, a(c) is the average of the Hamiltonian on the sup-
port of the c-minimal measures.
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Fort > 0, z,y € T" and ¢ € R", define

§(z,y) 1nf/ —¢)(&(s),£(s)) ds,

where the infimum is taken over of the piecewise C! curve
€:10,t] — T™ such that £(0) =z and £(t) =y

Define the Mané’s critical potential and Peierls’ barrier re-
spectively as

6e(z,) = o (2, ) + (o)t
he(z,y) = litm inf h{(x,y) + a(c)t.
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Before going on, let us introduce the weak KAM solutions of
the Hamilton-Jacobi equations

H(z,c+dyu) = alc), zeT",
Now we introduce the weak KAM solution from some type of
a Generalized Maupertuis’ principle.
For given ¢ € R", define the projected Aubry set
e = {x € T"|hc(z,x) = 0}.

It is well known that for any ¢, 7. is nonempty. For any
y € e, ¢c(x,y) = he(z,y), this let us define the weak KAM
solution of the H-J equation as ¢.(x,y) for any y.



Integrability
by means of
variational
methods

‘Wei Cheng

Contents

A brief
introduction
on Mather
theory and

weak KAM
theory

Integrability

Let us denote by L = L — ¢ for given ¢ € R?, and H(z,p) =
H(z,p+ c) its dual.
For any fixed x € T” and ¢ € R”, Here is some notations.

°
Z(x)={p€R": H(z,p) < a(c)}, c€R",
°
be(z,v) = 0z,»y(v), z€T", veRT,
°

1 .
Se(x,y) = inf /0 5E(), (1)) dt, wyeT"

where the infimum is taken over of the piecewise C'' curve
€ :[0,1] — T™ such that £(0) =z and £(1) = v.

de(z,y) = Se(z,y).
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The following formulae from convex analysis is useful: for any
coercive convex function f on R", C = {p € R" : f(p) < a}
for a > minyegrn f(p),

oc(v) = inf(tf*(v/t) + at),
where f* is the Legendre-Fenchel dual of f.

It is not hard to prove the equality ¢.(x,y) = Sc(x,y) by the
formulae above.

The quantity d.(z,v) is just the Jacobi-Finsler metric for the
generalized Maupertuis’ principle with the restriction of the
energy af(c). If the kinetic energy function is of the form
of Riemannian metric g,(v,v) = (v,v),, d.(x,v) is the usual
Jacobi metric \/F — U(x), where E is the energy not less
than min, a(c).
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For one-dimensional Tonelli Lagrangian L = ¢(v) — U(z),
x € T and v € T, T, and H = h(p) + U(x) the Hamiltonian.

Without loss of generality, we assume that min, h(p) = h(pg) =
0 and such a minimizer is unique. When p > pg or p < po, h is
a strictly monotone function, define hjrl and h~! the inverse
of h on the intervals [pg, +00) and (—oo, po] respectively.

in this case,

Ze(x) ={p €eR: hZ'(-U(x)) —c < p < hi'(-U(x)) — ¢}
and

bc(x,v) = 07, (z)(v) = max{pv:p € Z.(z)}

_ { (A= (=U(@)) = c)v, v<0;
(h]rl(—U(m)) —c)v, v=0.
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The explicit representation of the one-dimensional H-J equa-
tion is deduced from the observation that u(x) = S.(z,xo),
where zg € ..

Choose T € [zg, o + 1] such that

z 14+x0
/‘thJH@)—cdw:/i _hm U (@) + ¢ da

Then the weak KAM solution can deduced directly by the
Generalized Maupertuis’ principle above.

Jo BN (=U(s5)) — ¢ ds, 2o < T < T
u(:c) = 10+x0 -1 _
J —hZ(=U(s)) +cds, T<ax<]1+ .

xT

Note that this implies that the a-function has a flat part on
the closed interval [[ h='(~U(z)) dz, [ h1'(~U(z)) dz].
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Now we turn to the problem of the relations between the
regularity property of the a-function and the integrability of
the systems.

This problem appeared firstly in [Burago, D., Ivanov, S.,
Kleiner, B.: On the structure of the stable norm of periodic
metrics. Math. Res. Lett., 4, 791-808 (1997)] in the context
of roundness of stable norm in geodesic flows.

The similar problem introduced by P. Bernard can also be
found in http://www.aimath.org/WWN/dynpde/articles/html
20a/.

Problem: How does the variational structure of the system
determine the integrability of the system?

For the case of twist maps or geodesic flows on 2-torus, the
answer is affirmative. [Bangert and Mather]


http://www.aimath.org/WWN/dynpde/articles/html/20a/
http://www.aimath.org/WWN/dynpde/articles/html/20a/
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Lemma

Let Lyo(x,%) = £(2) — U(x) be the mechanical Tonelli La-
grangian.  Suppose U(z) < U(z) for any x € T" and
U(i) > (&) for any & € R™, then the relation between the
a-function of systems Ly and LU,E satisfies oy < o j-

Theorem

Let L(z,v) = {(v) — U(z) be a mechanical system, E = {x €
T" : U(x) = maxgern U(xz) = 0}. If the natural lift of the set
E to the universal covering space R™ of T" does not contain
n straight lines in linear independent rational directions, then
the a-function has a flat part near co, min, a(c) = a(cp).
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Key idea:
o If a(c) < éa(c), alcy) = &(cp), then if &(c) has a flat part
near co, then a(c) does too.
@ one dimensional systems ALZ =0 —-U;,i=1,...,ncan
be chosen such that L > L =" L;, and «a(c) < &(c).
e &, the a-function of L, has (at least one-dimensional)
flat part near cg.

In particular, For Morse functions U, the a-function have flat
part.

Let L be the mechanical Lagrangian, suppose that S contains
a straight line given by h'(§(r)) + x1, x1 € R™ in the rational
direction, where £(r) is the lift of a smooth curve on T™, then

a(é(r)) = h((r), r € R.




The strict convex assumption on h implies that A’ : R" — R"
is a diffeomorphism. Here we ignore the emphasis on the fact
that A’ is actually a map from a vector space to its dual. Thus
if the straight line in the covering space is {rn + z1 : r € R}
for some n € Z", then £(r) = (h')~!(rn).

Key idea:

Integrability

e for any ¢ € R",
—a(c) = 1nf/ (@) — (e, 2y — U(zx) dp

1nf/ _he _h(e)

by Young’s inequality and U < 0. So a(c) < h(c).
e a(&(r)) = h(&(r)) since z(t) = rtn + x; and z(t) =
h'(&(r)), and use Young-Fenchel inequality.




Now let L(z,v) = i|v|? — U(z) with the potential U(z) < 0
and max,emn U(z) = 0, we try to give an alternative ap-
proach of the problem. Here we use some idea from Novikov’s
work on multiple integral (topology of closed 1-forms there)
of Hamiltonian systems.
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theory Now let us recall some basic facts on the construction of the
L iibe  closed 1-form on a closed smooth manifold M.

Let f: M — T! be a smooth map, the circle T is equipped
with canonical angular form df, df is a closed 1-form, which
cannot be represented as a differential of a smooth function
on T!'. The pullback f*(df) is a closed 1-form on M.

Theorem (see e.g book of Farber)

A closed 1-form w on M can be represented by this form if
and only if the de Rham cohomology class [w] € HY(M,Z).
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Let k(z) = 1/2(~U(z)), We want to find a C* vector field
X(x) as a function X : T" — R™, such that

[ X (z)] = #(z) (1)

and
dX (z) = dX*(x). (2)

Condition (2) means X is a gradient-like vector field corre-
sponding to a closed 1-form on T" in the following sense: the
closed 1-form w is defined by

w(x)(v) =(X(z),v), veT,T"=R".
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By Mané’s Lagrangian
1 _ 1 2_ 70 _
Li(z,v) = 5lv = X(@)]" = Lz, v) - (X(2),v).  (3)

Denote by ag and a; the a-function of LY and L' respectively.

If for the potential U of L, there ewists a C' wector field X
satisfying (1) and (2) and ¢ = [}, X (x)dz, then

OA()(C) = al(O) =0 (4)

It is well known that L — X has the same Euler-Lagrange equa-
tion as L does if the 1-form A is closed. It is clear from (3),
if ¢ = [;n X(2)dz, then a1(0) = ap(c) = 0. |c] < [q. w(z)dx
follows easﬂy from the definition of the vector field X. If
¢ # 0, then (4) implies ap(re) = 0 for 0 < r < 1 since
a(0) = mingegrn ap(c) and a-function is convex.
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If there exist k vector fields X; on T™ independently, <k<
n such that X;’s satisfy (1) and (2) with [, X; dm # 0,
i=1,...,k, then the a-function has k- dzmenszonal flat part
near ¢ = O.

This is a direct consequence of Lemma.

If the critical set E of U of the system L(z,v) = 3|v|?>—U(z)
does mot contain a simple closed homotopwally nontrivial
smooth curve, the a-function has fully dimensional flat part
near c = 0.

| 2
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Example 1 when n = 1, and maxzern U(z) = 0, the flat
part |c| < [p1 &(2)dx of the a-function is well known, see e.g.
the famous preprlnt of Lions-Papanicolaou-Varadhan. Let
Ve(x) =U(x) — ¢ for € > 0, then

L2(x,v) = (Xe(2),v) = %lvlz — Ve(z) = (Xe(2),v) = Li(z,v),

where X, satisfies (1) and (2) for the potential V.. The ex-
istence of such a X, can be easily obtained by X, = /—V..
Denote by ol and ! the a-function of L2 and L! respec-
tively, then we have al(0) = a?(c.) = 0 by Lemma , where

= Jp1 Xc(x)dz. This implies a’(c.) —e = 0 for any € > 0.
So alcy) = O by the continuity of ¢, with respect to e, and
co # 0if U # 0. Thus the a-function has flat part on [0, ¢,
and the case of [—cp, 0] is similar by choosing X, = —/—V%.
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Proof of Theorem.

If the critical set E of U does not contain a simple closed
homotopically nontrivial smooth curve, then there exist n in-
dependent gradient-like vector fields {X; .}, for V.(z) =
U(x) — € as in Example 1. Apply the argument in Example
1 to each X; ., we can see there exists cp; # 0 such that the
a-function has flat part in the direction of ¢y ;. The indepen-
dency of X;. means the independency of such c;’s, thus we
get the conclusion.
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Thank you.
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