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T" =R"/Z", B ball of R”, (0,1) € T" x B “angle-action” coordinates.
For a Hamiltonian H : T" x B — R, we study solutions (6(t), /(t)) of

{é:a,H(a 1), {H(e,/) = h(l) + £(0,1),
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Here we consider the analytic case, h, f are bounded and real analytic,
the norm |.| = .|, is the sup norm on a complex neighbourhood
V5(T" x B) of size 0 > 0.

For ¢ = 0, the system H = h is integrable:

(1) action variables /(t) are integral of motions, /(t) =k, t € R

(2) the tori T" x {lp} are invariant and the dynamic is quasi-periodic, if
wo = Vh(h), the flow is ®f : (6o, lo) — (6o + two [Z"], k).

For € > 0 small, the system H = h+ f is near-integrable, what happens
to (1) and (2) ?
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KAM stability: h is KAM stable if for any small perturbation f of size ¢,
the system H = h + f possesses a set of quasi-periodic solutions:
- 0(e)-closed to unperturbed quasi-periodic solutions, Iim0 o(e)=0

e—

- the measure of the complement of this set satisfies Iim0 m(e) =0.
e

Riissmann non-degeneracy: h is Riissmann non-degenerate if the image
of the frequency map Vh: B — R" is not contained in a hyperplane

Riissmann (~80): h is Riissmann non-degenerate => h is KAM stable.

Sevryuk (95): h is KAM stable = h is Riissmann non-degenerate.
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KAM stability gives infinite stability for some solutions: if a solution
(6(¢), I(t)) is quasi-periodic, then

lim (sup |I(t) — I0|> =0,
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KAM stability gives infinite stability for some solutions: if a solution
(6(¢), I(t)) is quasi-periodic, then

lim (sup |I(t) — I0|> =0,
e—0 teR
but this is not true for all solutions.

For all solutions, usually one only have finite stability. Given § > 0,
without assumption on h we have the trivial estimate

() = h| S 6, |t] <o,

so taking § = €, ¢ > 0 arbitrarily small, a priori one has only

Iimo( sup |I(t)—lo|> =0.

[t]<e—t
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Effective stability: h is effectively stable if for any small perturbation f
of size ¢, all solutions (0(t), I(t)) of the system H = h+ f satisfy

lim sup |I(t)—1h|] =0.
e=0 \og|t|<et

Nekhoroshev (~70), Niederman (06): if the restriction of h to some
affine subspace, which has a basis of integer vectors, has a non-isolated
critical point, then h is not effectively stable.

Rational steepness: h is rationally steep if its restriction to any affine

subspace, generated by integer vectors, has isolated critical points.

Theorem
h is effectively stable <= h is rationally steep.
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We shall restrict to perturbations of linear integrable Hamiltonians: ntreduction
h(l)=w.l, weR"\{0}

so that Vh(/) = w is constant.

h is not rationally steep <= w is resonant: there exists k € Z" \ {0}
such that k.w = 0.

Then the system H(0, 1) = w.l + € cos(k.0) has solutions for which
sup  [I(t) —lo| = [I(e™ ") — bo| = |k| > 1.

0<t<e—1

If w is (7, 7)-Diophantine, that is |k.w| > v|k|™" for all k € Z" \ {0}
and for some v > 0 and 7 > n — 1, it has been proved

(&) = bl S ()77, [t S (=) exp (72777 ).
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Notations

We fix the integrable part h(/) = w.l. Wlog, assume |w| =1, hence
w=(1,a)=(1,a1,...,an-1) with @ = (a1,...,ap—1) € R™L.

Let |.|z = d(.,Z), and define W = W, by
W(K) = max{|k.o4g1 |l kez'™ 0< |kl < K} . KeN

Extend W as a strictly increasing continuous function defined on
[1,4+00), and then define

Ax) = xW¥(x), A(x)=A'(x), x>1.

For instance, if w is (v, 7)-Diophantine, then we can choose

W) =777 A =y T AR = ()T
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(6(t), I(t)) of H= h+ f satisfy the estimates
1(6) = ol S 6, Jt] S 8 exp (D) -
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Diophantine case: taking § = (A (e71)) 7" = (y"'€)T* one recovers
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Theorem 1
For any sufficiently small perturbation f of size e, all solutions
(6(t), I(t)) of H= h+ f satisfy the estimates

Results

1(6) = ol S 6, Jt] S 8 exp (D) -

for any (A (5’1))71 <5<

Diophantine case: taking § = (A (e71)) 7" = (y"'€)T* one recovers

(&) = bl S ()77, [t S (277 exp (72777 ).

Taking § = € with ¢ > 0 arbitrarily close to zero, we obtain

Corollary 1
If h is linear, h is effectively stable <= h is rationally steep.
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Theorem 2
There exists a sequence of perturbation (f;)jen, |fi| < &j — 0 when
J — oo, and solutions (0(t), I(t)) of H; = h+ f; for which

Results

16 = hol = ltleyexp (~A()) -

For some arbitrarily small perturbation and for some solutions of the
perturbed system, Theorem 2 says that for 6 > 0,

1(e) = lol =6, [t = 8 exp (B(e 1))

while for any small perturbation and any solutions of the perturbed
system, Theorem 1 says that

1(6) = bl S 6, |t S o exp (A(TH) |

Therefore Theorem 1 and Theorem 2 cannot be improved in general.




. . . . Stabili nd instability
Neighbourhood of invariant tori lor nearlinear

Hamiltonian systems

Results




. . . . Stabili nd instability
Neighbourhood of invariant tori lor nearlinear

Hamiltonian systems

Abed Bounemoura

The dynamics in the neighbourhood of a linearly stable quasi-periodic Results
invariant torus (isotropic, reducible) can be brought to a perturbation of
a linear integrable Hamiltonian system, where ¢ is (the square) of the
distance to the torus.




. . . . Stabili nd instabili
Neighbourhood of invariant tori lor nearlinear

Hamiltonian systems

Abed

The dynamics in the neighbourhood of a linearly stable quasi-periodic Results
invariant torus (isotropic, reducible) can be brought to a perturbation of
a linear integrable Hamiltonian system, where ¢ is (the square) of the
distance to the torus.

There are at least two differences:




Stability and instability

Neighbourhood of invariant tori for nearlinear

Hamiltonian systems

Abed

The dynamics in the neighbourhood of a linearly stable quasi-periodic Results
invariant torus (isotropic, reducible) can be brought to a perturbation of
a linear integrable Hamiltonian system, where ¢ is (the square) of the
distance to the torus.

There are at least two differences:
- no angle-action coordinates everywhere unless the torus is Lagrangian
(not very essential)




Stability and instability

Neighbourhood of invariant tori for nearlinear

Hamiltonian systems

Abed Bc

The dynamics in the neighbourhood of a linearly stable quasi-periodic Results
invariant torus (isotropic, reducible) can be brought to a perturbation of
a linear integrable Hamiltonian system, where ¢ is (the square) of the
distance to the torus.

There are at least two differences:

- no angle-action coordinates everywhere unless the torus is Lagrangian
(not very essential)

- the perturbation is more specific (for instance, (0, 1) = O(|/|?), this
is essential)




Stability and instability

Neighbourhood of invariant tori for nearlinear

Hamiltonian systems

Abed

The dynamics in the neighbourhood of a linearly stable quasi-periodic Results
invariant torus (isotropic, reducible) can be brought to a perturbation of
a linear integrable Hamiltonian system, where ¢ is (the square) of the
distance to the torus.

There are at least two differences:

- no angle-action coordinates everywhere unless the torus is Lagrangian
(not very essential)

- the perturbation is more specific (for instance, (0, 1) = O(|/|?), this
is essential)

Theorem 1 applies, but it gives a stability result which is not very
relevant (especially in the case of a non-resonant elliptic fixed point).
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The dynamics in the neighbourhood of a linearly stable quasi-periodic Results
invariant torus (isotropic, reducible) can be brought to a perturbation of
a linear integrable Hamiltonian system, where ¢ is (the square) of the
distance to the torus.

There are at least two differences:

- no angle-action coordinates everywhere unless the torus is Lagrangian
(not very essential)

- the perturbation is more specific (for instance, (0, 1) = O(|/|?), this
is essential)

Theorem 1 applies, but it gives a stability result which is not very
relevant (especially in the case of a non-resonant elliptic fixed point).

Theorem 2 does not apply at all.
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Proofs

Proof of Theorem 1 uses approximations by rational numbers and a
one-phase averaging (an idea introduced by Lochak for convex
integrable Hamiltonians).

Proof of Theorem 2 follows from the (idea of the) proof of Theorem 1.

For simplicity, here we shall restrict to the case n = 2.

For n > 2, the proof of Theorem 1 can either be obtained by a suitable
induction, or by using general resonant normal forms.

For n > 2, the proof of Theorem 2 is the same as for n = 2.
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Proof of Theorem 1

Recall w = (1,a) € R?, W is the function associated to w, ¢ is the size
of the perturbation. Take a free parameter K > 1.
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Recall w = (1,a) € R?, W is the function associated to w, ¢ is the size
of the perturbation. Take a free parameter K > 1.

Step 1: approximation by a resonant vector. We approximate « by a Proofs
rational number: one can find a non-zero rational p/q such that

lga —p| SW(K)™, 1< q<V(K), |a—p/ql<q W(K)™

By definition of W, g > K, so |a — p/q| < K™'W(K)™!. Choose K
such that

K'W(K) " we, KUK)oe ', Ko Al
Let v=(1,p/q), h(l) = w.I, h,(I) = v.I then
lw—v|<e |h—hJSe
The system can be written

H=h,+f, f,=h—h+f, |f|<ec
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Step 2: one-phase averaging. We have ge < K, so we can find an
analytic symplectic transformation ®, with |® —Id| < K71, such that

Proofs

Hod=h+g+f, |g|<e {g.h}=0, |f|Sece ™

Step 3: cut-off. Write g = go + g’, with

g(l) = /W g(6,1)ds, g'(6,1) = Z Bi(1)e¥ ™.

kezZr\{0}

Then {g,h/} =0<= g«(I) =0, k.v#0 so

gO.Nn= > &’

k.v=0, k30

But kv =0, k#0 = |k| > q> K. So |g'| < |gle * Sce .
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Step 4: stability estimates. Let (6,1) = ®(¢’,1’). Since Ho ® is

integrable up to a term of size ce™
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(1) =kl <d,

K givenany 0 <’ <1
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Step 4: stability estimates. Let (6,1) = ®(¢’,1’). Since Ho ® is
integrable up to a term of size ee ¥, given any 0 < 6’ <1

[1'(t) = o] S8, [t| S o't
Now |® —Id| < K71, so forany K1 <6 <1
[1(t) = bl S 6, [t| S de e

Finally K = A(e™1).
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The perturbation £ will be of the form £(0, 1) = £}(I) + ().

J

Step 1: first perturbation.

Stability and instability

for near-linear
Hamiltonian systems

Abed Boune

Proofs




Stability and instability
Proof of Theorem 2 P or e linenr

Hamiltonian systems

Abed Boune

For any j € N, we want to construct a system H; = h+ f;, |fj| < ¢j,
which has orbits satisfying

1(8) = bol = ltlejexp (~A( )

The perturbation f; will be of the form £;(6, 1) = f*(I) + f2(6).

J

Proofs

Step 1: first perturbation. Let (p;j/q;)jen be the sequence of
convergents of a. Then

(g +qn) ' <lga—pl < a5, le—p/gl <(gga)' jeN




Stability and instability

Proof of Theorem 2 for near-linear

Hamiltonian systems
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1(8) = bol = ltlejexp (~A( )

The perturbation f; will be of the form £;(6, 1) = f*(I) + f2(6).

Step 1: first perturbation. Let (p;j/q;)jen be the sequence of
convergents of a. Then
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For any j € N, we want to construct a system H; = h+ f;, |fj| < ¢j,
which has orbits satisfying

1 Proofs
[1(£) — bo| = |t]e; exp (7A(g; )) .
The perturbation f; will be of the form £;(6, 1) = f*(I) + f2(6).

Step 1: first perturbation. Let (p;j/q;)jen be the sequence of
convergents of a. Then

(g +qn) ' <lga—pl < a5, le—p/gl <(gga)' jeN
So g1 < W(qj) < 2qj41, hence | — p;/qi| S (s¥(q;)) ™" Define

—1

g2 (qV¥(q) ! &2 qV(q), g =AY




Stability and instability

Proof of Theorem 2 for near-linear

Hamiltonian systems

For any j € N, we want to construct a system H; = h+ f;, |fj| < ¢j,
which has orbits satisfying

Proofs

1(8) = bol = ltlejexp (~A( )

The perturbation f; will be of the form £;(6, 1) = f*(I) + f2(6).

Step 1: first perturbation. Let (p;j/q;)jen be the sequence of
convergents of a. Then

(@ + q+1) " <lgio—pil < g1, | —pi/gil < (gigs1) ™" jEN.
So g1 < W(qj) < 2qj41, hence | — p;/qi| S (s¥(q;)) ™" Define
g2 (V@)™ g leqV¥(e), =A@
Let v; = (1, p;/q;) and hy;(I) = v;.], the first perturbation is

f1() = h(l) = hy (D, | <&




Stability and instability
Proof of Theorem 2 P or e linenr

Hamiltonian systems

Abed 1'emoura

Proofs




Stability and instability
Proof of Theorem 2 P or e linenr

Hamiltonian systems

Abed Bounemoura
Step 2: second perturbation.

Proofs




Stabili nd instability
Proof of Theorem 2 ey

Hamiltonian systems

Abed Bounemoura

Step 2: second perturbation. After the first perturbation, h + 6-1 = hy,
with v; resonant, kj.v; =0 for k; = (pj, —qj).

Proofs




Proof of Theorem 2

Step 2: second perturbation. After the first perturbation, h + 6-1 = h,,

with v; resonant, kj.v; = 0 for kj = (pj, —q;). So we define
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f-2

() = gjpj cos(k;.0).
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with v; resonant, kj.v; = 0 for kj = (pj, —q;). So we define
£2(6) = i cos(k;.0).

But |kj| = q; = A(e; ).
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Step 2: second perturbation. After the first perturbation, h + 6-1 = hy,
with v; resonant, kj.v; = 0 for kj = (pj, —q;). So we define

Proofs

£2(0) = ejp; cos(k;.0).
But |kj| = g = A(g; ). So for 6 € C* with |Im(6)| < 1,
| cos(k;.0)| < exp |ki| = exp qj = exp (A(g;l)> ,
So we need to choose
Wi 2 exp (—A(5;1)> — |'52| <¢
Now the system H; = h+ f; = h+ ! + £ is

H;(0,1) = vj.I + gjpjcos(kj.0) = vj.l + cjexp <—A(5f1)) cos(k;.0)




Stabili nd instability
Proof of Theorem 2 ey

Hamiltonian systems

Step 2: second perturbation. After the first perturbation, h + 6-1 = hy,
with v; resonant, kj.v; = 0 for kj = (pj, —q;). So we define

Proofs

£2(6) = i cos(k;.0).
But |kj| = g = A(g; ). So for 6 € C* with |Im(6)| < 1,
| cos(ki-0)| S explkj| = expg; = exp (A1) -
So we need to choose
e ep (<AET) = IF1 S e
Now the system H; = h+ f; = h+ ! + £ is
H;(0,1) = vj.I + gjpjcos(kj.0) = vj.l + cjexp <—A(5f1)) cos(k;.0)

so it has orbits for which [/(t) — k| = |t|ejexp (—A(g; ).
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