Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

Integrability by means of variational methods

Wei Cheng

Department of mathematics, Nanjing University

June 14, 2011

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

• A brief introduction on Mather theory and weak KAM theory

1 Integrability

Tonelli Lagrangian

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

Let M be a smooth closed manifold, Throughout the talk, $M=\mathbb{T}^n.$

Let $L = L(x, \dot{x}) : T\mathbb{T}^n \to \mathbb{R}$ be a Tonelli's Lagrangian with respect to the Hamitonian with the following standard assumptions throughout the whole paper:

- Smoothness: $L: T\mathbb{T}^n \to \mathbb{R}$ is of class at least C^2 .
- ² Convexity: The Hessian $\frac{\partial^2 L}{\partial \dot{x}^2}(x, \dot{x})$ is positively definite on each fibre $T_x \mathbb{T}^n$
- Superliearity:

$$\lim_{|\dot{x}| \to \infty} \frac{L(x, \dot{x})}{|\dot{x}|} = \infty, \quad \text{uniformly on } x \in \mathbb{T}^n$$

Minimal action

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

Let $\Phi_t : T\mathbb{T}^n \hookrightarrow$ be the Euler-Lagrange flow defined by $\Phi_t(x_0, v_0) = (x(t+t_0), \dot{x}(t+t_0) \mod \mathbb{Z})$, where $x : \mathbb{R} \to \mathbb{T}^n$ be the solution of the Euler-Lagrange equation with initial conditions $x(t_0) = x_0$ and $\dot{x}(t_0) = v_0$.

Let $\mathscr{M}(L)$ the set of Φ_t -invariant Borel probability measure on $T\mathbb{T}^n$. For every $\mu \in \mathscr{M}(L)$, we can define its *average* minimal action

$$A(\mu) = \int L \ d\mu.$$

The integral is defined since L is bounded below. A Borel measure μ is said to be a minimal measure if

$$A(\mu) = \inf_{\mu \in \mathscr{M}(L)} \int L \ d\mu.$$

A minimal measure is E-L flow Φ_t -invariant.

β -function and α -function

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

If $A(\mu) < +\infty$, we may associate to μ its *rotation vector* $\rho(\mu) \in H_1(\mathbb{T}^n, \mathbb{R}) = \mathbb{R}^n$. The rotation vector $\rho(\mu)$ is uniquely characterized by

$$\langle c, \rho(\mu) \rangle = \int \eta_c \ d\mu, \quad \text{for all} \quad c \in H^1(\mathbb{T}^n, \mathbb{R})$$

where $[\eta_c] = c \in H^1(\mathbb{T}^n, \mathbb{R}) = \mathbb{R}^n$.

For every $h \in H_1(\mathbb{T}^n, \mathbb{R})$, we define Mather's β -function, β : $H_1(\mathbb{T}^n, \mathbb{R}) \to \mathbb{R}$, as

 $\beta(h) = \inf\{A(\mu) : \mu \in \mathscr{M}(L), \ \rho(\mu) = h\}.$

 $\beta(h)$ is a convex function on $H_1(\mathbb{T}^n, \mathbb{R})$ with superlinear growth.

We define Mather's α -function, $\alpha : H^1(\mathbb{T}^n, \mathbb{R}) \to \mathbb{R}$, the Fenchel's transformation of β -function, i. e.,

 $\alpha(c) = \max\{\langle c, h \rangle - \beta(h) : h \in H_1(\mathbb{T}^n, \mathbb{R})\}, \qquad c \in H^1(\mathbb{T}^n, \mathbb{R}).$

More on α -function

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

٠

Integrability

From the basic facts in convex analysis, $\alpha(c)$ is also a convex function on $H^1(\mathbb{T}^n, \mathbb{R})$ with superlinear growth.

Some useful description of the α -function

$$\alpha(c) = -\inf_{\mu} \int L - c \, d\mu,$$

$$\alpha(c) = \inf_{u \in C^1(\mathbb{T}^n)} \max_{x \in \mathbb{T}^n} H(x, du(x) + c).$$

Actually, $\alpha(c)$ is the average of the Hamiltonian on the support of the *c*-minimal measures.

Mañé's critical potential and Peierls' barrier

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

For $t > 0, x, y \in \mathbb{T}^n$ and $c \in \mathbb{R}^n$, define

$$h_t^c(x,y) = \inf \int_0^t (L-c)(\xi(s), \dot{\xi}(s)) \, ds,$$

where the infimum is taken over of the piecewise C^1 curve $\xi : [0, t] \to \mathbb{T}^n$ such that $\xi(0) = x$ and $\xi(t) = y$.

Define the Mañé's critical potential and Peierls' barrier respectively as

$$\phi_c(x,y) = \inf_{t>0} h_t^c(x,y) + \alpha(c)t,$$
$$h_c(x,y) = \liminf_{t\to\infty} h_t^c(x,y) + \alpha(c)t$$

Weak KAM solution

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

Before going on, let us introduce the weak KAM solutions of the Hamilton-Jacobi equations

$$H(x, c+d_x u) = \alpha(c), \quad x \in \mathbb{T}^n,$$

Now we introduce the weak KAM solution from some type of a Generalized Maupertuis' principle.

For given $c \in \mathbb{R}^n$, define the projected Aubry set

$$\mathscr{A}_c = \{ x \in \mathbb{T}^n | h_c(x, x) = 0 \}.$$

It is well known that for any c, \mathscr{A}_c is nonempty. For any $y \in \mathscr{A}_c$, $\phi_c(x, y) = h_c(x, y)$, this let us define the *weak KAM* solution of the H-J equation as $\phi_c(x, y)$ for any y.

Jacobi-Finsler metric

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

Let us denote by $\overline{L} = L - c$ for given $c \in \mathbb{R}^n$, and $\overline{H}(x, p) = H(x, p + c)$ its dual. For any fixed $x \in \mathbb{T}^n$ and $c \in \mathbb{R}^n$, Here is some notations.

$$\bar{Z}_c(x) = \{ p \in \mathbb{R}^n : \bar{H}(x, p) \leq \alpha(c) \}, \quad c \in \mathbb{R}^n,$$

$$\delta_c(x,v) = \sigma_{\bar{Z}_c(x)}(v), \quad x \in \mathbb{T}^n, \ v \in \mathbb{R}^n,$$

0

$$S_c(x,y) = \inf \int_0^1 \delta_c(\xi(t), \dot{\xi}(t)) \, dt, \quad x, y \in \mathbb{T}^n$$

where the infimum is taken over of the piecewise C^1 curve $\xi : [0,1] \to \mathbb{T}^n$ such that $\xi(0) = x$ and $\xi(1) = y$.

Theorem

 $\phi_c(x,y) = S_c(x,y).$

A Generalized Maupertuis' principle

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

The following formulae from convex analysis is useful: for any coercive convex function f on \mathbb{R}^n , $C = \{p \in \mathbb{R}^n : f(p) \leq a\}$ for $a \geq \min_{p \in \mathbb{R}^n} f(p)$,

$$\sigma_C(v) = \inf_{t>0} (tf^*(v/t) + at),$$

where f^* is the Legendre-Fenchel dual of f.

It is not hard to prove the equality $\phi_c(x, y) = S_c(x, y)$ by the formulae above.

The quantity $\delta_c(x, v)$ is just the Jacobi-Finsler metric for the generalized Maupertuis' principle with the restriction of the energy $\alpha(c)$. If the kinetic energy function is of the form of Riemannian metric $g_x(v, v) = \langle v, v \rangle_x$, $\delta_c(x, v)$ is the usual Jacobi metric $\sqrt{E - U(x)}$, where E is the energy not less than $\min_c \alpha(c)$.

An application

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

For one-dimensional Tonelli Lagrangian $L = \ell(v) - U(x)$, $x \in \mathbb{T}^1$ and $v \in T_x \mathbb{T}^1$, and H = h(p) + U(x) the Hamiltonian.

Without loss of generality, we assume that $\min_p h(p) = h(p_0) = 0$ and such a minimizer is unique. When $p \ge p_0$ or $p \le p_0$, h is a strictly monotone function, define h_+^{-1} and h_-^{-1} the inverse of h on the intervals $[p_0, +\infty)$ and $(-\infty, p_0]$ respectively. in this case,

$$\bar{Z}_c(x) = \{ p \in \mathbb{R} : h_-^{-1}(-U(x)) - c \leqslant p \leqslant h_+^{-1}(-U(x)) - c \}$$

and

$$\begin{split} \delta_c(x,v) &= \sigma_{\bar{Z}_c(x)}(v) = \max\{pv : p \in \bar{Z}_c(x)\} \\ &= \begin{cases} (h_-^{-1}(-U(x)) - c)v, & v \leqslant 0; \\ (h_+^{-1}(-U(x)) - c)v, & v \geqslant 0. \end{cases} \end{split}$$

weak KAM solutions for 1-d mechanical systems

Integrability by means of variational methods

Wei Cheng

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

The explicit representation of the one-dimensional H-J equation is deduced from the observation that $u(x) = S_c(x, x_0)$, where $x_0 \in \mathscr{A}_c$.

Choose $\bar{x} \in [x_0, x_0 + 1]$ such that

$$\int_{x_0}^{\bar{x}} h_+^{-1}(-U(x)) - c \, dx = \int_{\bar{x}}^{1+x_0} -h_-^{-1}(-U(x)) + c \, dx.$$

Then the weak KAM solution can deduced directly by the Generalized Maupertuis' principle above.

$$u(x) = \begin{cases} \int_{x_0}^x h_+^{-1}(-U(s)) - c \, ds, & x_0 \leq x \leq \bar{x}; \\ \int_x^{1+x_0} -h_-^{-1}(-U(s)) + c \, ds, & \bar{x} \leq x \leq 1+x_0. \end{cases}$$

Note that this implies that the α -function has a flat part on the closed interval $[\int h_{-}^{-1}(-U(x)) dx, \int h_{+}^{-1}(-U(x)) dx].$

Problem

Now we turn to the problem of the relations between the regularity property of the α -function and the integrability of the systems.

A brief introduction on Mather theory and weak KAM theory

Integrability

This problem appeared firstly in [Burago, D., Ivanov, S., Kleiner, B.: On the structure of the stable norm of periodic metrics. *Math. Res. Lett.*, **4**, 791–808 (1997)] in the context of roundness of stable norm in geodesic flows.

The similar problem introduced by P. Bernard can also be found in http://www.aimath.org/WWN/dynpde/articles/html 20a/.

Problem: How does the variational structure of the system determine the integrability of the system?

For the case of twist maps or geodesic flows on 2-torus, the answer is affirmative. [Bangert and Mather]

A brief introduction on Mather theory and weak KAM theory

Integrability

Suppose $L = \ell(p) - U(x)$, here ℓ is strictly convex, $U(x) \leq \max_{x \in \mathbb{T}^n} U(x) = 0$.

Lemma

Let $L_{U,\ell}(x,\dot{x}) = \ell(\dot{x}) - U(x)$ be the mechanical Tonelli Lagrangian. Suppose $U(x) \leq \tilde{U}(x)$ for any $x \in \mathbb{T}^n$ and $\ell(\dot{x}) \geq \tilde{\ell}(\dot{x})$ for any $\dot{x} \in \mathbb{R}^n$, then the relation between the α -function of systems $L_{U,\ell}$ and $L_{\tilde{U},\tilde{\ell}}$ satisfies $\alpha_{U,\ell} \leq \alpha_{\tilde{U},\tilde{\ell}}$.

Theorem

Let $L(x, v) = \ell(v) - U(x)$ be a mechanical system, $E = \{x \in \mathbb{T}^n : U(x) = \max_{x \in \mathbb{T}^n} U(x) = 0\}$. If the natural lift of the set E to the universal covering space \mathbb{R}^n of \mathbb{T}^n does not contain n straight lines in linear independent rational directions, then the α -function has a flat part near c_0 , $\min_c \alpha(c) = \alpha(c_0)$.

Key idea:

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

- If $\alpha(c) \leq \hat{\alpha}(c)$, $\alpha(c_0) = \hat{\alpha}(c_0)$, then if $\hat{\alpha}(c)$ has a flat part near c_0 , then $\alpha(c)$ does too.
- one dimensional systems $L^i = \ell^i U_i$, i = 1, ..., n can be chosen such that $L \ge \hat{L} = \sum L_i$, and $\alpha(c) \le \hat{\alpha}(c)$.
- $\hat{\alpha}$, the α -function of \hat{L} , has (at least one-dimensional) flat part near c_0 .

In particular, For Morse functions U, the $\alpha\text{-function}$ have flat part.

Theorem

Let L be the mechanical Lagrangian, suppose that \tilde{S} contains a straight line given by $h'(\xi(r)) + x_1$, $x_1 \in \mathbb{R}^n$ in the rational direction, where $\xi(r)$ is the lift of a smooth curve on \mathbb{T}^n , then $\alpha(\xi(r)) = h(\xi(r)), r \in \mathbb{R}$.

A brief introduction on Mather theory and weak KAM theory

Integrability

The strict convex assumption on h implies that $h' : \mathbb{R}^n \to \mathbb{R}^n$ is a diffeomorphism. Here we ignore the emphasis on the fact that h' is actually a map from a vector space to its dual. Thus if the straight line in the covering space is $\{r\mathbf{n} + x_1 : r \in \mathbb{R}\}$ for some $\mathbf{n} \in \mathbb{Z}^n$, then $\xi(r) = (h')^{-1}(r\mathbf{n})$.

Key idea:

• for any $c \in \mathbb{R}^n$,

$$-\alpha(c) = \inf \int \ell(\dot{x}) - \langle c, \dot{x} \rangle - U(x) \, d\mu$$
$$\geqslant \inf \int -h(c) \, d\mu = -h(c)$$

by Young's inequality and $U \leq 0$. So $\alpha(c) \leq h(c)$.

• $\alpha(\xi(r)) \ge h(\xi(r))$ since $x(t) = rt\mathbf{n} + x_1$ and $\dot{x}(t) \equiv h'(\xi(r))$, and use Young-Fenchel inequality.

An alternative approach

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

Now let $L(x, v) = \frac{1}{2}|v|^2 - U(x)$ with the potential $U(x) \leq 0$ and $\max_{x \in \mathbb{T}^n} U(x) = 0$, we try to give an alternative approach of the problem. Here we use some idea from Novikov's work on multiple integral (topology of closed 1-forms there) of Hamiltonian systems.

Now let us recall some basic facts on the construction of the closed 1-form on a closed smooth manifold M.

Let $f: M \to \mathbb{T}^1$ be a smooth map, the circle \mathbb{T}^1 is equipped with canonical angular form $d\theta$, $d\theta$ is a closed 1-form, which cannot be represented as a differential of a smooth function on \mathbb{T}^1 . The pullback $f^*(d\theta)$ is a closed 1-form on M.

Theorem (see e.g book of Farber)

A closed 1-form ω on M can be represented by this form if and only if the de Rham cohomology class $[\omega] \in H^1(M, \mathbb{Z})$.

A brief introduction on Mather theory and weak KAM theory

Integrability

and

Let $\kappa(x) = \sqrt{2(-U(x))}$, We want to find a C^1 vector field X(x) as a function $X : \mathbb{T}^n \to \mathbb{R}^n$, such that

$$|X(x)| = \kappa(x) \tag{1}$$

 $dX(x) = dX^*(x).$ (2)

Condition (2) means X is a gradient-like vector field corresponding to a closed 1-form on \mathbb{T}^n in the following sense: the closed 1-form ω is defined by

 $\omega(x)(v) = \langle X(x), v \rangle, \quad v \in T_x \mathbb{T}^n \cong \mathbb{R}^n.$

By Mañé's Lagrangian

Contents

A brief introduction on Mather theory and weak KAM theory

Integrability

$$L^{1}(x,v) = \frac{1}{2}|v - X(x)|^{2} = L^{0}(x,v) - \langle X(x),v \rangle.$$
 (3)

Denote by α_0 and α_1 the α -function of L^0 and L^1 respectively.

Lemma

If for the potential U of L^0 , there exists a C^1 vector field X satisfying (1) and (2) and $c = \int_{\mathbb{T}^n} X(x) dx$, then

$$\alpha_0(c) = \alpha_1(0) = 0 \tag{4}$$

It is well known that $L-\lambda$ has the same Euler-Lagrange equation as L does if the 1-form λ is closed. It is clear from (3), if $c = \int_{\mathbb{T}^n} X(x) dx$, then $\alpha_1(0) = \alpha_0(c) = 0$. $|c| \leq \int_{\mathbb{T}^n} \kappa(x) dx$ follows easily from the definition of the vector field X. If $c \neq 0$, then (4) implies $\alpha_0(rc) = 0$ for $0 \leq r \leq 1$ since $\alpha_0(0) = \min_{c \in \mathbb{R}^n} \alpha_0(c)$ and α -function is convex.

A brief introduction on Mather theory and weak KAM theory

Integrability

Theorem

If there exist k vector fields X_i on \mathbb{T}^n independently, $1 \leq k \leq n$ such that X_i 's satisfy (1) and (2) with $\int_{\mathbb{T}^n} X_i(x) dx \neq 0$, $i = 1, \ldots, k$, then the α -function has k-dimensional flat part near c = 0.

This is a direct consequence of Lemma.

Theorem

If the critical set E of U of the system $L(x, v) = \frac{1}{2}|v|^2 - U(x)$ does not contain a simple closed homotopically nontrivial smooth curve, the α -function has fully dimensional flat part near c = 0.

A brief introduction on Mather theory and weak KAM theory

Integrability

Example 1 when n = 1, and $\max_{x \in \mathbb{T}^n} U(x) = 0$, the flat part $|c| \leq \int_{\mathbb{T}^1} \kappa(x) dx$ of the α -function is well known, see e.g. the famous preprint of Lions-Papanicolaou-Varadhan. Let $V_{\varepsilon}(x) = U(x) - \varepsilon$ for $\varepsilon > 0$, then

$$L^0_{\varepsilon}(x,v) - \langle X_{\varepsilon}(x), v \rangle = \frac{1}{2} |v|^2 - V_{\varepsilon}(x) - \langle X_{\varepsilon}(x), v \rangle = L^1_{\varepsilon}(x,v),$$

where X_{ε} satisfies (1) and (2) for the potential V_{ε} . The existence of such a X_{ε} can be easily obtained by $X_{\varepsilon} = \sqrt{-V_{\varepsilon}}$. Denote by α_{ε}^{0} and α_{ε}^{1} the α -function of L_{ε}^{0} and L_{ε}^{1} respectively, then we have $\alpha_{\varepsilon}^{1}(0) = \alpha_{\varepsilon}^{0}(c_{\varepsilon}) = 0$ by Lemma , where $c_{\varepsilon} = \int_{\mathbb{T}^{1}} X_{\varepsilon}(x) dx$. This implies $\alpha^{0}(c_{\varepsilon}) - \varepsilon = 0$ for any $\varepsilon > 0$. So $\alpha(c_{0}) = 0$ by the continuity of c_{ε} with respect to ε , and $c_{0} \neq 0$ if $U \not\equiv 0$. Thus the α -function has flat part on $[0, c_{0}]$, and the case of $[-c_{0}, 0]$ is similar by choosing $X_{\varepsilon} = -\sqrt{-V_{\varepsilon}}$.

A brief introduction on Mather theory and weak KAM theory

Integrability

Proof of Theorem.

If the critical set E of U does not contain a simple closed homotopically nontrivial smooth curve, then there exist n independent gradient-like vector fields $\{X_{i,\varepsilon}\}_{i=1}^n$ for $V_{\varepsilon}(x) = U(x) - \varepsilon$ as in Example 1. Apply the argument in Example 1 to each $X_{i,\varepsilon}$, we can see there exists $c_{0,i} \neq 0$ such that the α -function has flat part in the direction of $c_{0,i}$. The independency of $X_{i,\varepsilon}$ means the independency of such $c_{0,i}$'s, thus we get the conclusion.

A brief introductio on Mather theory and weak KAM theory

Integrability

Thank you.