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Abstract

The phenomenon of resonance will be dealt with from the viewpoint of dy-
namical systems depending on parameters and their bifurcations. Resonance
phenomena are associated to open subsets in the parameter space, while their
complement corresponds to quasi-periodicity and chaos. The latter phenom-
ena occur for parameter values in fractal sets of positive measure. We de-
scribe a universal phenomenon that plays an important role in modelling.
This paper gives a summary of the background theory, veined by examples.

1 What is resonance?

A heuristic definition of resonance considers a dynamical system, usually depend-
ing on parameters, with several oscillatory subsystems having a rational ratio of
frequencies and a resulting combined and compatible motionthat may be ampli-
fied as well. Often the latter motion is also periodic, but it can be more compli-
cated as will be shown below. We shall take a rather eclectic point of view, dis-
cussing several examples first. Later we shall turn to a number of universal cases,
these are context-free models that occur generically in anysystem of sufficiently
high-dimensionial state and parameter space.

Among the examples are the famous problem of Huygens’s synchronizing clocks
and that of the Botafumeiro in the Cathedral of Santiago de Compostela, but also
we briefly touch on tidal resonances in the planetary system.As universal models
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Figure 1: Amplitude-response diagrams in the(ω, R)–plane. Left: the periodi-
cally driven harmonic oscillator(1) and right: the driven Duffing oscillator(2).

we shall deal with the Hopf–Neı̆mark–Sacker bifurcation and the Hopf saddle-
node bifurcation for mappings. The latter two examples form‘next cases’ in the
development of generic bifurcation theory. The termuniversalrefers to the con-
text independence of their occurrence: in any with certain generic specifications
these bifurcations occur in a persistent way. We witness an increase in complex-
ity in the sense that in the parameter space the resonant phenomena correspond
to an open & dense subset union of tongues, while in the complement of this a
nowhere dense set of positive measure exists, corresponding to multi- or quasi-
periodic dynamics. This nowhere dense set has a fractal geometry in a sense that
will be explained later. From the above it follows that this global array of reso-
nance tongues and fractal geometry has a universal character. As we shall see,
both locally and globally Singularity Theory can give organizing principles. It
should be noted at once that next to periodic and quasi-periodic dynamics also
forms of chaotic dynamics will show up.

Remark. In many cases the resonant bifurcations are repeated at eversmaller
scales inside the tongues, leading to an infinite regress. Then we have to extend
the notion of open & dense toresidual and that of nowhere dense tomeagre.
Here a residual set contains a countable intersection of open & dense sets, while
a meagre set is a countable union of nowhere dense sets. One sometimes also
speaks in terms ofGδ– orFσ–sets, respectively [69].
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1.1 Periodically driven oscillators

Many of the resonant phenomena of interest to us are modelledby periodically
driven or coupled oscillators. To fix thoughts we now presenttwo examples,
namely the harmonic and the Duffing oscillator subjected to periodic forcing.

1.1.1 The driven harmonic oscillator

One of the simplest class-room examples of resonance occursin the harmonic
oscillator with periodic forcing

ẍ = −α2x − cẋ + ε sin(ωt) (1)

with x, t ∈ R, wherec ≥ 0 is the damping and whereε ≥ 0 controls the size of
the forcing. The forcing has frequencyω > 0 and therefore has periodT = 2π/ω.
The ‘response’ solution is periodic

x(t) = R sin(ωt + φ)

with this same frequency. Its amplitude and phase are given by

R =
ε

√

(ω2 − α2)2 + c2ω2
andtan φ =

cω

ω2 − α2
.

Fixing α, c andε we considerR as a function ofω, see the amplitude-response
diagram in Figure 1 (left) where the response amplitudeR is plotted as a function
of ω.

1.1.2 The driven Duffing oscillator

As a non-linear variation on the above we consider the Duffingequation with
periodic forcing

ẍ = −α2x − cẋ − δx3 + ε sin(ωt), (2)

whereα, ω, c, ε and are positive and whereδ with 0 < δ ≪ 1 is considered as a
perturbation parameter. Fixingα, c andε as before, by successive approximation
of a solution

x(t) = R sin(ωt + φ),

we obtain the following approximative relation betweenε andR:

ε2 =
(

(ω2 − α2)2 + c2ω2
)

R2 + 3

2
δ(ω2 − α2)R4 + 9

16
δ2R6,
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with a similar approximation for the phaseφ, compare with Stoker [83], also
see [21]. In Figure 1 (right) we depict the corresponding curve in the(ω, R)–
plane, which now no longer is a graph.

Remarks

- One of the exciting things about resonance concerns the peaks of the ampli-
tudeR that can be quite high, even whereε is still moderate. Systems like
(1) and(2) form models ormetaphorsfor various resonance phenomena in
daily life. In many cases high resonance peaks one needs to ‘detune’ away
from the resonance value corresponding to the peak, think ofa marching
platoon of soldiers that have to go out of pace when crossing abridge.

- In other cases, like when ‘tuning’ the radio receiver to a certain channel,
one takes advantage of the peak.

- It should be noted that the nonlinear(2) dynamically is far richer than the
linear case(1), e.g., see [54] and references therein.

1.1.3 Geometrical considerations

In both cases of the driven oscillators witnessed above the state space isR2×T1 =
{x, y, z}, where

ẋ = y (3)

ẏ = a(x, y, δ) + ε sin z

ż = ω,

with a(x, y, δ) = −α2x − cy − δx3, whereδ = 0 in the harmonic example. The
second factor is the circleT1 = R/(2πZ) which takes into account the periodicity
of the systems inz. The response motion of the formx(t) = R sin(ωt + φ) then
corresponds to a closed curve





x
y
z



 (t) =





R sin(ωt + φ)
ωR cos(ωt + φ)

ωt + φ



 . (4)

This closed curve, when projected onto the(x, y)–plane, exactly forms an ellipse.
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Figure 2: Huygens’s synchronizing clocks [57].

We now can describe this motion in terms of a2–dimensional torusT2 = T1×T1,
parametrized by two variablesϕ1 andϕ2 in a system of differential equations of
the format

ϕ̇1 = ω1 (5)

ϕ̇2 = ω2,

whereϕ1 = z andω1 = ω and where forϕ2 we take the phase of the motion on
the ellipse. Thusϕ2 exactly is the time parametrization of this motion, scaled to
the period2π: in this caseω2 = ω1 = ω. Therefore in this way, the curve(4) can
be seen as a1 : 1 torus knot.

To view resonant motion in terms of torus dynamics turns out to be extremely
useful and this can also be applied to coupled oscillators. Here a classical ex-
ample is given by Christiaan Huygens [57], who in 1665 observed the following
phenomenon, see Figure 2. Two nearly identical pendulum clocks mounted on a
not completely rigid horizontal beam tend to synchronize. Moreover, when the
pendula both move in the vertical plane through the beam, they have a tendency
to synchronize in anti-phase motion. A simple model describes this system in the
format (5), where the anglesϕ1 andϕ2 are the phases of the two oscillators and
where againω1 = ω2. Later on we will come back to this and other examples
where we will also see other frequency ratiosω1 : ω2.
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1.2 Torus flows and circle mappings

In this section we turn to the dynamics on the2–dimensional torusT2 from § 1.1.3
for its own sake, introducing the weakly coupled system

ϕ̇1 = ω1 + εf1(ϕ1, ϕ2) (6)

ϕ̇2 = ω2 + εf2(ϕ1, ϕ2).

Heref1 andf2 are2π–periodic functions in both variables. Also we use a pa-
rameterε to control the strength of the coupling. Forε = 0 we retrieve the
format(5). If T1 andT2 are the respective periods of oscillation, thenω1 = 2π/T1

andω2 = 2π/T2. We first define the Poincaré mapping from the circleT1 to itself
and then introduce the rotation number.

1.2.1 The Poincaŕe mapping

If in (6) the size|ε| of the coupling is not too large, a first-return Poincaré mapping

P : T1 −→ T1 (7)

is defined, as we shall explain now, also see Figure 3. Withoutrestricting general-
ity we can take the generating circleT1 ×{0} for simplicity baptisingϕ = ϕ1. In
that case we take the integral curve with initial state(ϕ1, ϕ2) = (ϕ, 0) and follow
this till (ϕ1, ϕ2) = (P (ϕ), 0), counting mod2πZ. It is easy to see thatP − Id
should be a periodic function inϕ, which givesP the general format

P : ϕ 7→ ϕ + 2πα + εf(ϕ), (8)

whereα = ω2/ω1 and wheref is a2π–periodic function.

Consideration of theT1–dynamics generated by iteration ofP gives a lot of in-
formation about the originalT2–flow, in particular its asymptotic properties as
t → ∞. For instance, a fixed point attractor ofP corresponds to an attracting
periodic orbit of the flow which form a1 : 1 torus knot as we saw at the end of
§ 1.1. Similarly a periodic attractor ofP of periodq corresponds to an attracting
periodic orbit of the flow. In general, periodicity will be related to resonance, but
to explain this further we need the notion of rotation number.
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Figure 3: Poincaré mapping of a torus flow [39].

1.2.2 Rotation number

For orientation-preserving homeomorphismsP : T1 −→ T1 Poincaré has left
us the extremely useful concept ofrotation number̺ (P ), which describes the
average amount of rotation as follows:

̺(P ) =
1

2π
lim

n→∞

1

n
(P̃ )n(ϕ) modZ. (9)

HereP̃ : R −→ R is a (non-unique) lift ofP which makes the diagram

R
P̃−→ R

pr ↓ ↓ pr

T1 P−→ T1

commute, wherepr : R −→ T1 is the natural projectionϕ 7→ eiϕ. This means
that in the formula(9) we do not count modulo2π, but keep counting inR.

From [49, 68] we quote a number of properties of̺(P ):

1. ̺(P ) depends neither on the choice of the liftP̃ nor on the choice ofϕ;

2. ̺(P ) is invariant under topological conjugation. This means that if h :
T1 −→ T1 is another orientation-preserving homeomorphism, then

̺(hPh−1) = ̺(P );

3. If P : ϕ 7→ ϕ + 2πα is a rigid rotation then̺ (P ) = α modZ.
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4. ̺(P ) ∈ Q precisely whenP has a periodic point. Moreover,̺(P ) = p/q
with p andq relatively prime corresponds to ap : q torus knot.

5. If P is of classC2 and ̺(P ) = α for α ∈ R \ Q, then, by a result of
Denjoy, the mappingP is topologically conjugated to the rigid rotationϕ 7→
ϕ + 2πα.

Recall that in that case any orbit{P n(ϕ)}n∈Z forms a dense subset ofT1.
The corresponding dynamics is calledquasi-periodic.

6. If P depends continuously on a parameter, then so does̺(P ).

1.2.3 The Arnold family of circle mappings

A famous example is formed by the Arnold family

Aα,ε : ϕ 7→ ϕ + 2πα + ε sin ϕ (10)

of circle mappings. So this is the general format(8) where we chosef(ϕ) =
sin ϕ.1

Periodicity. It is instructive to consider its fixed points, given by the equation

Aα,ε(ϕ) ≡ ϕ,

or, equivalently,

sin ϕ = −2πα

ε
.

A brief graphical inspection reveals thatmod2πZ this equation has exactly two
solutions for

|ε| > 2π|α|.
In Figure 4 this region, bounded by the two straight linesε = ±2πα, is depicted
for ε > 0. It is not hard to see that one of the fixed points is attractingand the other
repelling. At the boundary|ε| = 2π|α| these annihilate one another in a saddle-
node bifurcation. For the entire region|ε| ≥ 2π|α| one has̺ (Aα,ε) = 0 modZ.
This region is called the Arnold tongue of rotation number0.

1For simplicity we take|ε| < 1 which ensures that(10) is a circle diffeomorphism; for|ε| ≥ 1
the mapping becomes a circleendomorphismand the current approach breaks down.
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Figure 4: Resonance tongues in the Arnold family(10).

From the properties of§ 1.2.2 it follows that, for(α, ε) = (p/q, 0) with p andq
relatively prime, one has̺(Aα,ε) = p/q. One can show that from each(α, ε) =
(p/q, 0) an Arnold tongue emanates, in which for all the parameter points (α, ε)
one has̺ (Aα,ε) = p/q, see Figure 4. The ‘sharpness’, i.e., the order of contact
of the boundaries of thep/q–tongue at(α, ε) = (p/q, 0) exactly is of orderq,
see [1, 3, 33].

Fixing ε = ε0 > 0 small, we consider the graph ofα 7→ ̺(Aα,ε). By another
general property of§ 1.2.2, this function is continuous. Moreover, for every ratio-
nal valuep/q it is constant on some plateau, corresponding to thep/q–tongue, see
Figure 4. The total result is a devil’s staircase as depictedin Figure 5.

Quasi-periodicity. In between the tongues the rotation number̺(Aα,ε) is irra-
tional and by the properties of§ 1.2.2 we know that the corresponding iteration
dynamics ofA is quasi-periodic and that each individual orbits densely fills T1.

Open & dense versus nowhere dense.In general the(α, ε)–plane of parame-
ters contains a catalogue of the circle dynamics. Again fixing ε = ε0 > 0 small,
consider the corresponding horizontal line in the(α, ε)–plane of parameters. We
witness the following, also see Figure 5 and compare with [33] and references
therein. The periodic case corresponds to an open & dense subset of the line, and
the quasi-periodic case to a nowhere dense subset, which in the 1–dimensional
situation is a Cantor set.

Diophantic rotation numbers. Quasi-periodicity corresponds to̺ = ̺(Pα,ε0
) /∈

Q. If we restrict even further to Diophantine̺by requiring that for constants
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Figure 5: Devil’s staircase related to the Arnold family(10).

τ > 2 andγ > 0, for all rationalsp/q
∣

∣

∣

∣

̺ − p

q

∣

∣

∣

∣

≥ γ

|q|τ , (11)

the conjugations ofPα,ε0
with the rigid rotationϕ 7→ ϕ + 2π̺ can be taken

smooth [1, 39]. The rotation numbers̺satisfying(11) form a Cantor subset
of the former, which has positive Lebesgue measure, which, by choosingγ =
γ(ε0) = O(ε0), can be shown to tend to full measure asε0 → 0. A fortiori this
holds for the original Cantor set given by̺(Pα,ε0

) /∈ Q.

Fractal geometry. The Cantor sets under consideration, since they have positive
Lebesgue measure, have Hausdorff dimension equal to1. Moreover Cantor sets
have topological dimension0, since they are totally diconnected: every point has
arbitrarily small neighbourhoods with empty boundary. Thefact that the Haus-
dorff dimension strictly exceeds the topological dimension is a characterisation of
fractals, see page 15 of [63]. So our Cantor sets are fractals. They also show a lot
of self-similarity, a property shared with many other fractals.

Beyond the Arnold family (10) . . . The organisation of the parameter space
in an open & dense set on the one hand, versus a nowhere dense, fractal set of
positive measure turns out to be quite universal, also see [33]. To begin with, an
arbitrary smooth (Poincaré) circle mapping of the more general format(8)

Pα,ε : ϕ 7→ ϕ + 2πα + εf(ϕ)
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turns out to have an array of resonance tongues similar to theArnold family (10),
forming an open & dense set that corresponds to periodicity,with a fractal comple-
ment which is nowhere dense and of positive measure that corresponds to quasi-
periodicity.

The only point of difference with(10) is formed by the exact ‘sharpness’ of the
tongues, which depends on the Fourier coefficients of the functionf . In particular
a tongue at the tip(α, ε) = (p/q, 0) has transverse boundaries if and only if the
qth Fourier coefficient does not vanish.

1.2.4 Link with resonance

Returning to the driven oscillator or the two coupled oscillators we now link pe-
riodicity of the Poincaré mapping(8) with resonance. For simplicity we keep|ε|
sufficiently small to ensure this mapping to be a diffeomorphism.

As observed in§ 1.2.2 the fact that(α, ε) belongs to thep/q–tongue, i.e., that
̺(Pα,ε) = p/q, means that the motion takes place on ap : q torus knot. Generically
these periodic orbits come in attracting and repelling pairs and the visible motion
takes place on such a periodic attractor. In view of our general ‘definition’ of
resonance in that case we say that the oscillators are inp : q resonance, one also
speaks ofphase-lockingor synchronisation. In the case of1 : 1 sometimes the
termentrainmentis being used.

If (α, ε) is outside the tongues, by the Denjoy theory mentioned before, the torus
motion takes place on a dense orbit. We also call this torus motion quasi-periodic.
In this case fromKAM Theory [5, 21, 39] we derive the following. For Diophan-
tine̺ = ̺(Pα,ε), up to a smooth transformation the Poincaré mapping reads

ϕ 7→ ϕ + 2π̺.

and the two oscillators correspondingly have the familiar format

ϕ̇1 = ω1

ϕ̇2 = ω2,

such that̺ (Pα,ε) = ω2/ω1 for all ε with |ε| ≪ 1. In the parameter space this
corresponds to a piece of curve through(α, ε) = (̺, 0), parametrized byε. We
emphasize that this uncountable union of these curves has positive measure.
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1.3 Conclusions and examples

The literature on resonance phenomena is immense, apart from the references al-
ready given, for instance see [3, 39, 54, 84, 87] and their bibliographies. For even
more references see below. The present point of view models resonant systems
in terms of dynamical systems depending on parameters, where resonance takes
place in a persistent way.

In the parameter space the resonant set is part of the bifurcation set, which forms
a catalogue for transitions to various types of dynamics. What we add to the
general discussion on this subject is the overall fractal geometry that usually man-
ifests itself in the complement of all the resonances. We nowpresent a couple of
examples.

Huygens’s clocks. Returning to Huygens’s synchronizing clocks we first con-
sider the problem from the torus flow point of view. We have twoalmost identical
oscillators that are weakly coupled. This means that in(5) for the frequencies we
haveω1 ≈ ω2 and that|ε| is small. For the Poincaré mapping(8)

Pα,ǫ(ϕ) = ϕ + 2πα + εf(ϕ)

we only make the assumption that the first Fourier coefficientof f = f(ϕ)
does not vanish, which ensures that the1/1–tongue boundaries meet transverse
at (α, ε) = (0, 0), where the first0 has to be taken modZ. Compare with Fig-
ure 4.

This implies that(α, ε) belongs to the1/1–tongue, i.e., that the pendulum clocks
are in1 : 1 resonance, a situation described before as entrainment which is a form
of synchronization. This gives a partial explanation of thephenomena discovered
by Huygens [57].

Remarks.

- Note that the1 : 1 resonance of the two clocks could be obtained under
quite weak assumptions. If one also wants to understand the phase and anti-
phase motions, the coupling between the clocks has to be included into the
dynamics, compare with [9, 73] and references therein.

- For another application of these ideas in terms of circadian rhythms and the
response to stimuli see [8]. Here it turns out that next to the1 : 1 ‘entrain-
ment’ resonance also certain other resonances have biological significance.
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- The above ideas can be largely extended to the case of more than two oscil-
lators. For examples in models for the visual neurocortex see [16, 17].

Resonances in the solar system.From ancient times on resonances have been
known to occur in solar system, which are more or less in the spirit of the present
section. A well-known example is the orbital1 : 2 : 4 resonance of Jupiter’s
moons Ganymede, Europa, and Io which was studied by De Sitter[80, 81] using
the ‘méthodes nouvelles’ of Poincaré [72]. The2 : 5 orbital resonance between
Jupiter and Saturn is described by Moser et al. [65, 66, 78]. These and other
resonances by certain authors are being held responsable for gaps in the rings of
Saturn and in the asteroid belt.

Another type of resonance is the spin-orbit resonance. As anexample thereof, the
Moon is ‘captured by’ the Earth in a1 : 1 resonance: the lunar day with respect
to the Earth is (approximately) equal to one month. Similarly Pluto and Charon
have caught each other in such a1 : 1 resonance: as an approximately rigid body
the two orbit around the Sun. Interestingly, the planet Mercury is captured in a3
: 2 spin-orbit resonance around the Sun [47].

Remarks.

- The spin orbit resonances are explained by tidal forces, for instance, the
rotation of the Moon has been slowed down to a standstill by tidal friction
brought about largely by the tidal force exerted by the Earth. Similarly the
rotation of the Earth in the very long run will be put to a standstill by the
tidal forces of mainly the Moon. But probably by that time theSun has
already turned into a red giant. . .

- This brings us to the subject of adiabatically changing systems as described
and summarized by Arnold [2, 3] and which may be used to model such
slow changes. One may perhaps expect that the3 : 2 spin orbit resonance of
Mercury in the very long run, and after quite a number of transitions, will
turn into another1 : 1 resonance. This part of nonlinear dynamical systems
still is largely unexplored.

2 Periodically driven oscillators revisited

We now return to periodically driven oscillators, showing that under certain cir-
cumstances exactly the set-up of§ 1.2 applies.
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Figure 6: Botafumeiro in Santiago de Compostela.

As a motivating example we discuss the Botafumeiro in the cathedral of Santiago
de Compostela, see Figure 6. Here a large incense container is suspended by a
pully in the dome where it can swing in the longitudinal direction of the church.
A few men pull up the container when it approaches the ground and let go after,
thereby creating a periodic forcing and in this way creatinga stable motion of
exactly twice the period of the forcing.

2.1 Parametric resonance

As a another model consider the parametrically driven oscillator

ẍ + (a + εf(t)) sin x = 0 (12)

with q(t + 2π) ≡ q(t), see [41]. Herea andε are considered as parameters.2 For
the periodic functionf we have studied several examples, namely

f(t) = cos t and (13)

= cos t + 3

2
cos(2t) and

= signum(cos t),

corresponding to the Mathieu case, the perturbed Mathieu case and the square
case. In this setting the issue is whether the trivial2π–periodic solution

x(t) ≡ 0 ≡ ẋ(t)

2For ‘historical’ reasons we use the lettera instead ofα2 as we did earlier.
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Figure 7: Stability diagrams of Mathieu, perturbed Mathieuand square case [32].

is elliptic, hence stable, or not. For any of such systems(12) from the points

(a, ε) = (1

4
k2, 0), k = 0, 1, 2, . . .

tongues emanate in the(a, ε)–plane, where inside the trivial2π–periodic solution
is hyperbolic, hence unstable. On the tongue boundaries this solution is parabolic.
See Figure 7 and compare with [28, 32]. We note that this givesrise to a discrete
union of tongues, where again the sharpness is governed by the Fourier coeffi-
cients of the periodic functionq = q(t).

Subharmonics and covering spaces.On the tongue boundaries subharmonic
bifurcations occur, see [21, 41, 42] where each bifurcationcan be understood in
terms of a pitchfork bifurcation on a suitable covering space.

Generally, for thep : q resonance this is constructed as follows. Writing

z = ẋ + i
p

q
x,

where we identifyC ∼= R2, the covering map is given by the Van der Pol transfor-
mation

Π : C × R/(2πqZ) −→ C × R/(2πZ)

(ζ, t) 7→
(

ζeitp/q, t (mod2πZ)
)

.
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Figure 8: Orbits of the Poincaré mapping of the swing(12).

On the covering space the groupD of decktransformations is generated by

(ζ, t) 7→ (ζe2πp/q, t − 2π),

which means thatΠ ◦ T = Π for any T ∈ D.3 Note thatD is cyclic of order
q, for details see [41, 42]. Instead of the original system in(z, t) we pull the
system back alongΠ, so obtaining aZq–equivariant system on the(ζ, t)–covering
space. In fact this defines a1 : 1 correspondence of systems and usually it is
most convenient to work on the covering space. Generally on the covering space
equivariant Singularity Theory, see [18, 52, 53] and references therein, as well as
equivariantKAM Theory [20, 21, 27] can be committed.

In the present case this construction is only needed forp/q = k/2. The strongest
of these resonances occurs inside the tongue labeled byk = 1, where a cylinder
with Z2–symmetry is the double cover of a Möbius strip, for a remarkon this
see [54]. This is the setting for the simplest subharmonic bifurcation, namely a
period doubling bifurcation: inside the tongue the trivial2π–periodic solution is
unstable but a stable periodic orbit occurs of period4π. At the boundary a period-
doubling bifurcation takes place. The correspondingZ2–equivariant bifurcation
on the covering space exactly is the pitchfork. The corresponding period doubled
periodic motion is exactly the one that occurs in the Botafumeiro example. See
Figure 8 for ‘phase portaits’ of the Poincaré mapping, leftfor ε = 0.25 and right
for ε = 0.40

Remarks.
3The co-ordinates(ζ, t) sometimes are also called co-rotating.
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- The geometric complexity of the individual tongues in Figure 7 can be de-
scribed by Singularity Theory; in fact it turns out that we are dealing with
typeA2k−1, see [32, 41].

- The parametric1 : 2 resonance sometimes also is called theparametric roll.
By this mechanism ships have been known to capsize. . .

- In Figure 8 also invariant circles can be witnessed.KAM Theory, as dis-
cussed before, in particular an application of Moser’s Twist Theorem [64],
shows that the union of such invariant circles carrying quasi-periodic dy-
namics has positive measure.

- In both cases the cloud of points is formed by just one or two orbits un-
der the iteration of the mapping . These are associated to homoclinic orbits
related to the upside down unstable periodic solution, which gives rise to
horseshoes. Therefore such an orbit is chaotic since it has positive topolog-
ical entropy, see [39] and references therein. A classical conjecture is that
the cloud densely fills a subset of the plane of positive Lebesgue measure
on which the Poincaré mapping is ergodic [4].4

2.2 The Hill-Schrödinger equation

Another famous equation is a linearized version of(12) where the forcing term is
quasi-periodic int:

ẍ + (a + εf(t))x = 0, (14)

where nowf(t) = F (ω1t, ω2t, . . . , ωnt) for a functionF : Tn → R, see [29, 50,
67]. As in the case of§ 1.2 the countable union of tongues again becomes open
& dense and separated by a nowhere dense set of positive measure, determined
by Diophantine conditions. The geometry of the individual tongues for small|ε|
is exactly as in the periodic case. For larger values of|ε| the situation is more
complicated also involving non-reducible quasi-periodictori, compare with [31].

The equation(14) happens to be the eigenvalue equation of the1–dimensional
Schrödinger operator with quasi-periodic potential. We here sketch how our geo-
metric approach fits within the corresponding operator theory. This operator reads

(Hεfx) (t) = −ẍ(t) − εf(t)x(t) (15)

4Also known as the metric entropy conjecture.
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Figure 9: Devil’s staircase in the Schrödinger equation with quasi-periodic poten-
tial: ω1 = 1 andω2 = 1

2
(
√

5 − 1), see [29].

with potentialεf ; it acts on wave functionsx = x(t) ∈ L2(R).

We like to note that in the corresponding literature usuallythe value ofε = ε0 6= 0
is fixed and the intersection of the horizontal lineε = ε0 with a tongue is referred
to asgap: it is a gap in the spectrum of the Schrödinger operator(15). The
approach with tongues and the results of [29] regarding theA2k−1–singularity
therefore leads to a generic gap closing theory.

Remarks.

- In the context of Schrödinger operators the letters are chosen somewhat
differently. In particular, instead ofx(t) one often considersu(x), which
gives this theory a spatial interpretation. Also instead ofεf(t) one uses
V (x), compare with [67].

- For a fixed valueε = ε0 the Diophantine Cantor set leads to Cantor spec-
trum. The total picture is illustrated in the devil’s staircase of Figure 9,
where we tookn = 2, ω1 = 1 andω2 = 1

2
(
√

5 − 1). The rotation number̺
is defined almost as before [29] as a function ofa.

- The nonlinear equation

ẍ + (a + εf(t)) sinx = 0,

with q quasi-periodic is dealt with in [20]. In comparison with thecase
of periodic f the approximating, averaged, situation is almost the same.
However, the infinite number of resonances and the Cantorization we saw
before leads to an infinite regress of the bifurcation scenarios. For this use
was made of equivariant HamiltonianKAM Theory on a suitable covering
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Figure 10: Phase portrait of the free Van der Pol oscillator [39].

space [21, 27]. As a consequence the resonant set becomes residual and
the quasi-periodic set meagre. Compare this with [7, 43, 44,45] in the
dissipative case.

2.3 Driven and coupled Van der Pol-like oscillators

The examples of the driven oscillator in§ 1.1 were based on approximations of
the the damped pendulum, the free oscillation of which always tends to the lower
equilibrium x = 0, ẋ = 0. Our present interest is formed by Van der Pol-like
oscillators that for|x| and |ẋ| sufficiently small have negative damping, for this
approach compare with [21, 39]. Such oscillators are known to occur in electron-
ics [74, 75, 77].

Therefore our starting point is the periodically driven Vander Pol oscillator in a
slightly more general form

ẍ = −α2x − cẋ − a(x, ẋ) + εf(x, ẋ, t; ε), (16)

where the functionq is 2π–periodic in the timet. Van der Pol originally consid-
ereda(x, ẋ) = bx2ẋ andf(x, ẋ, t; ε) = sin t. We here assume thata andq are
sufficiently smooth, say of classC∞ or real-analytic. The important restriction on
a is that the corresponding free oscillator has a hyperbolic attractor. For a phase
portrait in the(x, ẋ)–plane, see Figure 10. Passing to the system form

ẋ = y (17)
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ẏ = −α2x − cy − a(x, y) + εF (x, y, z; ε)

ż = 1,

as before, we get a3–dimensional state spaceR2 × T1 = {(x, y), z}, so with
angular variablez. Let us denote the corresponding vector field byXα,ε.

This brings us back to the general setting of a2–torus flow, with two phase angles
ϕ1, ϕ2, e.g., withϕ1 the phase of the free oscillator, i.e., its time parametrization
scaled to period2π, andϕ2 = z. Forε = 0 we so obtain

ϕ̇1 = ω1

ϕ̇2 = ω2,

which is of the familiar format(5). From here the theory of§ 1.2 applies in al
its complexity, with in the parameter space an open & dense, countable union of
resonances and a fractal set of positive measure regarding quasi-periodicity.

Similar results hold forn coupled Van der Pol type oscillators, now with state
spaceTn, the cartesian product ofn copies ofT1. Next to periodic and quasi-
periodic motion, now also chaotic motions occur, see [39] and references therein.

3 Universal studies

Instead of studying classes of driven or coupled oscillators we now turn to a few
universal cases of ‘generic’ bifurcations. The first of these is the Hopf-Neı̆mark-
Sacker bifurcation for diffeomorphisms, which has occurrence codimension1.
This means that the bifurcation occurs persistently in generic 1–parameter fami-
lies. However, the open & dense occurrence of countably manyresonances and
the complementary fractal geometry of positive measure in the bifurcation set are
only persistent in generic2–parameter families. A second bifurcation we study is
the Hopf saddle-node bifurcation for diffeomorphisms where we use3 parameters
for describing the persistent complexity of the bifurcation set.

3.1 The Hopf-Nĕımark-Sacker bifurcation

We start with the Hopf-Neı̆mark-Sacker bifurcation for diffeomorphisms, but also
discuss certain consequences for systems of differential equations. As an example
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to illustrate our ideas consider the following Duffing–Van der Pol–Liénard type
driven oscillator

ẍ + (ν1 + ν3x
2)ẋ + ν2x + ν4x

3 + x5 = ε(1 + x6) sin t, (18)

the coefficients of which can be considered as parameters. Note that for the free
oscillator atν1 = 0 the eigenvalues of the linear part at(x, ẋ) = (0, 0) cross the
imaginary axis at±i

√
ν2. Excluding the strong resonances where

√
ν2 = p/q for

p andq relatively prime withq ≤ 5 and assuming that the constantsν3 andν4

are generically chosen, the organization of the(ν1, ν2)–plane, forν1 consists of
an an open & dense union of countably many resonance tongues separated by a
nowhere dense set of positive measure. This situation is comparable to the Arnold
family (10) and Figure 4, at least for large values ofq.

3.1.1 The nondegerate case

The general set-up just considers a mapping

P : R2 −→ R2 (19)

around a fixed point, sayP (0) = 0, where the eigenvalues of the linear part read
eν1±2πi

√
ν2 with |ν1| small. We consider a fixed resonance(ν1, ν2) = (0, p2/q2)

with p andq relatively prime, where we will need2 parameters to versally unfold
the linear part [3, 21]. Our main interest is with the periodic points of periodq, so
in solving the equation

P q(x, y) = (x, y). (20)

The zeroes ofP q−Id are studied by a Lyapunov–Schmidt reduction, which leads
to aZq–equivariant family of functions

Gµ(z) = zBµ(u) + Cµz
q−1 + O(|z|q), (21)

wherez is an appropriate complex variable and whereBµ is a polynomial inu =
|z|2 of degree less than(q − 1)/2. We study the corresponding discriminant set
given by

Gµ(z) = 0 and det DzGµ(z) = 0. (22)

Hereµ is an unfolding-multiparameter detuning the resonance at hand. The way
to study this discriminant set is byZq–equivariant contact equivalence [18, 22, 23,
24, 25]. In the present non-degenerate case(22) can be reduced to the polynomial
normal form

GNV

σ (z) = z(σ + |z|2) + zq−1, (23)
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ν1

ν2

Figure 11: Tongue in nondegenerate resonanceq = 7 of the Hopf-Neı̆mark-
Sacker bifurcation [18, 22, 23, 25].

for a complex parameterσ. In general this set turns out to be a ‘tongue’ ending in
a cusp of sharpness(q−2)/2, which is part of a familiar bifurcation diagram with
two periodic orbits of periodq inside that annihilate one another at the tongue
boundaries in a saddle-node or fold bifurcation [3].

See Figure 11 which is embedded in the context of the equation(18), of whichP
is a Poincaré mapping. Here the dynamics ofP also has been described in terms
of a Poincaré–Takens interpolating normal form approximations, e.g., see [13, 41,
42, 85].

Globally a countable union of such cusps is separated by a nowhere dense set
of positive measure, corresponding to invariant circles with Diophantine rotation
number. As before, see Figure 4, the latter set contains the fractal geometry.

Remarks.

- The above results, summarized from [18, 22, 23, 25], are mainly obtained
by Zq–equivariant Singularity Theory.

- The strong resonances withq = 1, 2, 3 and4 form a completely different
story where the Singularity Theory is far more involved [3, 85]. Still, since
the higher order resonances accumulate at the boundaries, there is fractal
geometry around, always of positive measure.

- Regarding structural stability of unfoldings ofP as in(19) under topologi-
cal conjugation, all hopes had already disappeared since [61].
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Figure 12: Two-dimensionsional tomography in a mildly degenerate resonance
q = 7 of the Hopf–Neı̆mark–Sacker bifurcation [18, 22, 23, 25].

3.1.2 A mildly degenerate case

In the mildly degenerate case the ‘Hopf’ coefficient in the previous example van-
ishes and is introduced as an extra parameter. This leads to another normal form

GNV

σ,τ (z) = z(σ + τ |z|2 + |z|4) + zq−1, (24)

which is now parametrized overC2 ∼= R4, hence of codimension4. As be-
fore [18, 24] the normal form(24) is structurally stable underZq–equivariant con-
tact equivalence. Here the Singularity Theory is more complex, involving folds,
cusps, a swallowtail and a Whitney umbrella. The complete bifurcation diagram
is more involved, even at the level of Poincaré–Takens normal form vector field
approximations. In Figure 12, again for the caseq = 7, a2–dimensional tomog-
raphy is shown of the bifurcation set, in which still a tongue-like structure can be
discerned, See [23, 25] where also3–dimensional tomographies are presented.

To illustrate a mildly degenerate case of the Hopf–Neı̆mark–Sacker bifurcation
one may well consider the preceding Duffing–Van der Pol–Liénard type driven
oscillator(18) where we need all four parameters.
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3.1.3 Concluding remarks

For both cases of the Hopf–Neı̆mark–Sacker bifurcation we have a good grip on
the part of the bifurcation set that governs the number of periodic points. The full
bifurcation set is far more involved and the corresponding dynamics is described
only at the level of Poincaré–Takens normal-form vector fields [13, 23, 25]. We
note that homo- and heteroclinic phenomena occur at a flat distance in terms of
the bifurcation parameters [30, 38, 71].

3.2 The Hopf saddle-node bifurcation for diffeomorphisms

As a continuation of the above programme, we now consider theHopf saddle-
node (or fold Hopf) bifurcation for diffeomorphisms [35, 36, 37], in which the
central singularity is a fixed point of a3–dimensional diffeomorphism, such that
the eigenvalues of the linear part at bifurcation are1 ande2πiα, where

e2πniα 6= 1 for n = 1, 2, 3 and 4, (25)

so excluding strong resonances as in the Hopf–Neı̆mark–Sacker case of§ 3.1. The
Hopf saddle-node bifurcation for flows is well-known [40, 54], especially because
of the subordinate Hopf–Neı̆mark–Sacker andŠilnikov homoclinic bifurcation.
Our main interest is how the Hopf–Neı̆mark–Sacker bifurcation is being changed
into one of the simplest quasi-periodic bifurcations near a2 : 5 resonance.

3.2.1 From vector fields to mappings

The linear part of the vector field at bifurcation has eigenvalues0 and±iα. This
linear part generates an axial symmetry that in a normal formprocedure can be
pushed stepwise over the entire Taylor series, see [13] and references. This makes
it possible to first consider axially symmetric systems, that turn out to be topolog-
ically determined by their3rd-order truncation given by

ẇ = (−β2 + iα)w − awz − wz2 (26)

ż = −β1 − sww − z2

wherew ∈ C andz ∈ R and whereβ1 andβ2 are unfolding parameters [54, 58].
A scalingβ1 = γ2, β2 = γ2µ leads to a vector field

Yγ,µ,α(z, w) =

(

(−γµ + 2πiα/γ)w − awz − γwz2

1 − z2 − |w|2
)

. (27)
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Figure 13: Lyapunov diagram ofG in the(µ, δ/(2π))-parameter plane. The colors
correspond to distinct classes of attractors ofG [35, 37]. See table 1 for the color
coding.

From this an axially symmetric map
(

w
z

)

7→
(

e2πiαw[1 − γ(γµ + az + γz2)]
z − γ(−1 + |w|2 + z2)

)

(28)

is obtained in a kind of Euler step. To study a2 : 5 resonance we takeα0 = 2/5,
writing α = α0 + γδ, and perturb to

Gµ,δ :

(

w
z

)

7→
(

eiαw[1 − γ(γµ + az + γz2)]
z − γ(−1 + |w|2 + z2)

)

+

(

γ3(ε1w
4 + ε2z

4)
γ4ε3Re w5

)

,

(29)
by adding axially non-symmetric orderr resonant terms

w4
∂

∂w
and Re w5

∂

∂z
.

The scaling parameterγ and the other constants are fixed suitably.
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color Lyapunov exponents attractor type

red ℓ1 > 0 = ℓ2 > ℓ3 strange attractor

yellow ℓ1 > 0 > ℓ2 > ℓ3 strange attractor

blue ℓ1 = 0 > ℓ2 = ℓ3 invariant circle of focus type

green ℓ1 = ℓ2 = 0 > ℓ3 invariant 2-torus

black ℓ1 = 0 > ℓ2 > ℓ3 invariant circle of node type

grey 0 > ℓ1 > ℓ2 = ℓ3 fixed point of focus type

fuchsia 0 > ℓ1 = ℓ2 ≥ ℓ3 fixed point of focus type

pale blue 0 > ℓ1 > ℓ2 > ℓ3 fixed point of node type

white no attractor detected

Table 1: Legend of the color coding for Figure 13, see [35, 37]. The attractors are
classified by means of the Lyapunov exponents(ℓ1, ℓ2, ℓ3).

3.2.2 In the product of state space and parameter space

In Figure 13 a Lyapunov diagram is depicted in the parameter plane of the map-
ping family G. Table 1 contains the corresponding color code. In Figure 14we
show the dynamics corresponding to two values of(µ, δ/2π). Let us discuss these
numerical data.

The parameter space. On the right-hand-side of the figure this method detects
an attracting invariant circle of focus type (blue). In the gaps larger resonances
are visible, compare with Figure 4 for a fixed value ofε. Moving to the left, in the
neighbourhood of the line indicated by H a quasi-periodic Hopf bifurcation occurs
from a circle attractor to a2–torus attractor (green). Also here the parameter
space is interspersed with a resonance web of which the larger lines are visible.
The remaining features, among other things, indicate invariant tori and strange
attractors of various types and also more invariant circles.

The state space. The upper two figures of Figure 14 show an invariant circle,
once seen from thez–direction and once from somew–direction. The lower two
figures indicate how this circle has become a strange attractor, from the same two
points of view.
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Figure 14: Quasi-periodic (top) and strange attractor (bottom) in the Hopf saddle-
node bifurcation for mappings, as seen from two different angles (left and
right) [35, 37].

Part of these results can be justified mathematically, as seen from the Perturba-
tion Theory point of view. The invariant circles all have oneLyapunov exponent
equal to0 and these are quasi-periodic, perturbations of closed integral curves of
a vector field (averaging) approximation, whence their existence can be proven
by KAM Theory [5, 27]. A similar statement can be made about the2–tori with
two Lyapunov exponents equal to0. In fact the transition is a quasi-periodic Hopf
bifurcation as discussed by Broer et al. [10, 11, 21, 39].

By the same references, this also holds for the quasi-periodic invariant circle in
the upper half of Figure 14. The lower half of this figure is conjectured to show
a quasi-periodic H́enon-like attractor, which is the closure of the unstable man-
ifold of an unstable quasi-periodic invariant circle. Thisis the previous quasi-
periodic circle that has become unstable through a quasi-periodic saddle-node bi-
furcation [11]. For this kind of strange attractor the mathematical background
theory largely fails, so the results must remain experimental; for indications in
this direction however see [37] and references therein.

For a detailed, computer-assisted bifurcation analysis ofthe2 : 5 resonance ‘bub-
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ble’ we refer to [35]. Compare with earlier work of Chenciner[43, 44, 45].
We like to note that the family of mappingsG forms a concrete model for the
Ruelle–Takens scenario regarding the onset of turbulence.In fact it also illus-
trates how the earlier scenario of Hopf–Landau–Lifschitz is also included: the
present multi-parameter set-up unifies both approaches. For details and back-
ground see [21, 39, 55, 56, 59, 60, 62, 76].

Resonance and fractal geometry. Interestingly, the blue colors right and left
correspond quasi-periodic circle attractors. The fact that the corresponding re-
gions of the plane look like open sets is misleading. In reality these are meagre
sets, dense veined by the residual sets associated to periodicity. These details are
just too fine to be detected by the computational precision used.

Particularly in the latter case, in the left half of the diagram, we are dealing with
the Arnold resonance web, for a detailed analysis see [36].

4 Conclusions

We discuss a number of consequences of the present paper in terms of modelling
of increasing complexity.

4.1 ‘Next cases’

The Hopf saddle-node bifurcation for maps, see§ 3.2, can be viewed as a ‘next
case’ in the systematic study of bifurcations as compared to, e.g., [54, 58] and
many others. The nowhere dense part of parameter space, since it lacks interior
points is somewhat problematic to penetrate by numerical continuation methods.
Nevertheless, from the ‘physical’ point of view, this part surely is visible when
its measure is positive or, as in the present examples, even close to full measure.
Needless to say that this observation already holds for the Hopf–Neı̆mark–Sacker
bifurcation as described in§ 3.1.

Other ‘next cases’ are formed by the quasi-periodic bifurcations which is a joint
application of Kolmogorov–Arnold–Moser Theory [5, 11, 21,26, 39] and Singu-
larity Theory [51, 52, 53, 86]. For overviews see [12, 46, 88]. The quasi-periodic
bifurcations are inspired by the classical ones in which equilibria or periodic or-
bits are replaced by quasi-periodic tori. As an example, in the Hopf saddle node
of § 3.2 we met quasi-periodic Hopf bifurcation for mappings from circles to a
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2–tori in a subordinate way. Here we witness a global geometryinspired by the
classical Hopf bifurcation, which concerns the quasi-periodic dynamics associ-
ated to the fractal geometry in the parameter space, comparewith Figure 13. The
gaps or tongues in between concern the resonances inside, within which we notice
a further ‘fractalization’ or ‘Cantorization’.

A similar ‘next case’ in complexity is given by the parametrically forced Lagrange
top [19, 26], in which a quasi-periodic Hamiltonian Hopf bifurcation occurs. In-
deed, we recall from [48] that in the Lagrange top a Hamiltonian Hopf bifurcation
occurs, the geometry of which involves a swallowtail catastrophy. By the peri-
odic forcing this geometry is ‘Cantorized’ yielding countably many tongues with
fractal geometry in between.

Remarks.

- As said before, in cases with infinite regress the fractal complement is a
meagre set which has positive measure. Simon [79] describesa similar
situation for1–dimensional Schrödinger operators. Also see [6].

- It is an interesting property of the real numbers to allow for this kind of di-
chotomy in measure and topology, compare with Oxtoby [69]. Interestingly,
although these properties in the first half of the 20th century were investi-
gated for theoretical reasons, they here naturally show up in the context of
resonances and spectra.

4.2 Modelling

We like to note that our investigations on the Hopf saddle-node bifurcation for
mappings were inspired by climate models [15, 34, 82], wherein about 80–
dimensional Galerkin projections of PDE models such bifurcations were detected
in 3–dimensional center manifolds.

Generally speaking there exists a large-scale programme ofmodelling in terms of
dynamical systems depending on parameters, with applications varying from cli-
mate research to mathematical physics and biological cell systems. These models
often are high-dimensional and their complexity is partly explained by mecha-
nisms of the present paper, also see [39, 76, 88]. In general such models exhibit
the coexistence of periodicity (including resonance), quasi-periodicity and chaos,
best observed in the product of state- and parameter space.
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[34] H.W. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors
in the Lorenz-84 climate model with seasonal forcing.Nonlinearity15(4)
(2002) 1205-1267
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linear mechanisms of midlatitude atmospheric low-frequency variability.
Physica D239(10) (2010) 702718

[83] J.J. Stoker,Nonlinear Vibrations in Mechanical and Electrical Systems.
2nd Ed.Wiley 1992

[84] S.H.Strogatz,Nonlinear Dynamics and Chaos.Addison Wesley 1994

36



[85] F. Takens, Forced oscillations and bifurcations. In: Applications of Global
Analysis I,Comm. of the Math. Inst. Rijksuniversiteit Utrecht(1974). In:
H.W. Broer, B. Krauskopf and G. Vegter (Eds.),Global Analysis of Dynam-
ical SystemsIoP Publishing (2001) 1-62

[86] R. Thom,Stabilit́e Structurelle et Morphoǵeǹese.Benjamin 1972
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