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Abstract

The phenomenon of resonance will be dealt with from the vamtpof dy-
namical systems depending on parameters and their biilomsatResonance
phenomena are associated to open subsets in the paranaeenshile their
complement corresponds to quasi-periodicity and chaos |dtter phenom-
ena occur for parameter values in fractal sets of positivasme. We de-
scribe a universal phenomenon that plays an important nolaadelling.
This paper gives a summary of the background theory, veigekédmples.

1 Whatis resonance?

A heuristic definition of resonance considers a dynamicstiesy, usually depend-
ing on parameters, with several oscillatory subsystemmbpea rational ratio of
frequencies and a resulting combined and compatible mtt@anmay be ampli-
fied as well. Often the latter motion is also periodic, butabhde more compli-
cated as will be shown below. We shall take a rather eclediict of view, dis-
cussing several examples first. Later we shall turn to a nuofaeiversal cases,
these are context-free models that occur generically insgeiem of sufficiently
high-dimensionial state and parameter space.

Among the examples are the famous problem of Huygens’s sgniding clocks
and that of the Botafumeiro in the Cathedral of Santiago da@xstela, but also
we briefly touch on tidal resonances in the planetary sysfemuniversal models
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Figure 1: Amplitude-response diagrams in the R)—plane. Left: the periodi-
cally driven harmonic oscillatofl) and right: the driven Duffing oscillatdR).

we shall deal with the Hopf—-Neimark—Sacker bifurcationd #me Hopf saddle-
node bifurcation for mappings. The latter two examples forext cases’ in the
development of generic bifurcation theory. The tamiversalrefers to the con-
text independence of their occurrence: in any with certainegic specifications
these bifurcations occur in a persistent way. We witnessarease in complex-
ity in the sense that in the parameter space the resonanbipiesa correspond
to an open & dense subset union of tongues, while in the congie of this a
nowhere dense set of positive measure exists, corresgpitalimulti- or quasi-
periodic dynamics. This nowhere dense set has a fractal gfepim a sense that
will be explained later. From the above it follows that thislgal array of reso-
nance tongues and fractal geometry has a universal charageve shall see,
both locally and globally Singularity Theory can give orgamg principles. It
should be noted at once that next to periodic and quasigtierttlynamics also
forms of chaotic dynamics will show up.

Remark. In many cases the resonant bifurcations are repeated asenadier
scales inside the tongues, leading to an infinite regressn We have to extend
the notion of open & dense tesidualand that of nowhere dense toeagre
Here a residual set contains a countable intersection of &p#ense sets, while
a meagre set is a countable union of nowhere dense sets. Omtirses also
speaks in terms affs— or F,,—sets, respectively [69].



1.1 Periodically driven oscillators

Many of the resonant phenomena of interest to us are modeyigeeriodically
driven or coupled oscillators. To fix thoughts we now prederm examples,
namely the harmonic and the Duffing oscillator subjectedsoglic forcing.

1.1.1 The driven harmonic oscillator

One of the simplest class-room examples of resonance oottine harmonic
oscillator with periodic forcing

i = —a’r — ci + e sin(wt) (1)

with z,t € R, wherec > 0 is the damping and where> 0 controls the size of
the forcing. The forcing has frequeney> 0 and therefore has peridd= 27 /w.
The ‘response’ solution is periodic

z(t) = Rsin(wt + ¢)

with this same frequency. Its amplitude and phase are giyen b

€ cw
R = \/(w2 e andtan ¢ = T

Fixing «, ¢ ande we considerR as a function ofu, see the amplitude-response
diagram in Figure 1 (left) where the response amplitiids plotted as a function
of w.

1.1.2 The driven Duffing oscillator

As a non-linear variation on the above we consider the Duffiggation with
periodic forcing
i = —a’r — ci — 62° + esin(wt), 2)

wherea, w, ¢, e and are positive and whedewith 0 < § < 1 is considered as a
perturbation parameter. Fixing c ande as before, by successive approximation
of a solution

x(t) = Rsin(wt + ¢),

we obtain the following approximative relation betweeand R:
e = (@ — 0 + W) B + §6(w” — o®)R' + §0°R°,
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with a similar approximation for the phage compare with Stoker [83], also
see [21]. In Figure 1 (right) we depict the correspondingveun the (w, R)—
plane, which now no longer is a graph.

Remarks

- One of the exciting things about resonance concerns thespdahe ampli-
tude R that can be quite high, even wherés still moderate. Systems like
(1) and(2) form models ometaphordor various resonance phenomenain
daily life. In many cases high resonance peaks one needstion'e away
from the resonance value corresponding to the peak, thirskrafrching
platoon of soldiers that have to go out of pace when crossbrifge.

- In other cases, like when ‘tuning’ the radio receiver to gaia channel,
one takes advantage of the peak.

- It should be noted that the nonline@) dynamically is far richer than the
linear cas€1l), e.g., see [54] and references therein.
1.1.3 Geometrical considerations

In both cases of the driven oscillators witnessed abovettite space iR? x T! =
{z,y, 2z}, where

o=y 3)
) = a(x,y,0) +esinz
z = w,
with a(x,y,0) = —a’x — cy — dx3, whered = 0 in the harmonic example. The

second factor is the circl&' = R/(27Z) which takes into account the periodicity
of the systems in. The response motion of the forait) = Rsin(wt + ¢) then
corresponds to a closed curve

x Rsin(wt + ¢)
y | )= wRcos(wt+¢) |. (4)
z wt + ¢

This closed curve, when projected onto {hey)—plane, exactly forms an ellipse.



V.2

hupaens’ clocks

[Fig-75.1%)

e

1665.

22 febr, 1665.
Diebus 4 aut 5 horologiorum duarum
novorum in quibus catenuke [Fig. 75], mi-
C A ram concordiam obfervaveram, ita ut ne
-“l minimo quidem exceflu alcerum ab altero
U I

_r' fuperareenr. fed confonarent femperrecipro-

cationes utriusque perpendiculi. unde cum
parvo [patio inter (e horologia diltarent,
fympathiz quandam #) quasi alterum ab al-
teroafficerecur fufpicari coepi, ut experimen-
tum caperem turbavi alcerius penduli reditus
ne fimul incederent fed quadrante hore poft
vel femihora rurfus concordare inveni.

Figure 2: Huygens’s synchronizing clocks [57].

We now can describe this motion in terms ¢falimensional toru? = T! x T!,
parametrized by two variables andy, in a system of differential equations of
the format

Y1 = wi (5)

902 = Wsy,

wherep; = z andw; = w and where forp, we take the phase of the motion on
the ellipse. Thusy, exactly is the time parametrization of this motion, scaled t
the period®r: in this casev, = w; = w. Therefore in this way, the curv@) can
be seen as &: 1 torus knot.

To view resonant motion in terms of torus dynamics turns oubeé extremely
useful and this can also be applied to coupled oscillatorsre classical ex-
ample is given by Christiaan Huygens [57], who in 1665 obséthe following
phenomenon, see Figure 2. Two nearly identical pendulugkslmounted on a
not completely rigid horizontal beam tend to synchronizeordbver, when the
pendula both move in the vertical plane through the beany, hlage a tendency
to synchronize in anti-phase motion. A simple model dessrihis system in the
format (5), where the angleg, andy, are the phases of the two oscillators and
where againu; = wy. Later on we will come back to this and other examples
where we will also see other frequency ratigs: ws.



1.2 Torus flows and circle mappings

In this section we turn to the dynamics on thalimensional torug? from § 1.1.3
for its own sake, introducing the weakly coupled system

O1 = wi+efilpr, p2) (6)
Py = wa+efopr, ).

Here f; and f, are 2r—periodic functions in both variables. Also we use a pa-
rametere to control the strength of the coupling. Fer= 0 we retrieve the
format(5). If 77 andT; are the respective periods of oscillation, thgn= 27 /T;
andw, = 27 /T5. We first define the Poincaré mapping from the cifEldo itself
and then introduce the rotation number.

1.2.1 The Poincaé mapping

Ifin (6) the sizel¢| of the coupling is not too large, a first-return Poincaré piag
P:T'—T! (7)

is defined, as we shall explain now, also see Figure 3. Witlestiticting general-
ity we can take the generating circl® x {0} for simplicity baptisingy = ;. In
that case we take the integral curve with initial stgte, v2) = (¢, 0) and follow
this till (¢1,02) = (P(p),0), counting mo®rZ. Itis easy to see that — Id
should be a periodic function ip, which givesP the general format

P:yp— o+ 2ra+ef(p), (8)

wherea = w,/w; and wheref is a2r—periodic function.

Consideration of th&''—dynamics generated by iteration Bfgives a lot of in-
formation about the origindl'>flow, in particular its asymptotic properties as
t — oo. For instance, a fixed point attractor £f corresponds to an attracting
periodic orbit of the flow which form a : 1 torus knot as we saw at the end of
¢ 1.1. Similarly a periodic attractor a? of periodq corresponds to an attracting
periodic orbit of the flow. In general, periodicity will bela¢ed to resonance, but
to explain this further we need the notion of rotation number



Figure 3: Poincaré mapping of a torus flow [39].

1.2.2 Rotation number

For orientation-preserving homeomorphisiis: T* — T! Poincaré has left
us the extremely useful concept aftation numberp(P), which describes the
average amount of rotation as follows:

o(P) = - lim L(P)"(¢) modZ. )

HereP : R — R is a (non-unique) lift of? which makes the diagram
R £, R

pr | Lpr

Tl i) r]rl

commute, wherer : R — T! is the natural projectiop +— . This means
that in the formulg9) we do not count modul@r, but keep counting ifR.

From [49, 68] we quote a number of propertie0P):
1. o(P) depends neither on the choice of the Ffinor on the choice ap;

2. o(P) is invariant under topological conjugation. This meang tha: :
T! — T! is another orientation-preserving homeomorphism, then

o(hPR™) = o P);
3. If P: ¢ — ¢+ 2mais arigid rotation the(P) = a modZ.
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4. o(P) € Q precisely whenP has a periodic point. Moreoves(P) = p/q
with p andq relatively prime corresponds topa ¢ torus knot.

5. If P is of classC? and o(P) = « for a € R\ Q, then, by a result of
Denjoy, the mapping is topologically conjugated to the rigid rotatign—
p+2ma.

Recall that in that case any orl{iP" () },.cz forms a dense subset @f.
The corresponding dynamics is callgdasi-periodic

6. If P depends continuously on a parameter, then so daes

1.2.3 The Arnold family of circle mappings

A famous example is formed by the Arnold family
Ay p— p+2ra+esing (20)

of circle mappings. So this is the general fornj@t where we chosdg(y) =
: 1
sin .

Periodicity. It is instructive to consider its fixed points, given by theiation

Aa,e (90) = 907

or, equivalently,

. 2o
singp = ———.
€

A brief graphical inspection reveals thabd 277 this equation has exactly two

solutions for
le| > 27|a.

In Figure 4 this region, bounded by the two straight lines +2ra, is depicted
fore > 0. Itis not hard to see that one of the fixed points is attracimgjthe other
repelling. At the boundarje| = 27|«| these annihilate one another in a saddle-
node bifurcation. For the entire regi¢t] > 27|a| one haso(A, ) = 0 modZ.
This region is called the Arnold tongue of rotation number

For simplicity we takeée| < 1 which ensures thdfL0) is a circle diffeomorphism; fog| > 1
the mapping becomes a cir@adomorphisnand the current approach breaks down.



Figure 4: Resonance tongues in the Arnold faniilQ).

From the properties of 1.2.2 it follows that, for(a, ) = (p/q,0) with p andq
relatively prime, one hag(A,.) = p/q. One can show that from each, ) =
(p/q,0) an Arnold tongue emanates, in which for all the parametentpoi, <)

one haso(A,.) = p/q, see Figure 4. The ‘sharpness’, i.e., the order of contact
of the boundaries of thg/g—tongue at«,c) = (p/q,0) exactly is of order,

see [1, 3, 33].

Fixinge = ¢o > 0 small, we consider the graph of — o(A,.). By another
general property of 1.2.2, this function is continuous. Moreover, for everyaat
nal valuep/q it is constant on some plateau, corresponding tgflgetongue, see
Figure 4. The total result is a devil’'s staircase as depictédgure 5.

Quasi-periodicity. In between the tongues the rotation numpgk, ) is irra-
tional and by the properties §f1.2.2 we know that the corresponding iteration
dynamics ofA is quasi-periodic and that each individual orbits densdy/Ti'.

Open & dense versus nowhere dense.In general the o, )—plane of parame-
ters contains a catalogue of the circle dynamics. Againdixin- ¢, > 0 small,
consider the corresponding horizontal line in thes)—plane of parameters. We
witness the following, also see Figure 5 and compare with) &l references
therein. The periodic case corresponds to an open & densetsoitthe line, and
the quasi-periodic case to a nowhere dense subset, whitte in-tlimensional
situation is a Cantor set.

Diophantic rotation numbers. Quasi-periodicity correspondsgo= o(P, .,) ¢
Q. If we restrict even further to Diophantineby requiring that for constants

9



Figure 5: Devil's staircase related to the Arnold fam(iho).

T > 2 and~y > 0, for all rationalsp/q

-2z )
q| ~ lal”

the conjugations of?, ., with the rigid rotationy — ¢ + 2mp can be taken
smooth [1, 39]. The rotation numbepssatisfying(11) form a Cantor subset
of the former, which has positive Lebesgue measure, whiglghmosingy =
v(g0) = O(ep), can be shown to tend to full measuresgs— 0. A fortiori this
holds for the original Cantor set given byF, .,) ¢ Q.

Fractal geometry. The Cantor sets under consideration, since they havesiti
Lebesgue measure, have Hausdorff dimension equial Moreover Cantor sets
have topological dimensioh since they are totally diconnected: every point has
arbitrarily small neighbourhoods with empty boundary. Thet that the Haus-
dorff dimension strictly exceeds the topological dimensga characterisation of
fractals, see page 15 of [63]. So our Cantor sets are fradth&y also show a lot
of self-similarity, a property shared with many other fedst

Beyond the Arnold family (10) ... The organisation of the parameter space
in an open & dense set on the one hand, versus a nowhere deaxttal $et of
positive measure turns out to be quite universal, also s&gde J® begin with, an
arbitrary smooth (Poincaré) circle mapping of the moreegahformat(8)

P,.:p— p+2ra+cf(p)
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turns out to have an array of resonance tongues similar tartingld family (10),
forming an open & dense set that corresponds to periodieitly,a fractal comple-
ment which is nowhere dense and of positive measure thasmmwnds to quasi-
periodicity.

The only point of difference witt{10) is formed by the exact ‘sharpness’ of the
tongues, which depends on the Fourier coefficients of thetiom f. In particular

a tongue at the tipa, ) = (p/q,0) has transverse boundaries if and only if the
gth Fourier coefficient does not vanish.

1.2.4 Link with resonance

Returning to the driven oscillator or the two coupled ostdts we now link pe-
riodicity of the Poincaré mappin@) with resonance. For simplicity we keég
sufficiently small to ensure this mapping to be a diffeomasph

As observed iy 1.2.2 the fact thata, ) belongs to they/g—tongue, i.e., that
o(P..c) = p/q, means that the motion takes place g g torus knot. Generically
these periodic orbits come in attracting and repellingspaird the visible motion
takes place on such a periodic attractor. In view of our gandefinition’ of
resonance in that case we say that the oscillators gre inresonance, one also
speaks ophase-lockingr synchronisation In the case ofl . 1 sometimes the
termentrainmentis being used.

If (a,¢) is outside the tongues, by the Denjoy theory mentioned betbe torus
motion takes place on a dense orbit. We also call this torugmquasi-periodic.
In this case fronkAm Theory [5, 21, 39] we derive the following. For Diophan-
tine o = o(P, ), up to a smooth transformation the Poincaré mapping reads

Y=+ 2mp.
and the two oscillators correspondingly have the familanfat

Y1 = wr
¢2 = Wsy,
such thato(P,.) = ws/w; for all € with |¢| < 1. In the parameter space this

corresponds to a piece of curve throughe) = (o,0), parametrized by. We
emphasize that this uncountable union of these curves lsis/paneasure.
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1.3 Conclusions and examples

The literature on resonance phenomena is immense, apartliereferences al-
ready given, for instance see [3, 39, 54, 84, 87] and thelidgtaphies. For even
more references see below. The present point of view modstsant systems
in terms of dynamical systems depending on parameters.ewhsonance takes
place in a persistent way.

In the parameter space the resonant set is part of the Hifumcset, which forms
a catalogue for transitions to various types of dynamics. aWWte add to the
general discussion on this subject is the overall fractahggry that usually man-
ifests itself in the complement of all the resonances. We pmgent a couple of
examples.

Huygens'’s clocks. Returning to Huygens’s synchronizing clocks we first con-
sider the problem from the torus flow point of view. We have alrmost identical
oscillators that are weakly coupled. This means th&bjrfor the frequencies we
havew;, ~ w, and thatc| is small. For the Poincaré mappi(8)

Poe(p) = ¢+ 2ma+cf(p)

we only make the assumption that the first Fourier coefficeinf = f(p)
does not vanish, which ensures that thé—tongue boundaries meet transverse
at (a,e) = (0,0), where the first) has to be taken mod. Compare with Fig-
ure 4.

This implies that «, ) belongs to thd /1-tongue, i.e., that the pendulum clocks
are inl : 1 resonance, a situation described before as entrainmeabvga form

of synchronization. This gives a partial explanation of phenomena discovered
by Huygens [57].

Remarks.

- Note that thel : 1 resonance of the two clocks could be obtained under
quite weak assumptions. If one also wants to understandhidsepand anti-
phase motions, the coupling between the clocks has to bhededlinto the
dynamics, compare with [9, 73] and references therein.

- For another application of these ideas in terms of circadigthms and the
response to stimuli see [8]. Here it turns out that next tolthé ‘entrain-
ment’ resonance also certain other resonances have lmaleggnificance.

12



- The above ideas can be largely extended to the case of narévtio oscil-
lators. For examples in models for the visual neurocorteq%e, 17].

Resonances in the solar system.From ancient times on resonances have been
known to occur in solar system, which are more or less in tivé spthe present
section. A well-known example is the orbital: 2 : 4 resonance of Jupiter’s
moons Ganymede, Europa, and lo which was studied by De $8@&r81] using

the ‘méthodes nouvelles’ of Poincaré [72]. The 5 orbital resonance between
Jupiter and Saturn is described by Moser et al. [65, 66, 78]es& and other
resonances by certain authors are being held responsalgegs in the rings of
Saturn and in the asteroid belt.

Another type of resonance is the spin-orbit resonance. Asxample thereof, the
Moon is ‘captured by’ the Earth in &: 1 resonance: the lunar day with respect
to the Earth is (approximately) equal to one month. Simjl&iuto and Charon
have caught each other in such al resonance: as an approximately rigid body
the two orbit around the Sun. Interestingly, the planet Mergs captured in 8

. 2 spin-orbit resonance around the Sun [47].

Remarks.

- The spin orbit resonances are explained by tidal forcesin&tance, the
rotation of the Moon has been slowed down to a standstill dsf friction
brought about largely by the tidal force exerted by the Ea@iimilarly the
rotation of the Earth in the very long run will be put to a statidl by the
tidal forces of mainly the Moon. But probably by that time t8an has
already turned into a red giant.

- This brings us to the subject of adiabatically changingesys as described
and summarized by Arnold [2, 3] and which may be used to moaleh s
slow changes. One may perhaps expect that tHespin orbit resonance of
Mercury in the very long run, and after quite a number of titamss, will
turn into anothet : 1 resonance. This part of nonlinear dynamical systems
still is largely unexplored.

2 Periodically driven oscillators revisited

We now return to periodically driven oscillators, showiigt under certain cir-
cumstances exactly the set-upsdE.2 applies.

13



Figure 6: Botafumeiro in Santiago de Compostela.

As a motivating example we discuss the Botafumeiro in theezital of Santiago
de Compostela, see Figure 6. Here a large incense contaisaspended by a
pully in the dome where it can swing in the longitudinal dtren of the church.
A few men pull up the container when it approaches the growmadet go after,
thereby creating a periodic forcing and in this way creatingtable motion of
exactly twice the period of the forcing.

2.1 Parametric resonance
As a another model consider the parametrically driven lagorl
T+ (a+ef(t)sine =0 (12)

with ¢(t + 27) = ¢(t), see [41]. Here ande are considered as parametéiSor
the periodic functiory’ we have studied several examples, namely

f(t) = cost and (13)
= cost+ 3cos(2t) and
= signum(cost),

corresponding to the Mathieu case, the perturbed Mathiee aad the square
case. In this setting the issue is whether the triziatperiodic solution

z(t) =0 =(t)

2For ‘historical’ reasons we use the letteinstead ofx? as we did earlier.
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Figure 7: Stability diagrams of Mathieu, perturbed Mathaeul square case [32].

is elliptic, hence stable, or not. For any of such systéh2s from the points
(a,e) = (2K%,0), k=0,1,2,...

tongues emanate in ttie, £)—plane, where inside the trivial—periodic solution
is hyperbolic, hence unstable. On the tongue boundarigesdthution is parabolic.
See Figure 7 and compare with [28, 32]. We note that this gigedo a discrete
union of tongues, where again the sharpness is governedeblyalrier coeffi-
cients of the periodic function = ¢(t).

Subharmonics and covering spaces. On the tongue boundaries subharmonic
bifurcations occur, see [21, 41, 42] where each bifurcatiam be understood in
terms of a pitchfork bifurcation on a suitable covering spac

Generally, for they : ¢ resonance this is constructed as follows. Writing
z=x+1 Bx,
where we identifyC = R?, the covering map is given by the Van der Pol transfor-

mation
II:CxR/(2mrqZ) — C x R/(27Z)

(¢, 1) — (¢e'™/7,t (mod 2 Z)) .
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Figure 8: Orbits of the Poincaré mapping of the swithg).

On the covering space the grofipof decktransformations is generated by
(C, 1) — (Ce*™/ t — 27),

which means thall o T' = II for anyT € D.2 Note thatD is cyclic of order

q, for details see [41, 42]. Instead of the original systentzr) we pull the
system back alongj, so obtaining &,—equivariant system on tl{€, ¢)—covering
space. In fact this definesla: 1 correspondence of systems and usually it is
most convenient to work on the covering space. Generallyhertovering space
equivariant Singularity Theory, see [18, 52, 53] and refees therein, as well as
equivariankAM Theory [20, 21, 27] can be committed.

In the present case this construction is only needed for= £ /2. The strongest
of these resonances occurs inside the tongue labeléd-by, where a cylinder
with Z,—symmetry is the double cover of a Mobius strip, for a remamkthis
see [54]. This is the setting for the simplest subharmorfigrtation, namely a
period doubling bifurcation: inside the tongue the tridal-periodic solution is
unstable but a stable periodic orbit occurs of pedoadAt the boundary a period-
doubling bifurcation takes place. The correspondidgequivariant bifurcation
on the covering space exactly is the pitchfork. The corredpa period doubled
periodic motion is exactly the one that occurs in the Botauimexample. See
Figure 8 for ‘phase portaits’ of the Poincaré mapping, fleft=: = 0.25 and right
for e = 0.40

Remarks.

3The co-ordinate§(, t) sometimes are also called co-rotating.
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- The geometric complexity of the individual tongues in Fgd can be de-
scribed by Singularity Theory; in fact it turns out that we aealing with
typeA,,_q, see [32, 41].

- The parametrid : 2 resonance sometimes also is calledghemetric roll
By this mechanism ships have been known to capsize

- In Figure 8 also invariant circles can be witnessedM Theory, as dis-
cussed before, in particular an application of Moser’s TWiseorem [64],
shows that the union of such invariant circles carrying gpasiodic dy-
namics has positive measure.

- In both cases the cloud of points is formed by just one or twmt® un-
der the iteration of the mapping . These are associated totiort orbits
related to the upside down unstable periodic solution, Wigizes rise to
horseshoes. Therefore such an orbit is chaotic since ittsisye topolog-
ical entropy, see [39] and references therein. A classwajecture is that
the cloud densely fills a subset of the plane of positive Lgbesneasure
on which the Poincaré mapping is ergodic {4].

2.2 The Hill-Schrodinger equation

Another famous equation is a linearized versioril#f) where the forcing term is
quasi-periodic irnt:
i+ (a+ef(t)z =0, (14)

where nowf(t) = F(wit,wst, ... ,wyt) for a functionF' : T" — R, see [29, 50,
67]. As in the case of 1.2 the countable union of tongues again becomes open
& dense and separated by a nowhere dense set of positive ragdstermined

by Diophantine conditions. The geometry of the individuadgues for small|

is exactly as in the periodic case. For larger valuegpthe situation is more
complicated also involving non-reducible quasi-periddit, compare with [31].

The equation14) happens to be the eigenvalue equation of thdimensional
Schrodinger operator with quasi-periodic potential. Weelsketch how our geo-
metric approach fits within the corresponding operatormpnebhis operator reads

(Hepz) (t) = —i(t) — ef () () (15)

4Also known as the metric entropy conjecture.
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Figure 9: Devil's staircase in the Schrodinger equatiotihwguasi-periodic poten-
tial: w; = 1 andw, = 1(v/5 — 1), see [29].

2

with potentials f; it acts on wave functions = z(t) € L*(R).

We like to note that in the corresponding literature usudlé/value ot = ¢y # 0
is fixed and the intersection of the horizontal lme- £, with a tongue is referred
to asgap it is a gap in the spectrum of the Schrodinger operaidy). The
approach with tongues and the results of [29] regardingAthe ;—singularity
therefore leads to a generic gap closing theory.

Remarks.

- In the context of Schrodinger operators the letters aseh somewhat
differently. In particular, instead of(¢) one often considers(x), which
gives this theory a spatial interpretation. Also instead pft) one uses
V(x), compare with [67].

- For a fixed value = ¢, the Diophantine Cantor set leads to Cantor spec-

trum. The total picture is illustrated in the devil's staise of Figure 9,
where we took: = 2, w; = 1 andw, = 1(+/5 — 1). The rotation numbes
is defined almost as before [29] as a functiom of

- The nonlinear equation
I+ (a+ef(t))sinz =0,

with ¢ quasi-periodic is dealt with in [20]. In comparison with thase

of periodic f the approximating, averaged, situation is almost the same.

However, the infinite number of resonances and the Cantamzave saw
before leads to an infinite regress of the bifurcation séesafFor this use
was made of equivariant HamiltoniaM Theory on a suitable covering
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Figure 10: Phase portrait of the free Van der Pol oscille@8i.[
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space [21, 27]. As a consequence the resonant set beconhsalesd
the quasi-periodic set meagre. Compare this with [7, 43,484,n the
dissipative case.

2.3 Driven and coupled Van der Pol-like oscillators

The examples of the driven oscillator §nl.1 were based on approximations of
the the damped pendulum, the free oscillation of which asatands to the lower
equilibriumz = 0, £ = 0. Our present interest is formed by Van der Pol-like
oscillators that forz| and|z| sufficiently small have negative damping, for this
approach compare with [21, 39]. Such oscillators are knaagctur in electron-
ics [74, 75, 77].

Therefore our starting point is the periodically driven \@er Pol oscillator in a
slightly more general form

i =—a’r —ci—a(x,2) +ef(x,,t;¢), (16)
where the functiory is 2r—periodic in the time. Van der Pol originally consid-
ereda(z, %) = br?z and f(z,2,t;¢) = sint. We here assume thatandq are
sufficiently smooth, say of clags™ or real-analytic. The important restriction on
a is that the corresponding free oscillator has a hyperbdtiactor. For a phase
portrait in the(z, ©)—plane, see Figure 10. Passing to the system form

o=y (17)
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= —a’r —cy —a(x,y) +eF(v,y, 2;€)

po= 1,

as before, we get &-dimensional state spa® x T' = {(z,y), 2z}, So with
angular variable. Let us denote the corresponding vector field¥ay..

This brings us back to the general setting @Horus flow, with two phase angles
1, P2, €.9., Withy, the phase of the free oscillator, i.e., its time parameiona
scaled to perio@r, andyp, = 2. Fore = (0 we so obtain

Y1 = W

SOZ = Wsy,

which is of the familiar format5). From here the theory df 1.2 applies in al
its complexity, with in the parameter space an open & dermantable union of
resonances and a fractal set of positive measure regardasg-periodicity.

Similar results hold fom coupled Van der Pol type oscillators, now with state
spaceT™, the cartesian product of copies ofT!. Next to periodic and quasi-
periodic motion, now also chaotic motions occur, see [39] @ferences therein.

3 Universal studies

Instead of studying classes of driven or coupled osciltatoe now turn to a few
universal cases of ‘generic’ bifurcations. The first of thesthe Hopf-Neimark-
Sacker bifurcation for diffeomorphisms, which has occoeces codimension.
This means that the bifurcation occurs persistently in gerie-parameter fami-
lies. However, the open & dense occurrence of countably mesgnances and
the complementary fractal geometry of positive measurkaerbifurcation set are
only persistent in generiz—parameter families. A second bifurcation we study is
the Hopf saddle-node bifurcation for diffeomorphisms vehee use3 parameters
for describing the persistent complexity of the bifurcatget.

3.1 The Hopf-N@mark-Sacker bifurcation

We start with the Hopf-Neimark-Sacker bifurcation forffddmorphisms, but also
discuss certain consequences for systems of differemnfigteons. As an example
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to illustrate our ideas consider the following Duffing—Vaer dPol-Liénard type
driven oscillator

&+ (v +v32%) i + v + g2 + 2° = e(1 + 2%) sint, (18)

the coefficients of which can be considered as parameter® tNat for the free
oscillator at; = 0 the eigenvalues of the linear part(at ©) = (0,0) cross the
imaginary axis atti,/v,. Excluding the strong resonances whefg, = p/q for
p andq relatively prime withg < 5 and assuming that the constantsandv,
are generically chosen, the organization of thg v»)—plane, forv;, consists of
an an open & dense union of countably many resonance tongpasased by a
nowhere dense set of positive measure. This situation ipaaable to the Arnold
family (10) and Figure 4, at least for large values;of

3.1.1 The nondegerate case
The general set-up just considers a mapping
P:R?> — R? (29)

around a fixed point, saf(0) = 0, where the eigenvalues of the linear part read
en1 272 with |1, small. We consider a fixed resonange, v») = (0, p%/¢?)
with p andgq relatively prime, where we will nee2lparameters to versally unfold
the linear part [3, 21]. Our main interest is with the pereploints of period;, so

in solving the equation

Pz, y) = (z,y). (20)
The zeroes oP? —1d are studied by a Lyapunov—Schmidt reduction, which leads
to aZ,—equivariant family of functions

G.(2) = 2B,(u) + C,z97 " + O(|2]9), (21)

wherez is an appropriate complex variable and whégis a polynomial inu =
|z|? of degree less thafy — 1)/2. We study the corresponding discriminant set
given by

Gu(2) =0 and detD,G,(z) =0. (22)

Hereu is an unfolding-multiparameter detuning the resonanceaatihThe way
to study this discriminant set is [#,—equivariant contact equivalence [18, 22, 23,
24, 25]. In the present non-degenerate ¢22 can be reduced to the polynomial
normal form

Gy (2) = 2(o + |2") + 777, (23)
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Figure 11: Tongue in nondegenerate resonance 7 of the Hopf-Neimark-
Sacker bifurcation [18, 22, 23, 25].

\

for a complex parameter. In general this set turns out to be a ‘tongue’ ending in
a cusp of sharpnes$g — 2)/2, which is part of a familiar bifurcation diagram with
two periodic orbits of period; inside that annihilate one another at the tongue
boundaries in a saddle-node or fold bifurcation [3].

See Figure 11 which is embedded in the context of the equét®nof which P

is a Poincaré mapping. Here the dynamicsadilso has been described in terms
of a Poincaré—Takens interpolating normal form approxions, e.g., see [13, 41,
42, 85].

Globally a countable union of such cusps is separated by &@e@vdense set
of positive measure, corresponding to invariant circleth\wiophantine rotation
number. As before, see Figure 4, the latter set containsaletaf geometry.

Remarks.

- The above results, summarized from [18, 22, 23, 25], areiyaitained
by Z,—equivariant Singularity Theory.

- The strong resonances wigh= 1,2,3 and4 form a completely different
story where the Singularity Theory is far more involved [8].8Still, since
the higher order resonances accumulate at the bounddrezs, it fractal
geometry around, always of positive measure.

- Regarding structural stability of unfoldings &fas in(19) under topologi-
cal conjugation, all hopes had already disappeared siride [6
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Figure 12: Two-dimensionsional tomography in a mildly degrate resonance
q = 7 of the Hopf—-Neimark—Sacker bifurcation [18, 22, 23, 25].

3.1.2 A mildly degenerate case

In the mildly degenerate case the ‘Hopf’ coefficient in theyious example van-
ishes and is introduced as an extra parameter. This lead®tea normal form

GE\T/(,Z) =z(o+ 7|22 + |2|*) + 2071, (24)

which is now parametrized ovet? =~ R*, hence of codimensiod. As be-
fore [18, 24] the normal forni24) is structurally stable undé&t,—equivariant con-
tact equivalence. Here the Singularity Theory is more cemghvolving folds,
cusps, a swallowtail and a Whitney umbrella. The compléigrdation diagram
is more involved, even at the level of Poincaré—Takens abform vector field
approximations. In Figure 12, again for the cgse 7, a2—dimensional tomog-
raphy is shown of the bifurcation set, in which still a tondike structure can be
discerned, See [23, 25] where alsedimensional tomographies are presented.

To illustrate a mildly degenerate case of the Hopf—-Neim&dcker bifurcation
one may well consider the preceding Duffing—Van der Polr&ié type driven
oscillator(18) where we need all four parameters.
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3.1.3 Concluding remarks

For both cases of the Hopf—Neimark—Sacker bifurcation aesta good grip on
the part of the bifurcation set that governs the number abger points. The full

bifurcation set is far more involved and the correspondiyigagnics is described
only at the level of Poincaré—Takens normal-form vectdd§¢13, 23, 25]. We
note that homo- and heteroclinic phenomena occur at a fltrais in terms of
the bifurcation parameters [30, 38, 71].

3.2 The Hopf saddle-node bifurcation for diffeomorphisms

As a continuation of the above programme, we now consideHibg saddle-
node (or fold Hopf) bifurcation for diffeomorphisms [35, ,387], in which the
central singularity is a fixed point of &dimensional diffeomorphism, such that
the eigenvalues of the linear part at bifurcation aende* ', where

™ £ 1 for n=1,2,3 and 4, (25)

so excluding strong resonances as in the Hopf—-Neimarlketeaase of 3.1. The
Hopf saddle-node bifurcation for flows is well-known [40 ] 5dspecially because
of the subordinate Hopf—-Neimark—Sacker a&ithikov homoclinic bifurcation.
Our main interest is how the Hopf—-Nelmark—Sacker bifuoteis being changed
into one of the simplest quasi-periodic bifurcations near. & resonance.

3.2.1 From vector fields to mappings

The linear part of the vector field at bifurcation has eigémes0 and+i«. This
linear part generates an axial symmetry that in a normal foroecedure can be
pushed stepwise over the entire Taylor series, see [13]edarknces. This makes
it possible to first consider axially symmetric systemst then out to be topolog-
ically determined by theisrd-order truncation given by

W = (= +ia)w —awz — wz? (26)
i = —f — sww — 22

wherew € C andz € R and where3; andgj; are unfolding parameters [54, 58].
A scaling; = 12, 8, = leads to a vector field

—~u 4 2 /Y w — awz — ywz?

77“7&
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Figure 13: Lyapunov diagram ¢f in the(u, §/(27) )-parameter plane. The colors
correspond to distinct classes of attractorg-dB5, 37]. See table 1 for the color
coding.

From this an axially symmetric map
w e?Mow[l — y(yu + az + v2%)]
(z ) H( 2= A(=1+ [wf +2%) (28)

is obtained in a kind of Euler step. To studg a5 resonance we take, = 2/5,
writing o = g + 9, and perturb to

Gy ( 1;) ) . ( e w(l —y(yp+ az +72?)] ) N ( V(e + £22%) ) |

z—(=14 |w|*+ 2?) yiesRe wd
(29)

by adding axially non-symmetric orderesonant terms

0 0
4 5
w 0 and Rew P

The scaling parameterand the other constants are fixed suitably.
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color Lyapunov exponents attractor type

red U >0=1Vy > {3 strange attractor

yellow 0 >0> 0y > (3 strange attractor

blue 0 =0>10,=1; invariant circle of focus type
green b =40y =0> /{5 invariant 2-torus

black U =0>10y > (3 invariant circle of node type
grey 0> 0, >0y =13 fixed point of focus type
fuchsia 0> /¢ =10y > {3 fixed point of focus type
pale blue 0> /¢, > {5 > (3 fixed point of node type
white no attractor detected

Table 1: Legend of the color coding for Figure 13, see [35, 31k attractors are
classified by means of the Lyapunov exponéhts/s, /s).

3.2.2 Inthe product of state space and parameter space

In Figure 13 a Lyapunov diagram is depicted in the paramdégarepof the map-

ping family G. Table 1 contains the corresponding color code. In Figurevdé4
show the dynamics corresponding to two value§ob /2x). Let us discuss these
numerical data.

The parameter space. On the right-hand-side of the figure this method detects
an attracting invariant circle of focus type (blue). In trepg larger resonances
are visible, compare with Figure 4 for a fixed valueeoMoving to the left, in the
neighbourhood of the line indicated by H a quasi-periodipHnfurcation occurs
from a circle attractor to @—torus attractor (green). Also here the parameter
space is interspersed with a resonance web of which therlhngs are visible.
The remaining features, among other things, indicate lamatori and strange
attractors of various types and also more invariant circles

The state space. The upper two figures of Figure 14 show an invariant circle,
once seen from the-direction and once from some-direction. The lower two
figures indicate how this circle has become a strange attrdodm the same two
points of view.
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1 o 1 0 1
Figure 14: Quasi-periodic (top) and strange attractort{mo) in the Hopf saddle-

node bifurcation for mappings, as seen from two differengles (left and
right) [35, 37].

Part of these results can be justified mathematically, as een the Perturba-
tion Theory point of view. The invariant circles all have dn@apunov exponent
equal to0 and these are quasi-periodic, perturbations of closedrnalteurves of
a vector field (averaging) approximation, whence theirtexise can be proven
by kam Theory [5, 27]. A similar statement can be made abouttHeri with
two Lyapunov exponents equal®oIn fact the transition is a quasi-periodic Hopf
bifurcation as discussed by Broer et al. [10, 11, 21, 39].

By the same references, this also holds for the quasi-gerindariant circle in
the upper half of Figure 14. The lower half of this figure is j@tured to show

a quasi-periodic Hnon-like attractorwhich is the closure of the unstable man-
ifold of an unstable quasi-periodic invariant circle. Tissthe previous quasi-
periodic circle that has become unstable through a quas¢ie saddle-node bi-
furcation [11]. For this kind of strange attractor the matla¢ical background
theory largely fails, so the results must remain experi@erior indications in
this direction however see [37] and references therein.

For a detailed, computer-assisted bifurcation analysikef : 5 resonance ‘bub-
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ble’ we refer to [35]. Compare with earlier work of Chencir{dB, 44, 45].
We like to note that the family of mappings forms a concrete model for the
Ruelle—Takens scenario regarding the onset of turbulehtdact it also illus-
trates how the earlier scenario of Hopf—-Landau-Lifsctstalso included: the
present multi-parameter set-up unifies both approaches.détails and back-
ground see [21, 39, 55, 56, 59, 60, 62, 76].

Resonance and fractal geometry. Interestingly, the blue colors right and left
correspond quasi-periodic circle attractors. The fact tha corresponding re-
gions of the plane look like open sets is misleading. In tedliese are meagre
sets, dense veined by the residual sets associated to ipgyio@ihese details are
just too fine to be detected by the computational precisiea us

Particularly in the latter case, in the left half of the deagy, we are dealing with
the Arnold resonance web, for a detailed analysis see [36].

4 Conclusions

We discuss a number of consequences of the present papensidgémodelling
of increasing complexity.

4.1 ‘Nextcases’

The Hopf saddle-node bifurcation for maps, §e&2, can be viewed as a ‘next
case’ in the systematic study of bifurcations as comparee.tp, [54, 58] and
many others. The nowhere dense part of parameter space,isiacks interior
points is somewhat problematic to penetrate by numeriaatirmeation methods.
Nevertheless, from the ‘physical’ point of view, this panraly is visible when
its measure is positive or, as in the present examples, dosa © full measure.
Needless to say that this observation already holds for tpf-HNeTmark—Sacker
bifurcation as described i§3.1.

Other ‘next cases’ are formed by the quasi-periodic biftioce which is a joint
application of Kolmogorov—Arnold—Moser Theory [5, 11, 28, 39] and Singu-
larity Theory [51, 52, 53, 86]. For overviews see [12, 46,.88}e quasi-periodic
bifurcations are inspired by the classical ones in whichildxia or periodic or-
bits are replaced by quasi-periodic tori. As an examplehéHopf saddle node
of § 3.2 we met quasi-periodic Hopf bifurcation for mappingsiraircles to a
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2—tori in a subordinate way. Here we witness a global geomespired by the

classical Hopf bifurcation, which concerns the quasigdid dynamics associ-
ated to the fractal geometry in the parameter space, comptré&igure 13. The

gaps or tongues in between concern the resonances instde which we notice

a further ‘fractalization’ or ‘Cantorization’.

A similar ‘next case’ in complexity is given by the parameatly forced Lagrange
top [19, 26], in which a quasi-periodic Hamiltonian Hopfuni¢ation occurs. In-
deed, we recall from [48] that in the Lagrange top a Hamiliariiopf bifurcation
occurs, the geometry of which involves a swallowtail catgdty. By the peri-
odic forcing this geometry is ‘Cantorized’ yielding coublamany tongues with
fractal geometry in between.

Remarks.

- As said before, in cases with infinite regress the fractahglement is a
meagre set which has positive measure. Simon [79] descalsmilar
situation forl—dimensional Schrodinger operators. Also see [6].

- Itis an interesting property of the real numbers to allowtfos kind of di-
chotomy in measure and topology, compare with Oxtoby [G&8Erestingly,
although these properties in the first half of the 20th cgmivere investi-
gated for theoretical reasons, they here naturally show tipa context of
resonances and spectra.

4.2 Modelling

We like to note that our investigations on the Hopf saddldenbifurcation for
mappings were inspired by climate models [15, 34, 82], wherabout 80—
dimensional Galerkin projections of PDE models such bdtions were detected
in 3—dimensional center manifolds.

Generally speaking there exists a large-scale programmmedélling in terms of
dynamical systems depending on parameters, with apitatiarying from cli-
mate research to mathematical physics and biological getéms. These models
often are high-dimensional and their complexity is partiplained by mecha-
nisms of the present paper, also see [39, 76, 88]. In genachlmodels exhibit
the coexistence of periodicity (including resonance) sifp&riodicity and chaos,
best observed in the product of state- and parameter space.
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