Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

IMPA, Rio de Janeiro, Brasil

Workshop on Instabilities in Hamiltonian Systems, Fields Institute, June 13-17, 2011

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → ヨ → のへぐ

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

1 Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

1 Introduction

2 Results

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

1 Introduction

2 Results

3 Proofs

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

1 Introduction

2 Results

3 Proofs

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$, *B* ball of \mathbb{R}^n , $(\theta, I) \in \mathbb{T}^n \times B$ "angle-action" coordinates. For a Hamiltonian $H : \mathbb{T}^n \times B \to \mathbb{R}$, we study solutions $(\theta(t), I(t))$ of

$$\begin{cases} \dot{\theta} = \partial_{l} H(\theta, I), \\ \dot{I} = -\partial_{\theta} H(\theta, I), \end{cases} \begin{cases} H(\theta, I) = h(I) + f(\theta, I), \\ |f| \le \varepsilon \ll 1. \end{cases}$$
(*

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

 $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$, *B* ball of \mathbb{R}^n , $(\theta, I) \in \mathbb{T}^n \times B$ "angle-action" coordinates. For a Hamiltonian $H : \mathbb{T}^n \times B \to \mathbb{R}$, we study solutions $(\theta(t), I(t))$ of

$$\begin{cases} \dot{\theta} = \partial_{l} H(\theta, I), \\ \dot{I} = -\partial_{\theta} H(\theta, I), \end{cases} \begin{cases} H(\theta, I) = h(I) + f(\theta, I), \\ |f| \le \varepsilon \ll 1. \end{cases}$$
(*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Here we consider the analytic case, h, f are bounded and real analytic, the norm $|.| = |.|_{\sigma}$ is the sup norm on a complex neighbourhood $V_{\sigma}(\mathbb{T}^n \times B)$ of size $\sigma > 0$. Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

 $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$, *B* ball of \mathbb{R}^n , $(\theta, I) \in \mathbb{T}^n \times B$ "angle-action" coordinates. For a Hamiltonian $H : \mathbb{T}^n \times B \to \mathbb{R}$, we study solutions $(\theta(t), I(t))$ of

$$\begin{cases} \dot{\theta} = \partial_l H(\theta, I), \\ \dot{I} = -\partial_{\theta} H(\theta, I), \end{cases} \begin{cases} H(\theta, I) = h(I) + f(\theta, I), \\ |f| \le \varepsilon \ll 1. \end{cases}$$
(*)

Here we consider the analytic case, h, f are bounded and real analytic, the norm $|.| = |.|_{\sigma}$ is the sup norm on a complex neighbourhood $V_{\sigma}(\mathbb{T}^n \times B)$ of size $\sigma > 0$.

For $\varepsilon = 0$, the system H = h is integrable:

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

 $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$, *B* ball of \mathbb{R}^n , $(\theta, I) \in \mathbb{T}^n \times B$ "angle-action" coordinates. For a Hamiltonian $H : \mathbb{T}^n \times B \to \mathbb{R}$, we study solutions $(\theta(t), I(t))$ of

$$\begin{cases} \dot{\theta} = \partial_l H(\theta, I), \\ \dot{I} = -\partial_{\theta} H(\theta, I), \end{cases} \begin{cases} H(\theta, I) = h(I) + f(\theta, I), \\ |f| \le \varepsilon \ll 1. \end{cases}$$
(*)

- 日本 - 1 日本 - 日本 - 日本 - 日本

Here we consider the analytic case, h, f are bounded and real analytic, the norm $|.| = |.|_{\sigma}$ is the sup norm on a complex neighbourhood $V_{\sigma}(\mathbb{T}^n \times B)$ of size $\sigma > 0$.

For $\varepsilon = 0$, the system H = h is integrable: (1) action variables I(t) are integral of motions, $I(t) = I_0$, $t \in \mathbb{R}$ Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

 $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$, *B* ball of \mathbb{R}^n , $(\theta, I) \in \mathbb{T}^n \times B$ "angle-action" coordinates. For a Hamiltonian $H : \mathbb{T}^n \times B \to \mathbb{R}$, we study solutions $(\theta(t), I(t))$ of

 $\begin{cases} \dot{\theta} = \partial_l H(\theta, I), \\ \dot{I} = -\partial_{\theta} H(\theta, I), \end{cases} \begin{cases} H(\theta, I) = h(I) + f(\theta, I), \\ |f| \le \varepsilon \ll 1. \end{cases}$ (*)

Here we consider the analytic case, h, f are bounded and real analytic, the norm $|.| = |.|_{\sigma}$ is the sup norm on a complex neighbourhood $V_{\sigma}(\mathbb{T}^n \times B)$ of size $\sigma > 0$.

For $\varepsilon = 0$, the system H = h is integrable: (1) action variables I(t) are integral of motions, $I(t) = I_0$, $t \in \mathbb{R}$ (2) the tori $\mathbb{T}^n \times \{I_0\}$ are invariant and the dynamic is quasi-periodic, if $\omega_0 = \nabla h(I_0)$, the flow is $\Phi_t^h : (\theta_0, I_0) \longmapsto (\theta_0 + t\omega_0 [\mathbb{Z}^n], I_0)$. Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

 $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$, *B* ball of \mathbb{R}^n , $(\theta, I) \in \mathbb{T}^n \times B$ "angle-action" coordinates. For a Hamiltonian $H : \mathbb{T}^n \times B \to \mathbb{R}$, we study solutions $(\theta(t), I(t))$ of

 $\begin{cases} \dot{\theta} = \partial_{l} H(\theta, I), \\ \dot{I} = -\partial_{\theta} H(\theta, I), \end{cases} \begin{cases} H(\theta, I) = h(I) + f(\theta, I), \\ |f| \le \varepsilon \ll 1. \end{cases}$ (*)

Here we consider the analytic case, h, f are bounded and real analytic, the norm $|.| = |.|_{\sigma}$ is the sup norm on a complex neighbourhood $V_{\sigma}(\mathbb{T}^n \times B)$ of size $\sigma > 0$.

For $\varepsilon = 0$, the system H = h is integrable: (1) action variables I(t) are integral of motions, $I(t) = I_0$, $t \in \mathbb{R}$ (2) the tori $\mathbb{T}^n \times \{I_0\}$ are invariant and the dynamic is quasi-periodic, if $\omega_0 = \nabla h(I_0)$, the flow is Φ_t^h : $(\theta_0, I_0) \longmapsto (\theta_0 + t\omega_0 [\mathbb{Z}^n], I_0)$.

For $\varepsilon > 0$ small, the system H = h + f is near-integrable, what happens to (1) and (2) ?

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

KAM stability: *h* is KAM stable if for any small perturbation *f* of size ε , the system H = h + f possesses a set of quasi-periodic solutions:

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

KAM stability: *h* is KAM stable if for any small perturbation *f* of size ε , the system H = h + f possesses a set of quasi-periodic solutions: - $\delta(\varepsilon)$ -closed to unperturbed quasi-periodic solutions, $\lim_{\varepsilon \to 0} \delta(\varepsilon) = 0$ Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

KAM stability: *h* is KAM stable if for any small perturbation *f* of size ε , the system H = h + f possesses a set of quasi-periodic solutions:

- $\delta(\varepsilon)\text{-closed}$ to unperturbed quasi-periodic solutions, $\lim_{\varepsilon\to 0}\delta(\varepsilon)=0$

- the measure of the complement of this set satisfies $\lim_{\varepsilon \to 0} m(\varepsilon) = 0.$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

KAM stability: *h* is KAM stable if for any small perturbation *f* of size ε , the system H = h + f possesses a set of quasi-periodic solutions: - $\delta(\varepsilon)$ -closed to unperturbed quasi-periodic solutions, $\lim_{\varepsilon \to 0} \delta(\varepsilon) = 0$

- the measure of the complement of this set satisfies $\lim_{\varepsilon \to 0} m(\varepsilon) = 0.$

Rüssmann non-degeneracy: h is Rüssmann non-degenerate if the image of the frequency map $\nabla h : B \to \mathbb{R}^n$ is not contained in a hyperplane

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

KAM stability: *h* is KAM stable if for any small perturbation *f* of size ε , the system H = h + f possesses a set of quasi-periodic solutions: - $\delta(\varepsilon)$ -closed to unperturbed quasi-periodic solutions, $\lim_{\varepsilon \to 0} \delta(\varepsilon) = 0$

- the measure of the complement of this set satisfies $\lim_{\varepsilon \to 0} m(\varepsilon) = 0.$

Rüssmann non-degeneracy: h is Rüssmann non-degenerate if the image of the frequency map $\nabla h : B \to \mathbb{R}^n$ is not contained in a hyperplane

Rüssmann (~80): h is Rüssmann non-degenerate \implies h is KAM stable.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

KAM stability: *h* is KAM stable if for any small perturbation *f* of size ε , the system H = h + f possesses a set of quasi-periodic solutions: - $\delta(\varepsilon)$ -closed to unperturbed quasi-periodic solutions, $\lim_{\varepsilon \to 0} \delta(\varepsilon) = 0$

- the measure of the complement of this set satisfies $\lim_{\epsilon \to 0} m(\epsilon) = 0.$

Rüssmann non-degeneracy: h is Rüssmann non-degenerate if the image of the frequency map $\nabla h: B \to \mathbb{R}^n$ is not contained in a hyperplane

Rüssmann (~80): h is Rüssmann non-degenerate \implies h is KAM stable.

Sevryuk (95): *h* is KAM stable \implies *h* is Rüssmann non-degenerate.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

KAM stability gives infinite stability for some solutions: if a solution $(\theta(t), I(t))$ is quasi-periodic, then

$$\lim_{\varepsilon\to 0}\left(\sup_{t\in\mathbb{R}}|I(t)-I_0|\right)=0,$$

but this is not true for all solutions.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト・日本・日本・日本・日本・日本

KAM stability gives infinite stability for some solutions: if a solution $(\theta(t), I(t))$ is quasi-periodic, then

$$\lim_{\varepsilon \to 0} \left(\sup_{t \in \mathbb{R}} |I(t) - I_0| \right) = 0,$$

but this is not true for all solutions.

For all solutions, usually one only have finite stability.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

KAM stability gives infinite stability for some solutions: if a solution $(\theta(t), I(t))$ is quasi-periodic, then

$$\lim_{\varepsilon \to 0} \left(\sup_{t \in \mathbb{R}} |I(t) - I_0| \right) = 0$$

but this is not true for all solutions.

For all solutions, usually one only have finite stability. Given $\delta > 0$, without assumption on h we have the trivial estimate

$$|I(t) - I_0| \lesssim \delta, \quad |t| \leq \delta \varepsilon^{-1},$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

KAM stability gives infinite stability for some solutions: if a solution $(\theta(t), I(t))$ is quasi-periodic, then

$$\lim_{\varepsilon \to 0} \left(\sup_{t \in \mathbb{R}} |I(t) - I_0| \right) = 0$$

but this is not true for all solutions.

For all solutions, usually one only have finite stability. Given $\delta > 0$, without assumption on h we have the trivial estimate

 $|I(t) - I_0| \lesssim \delta, \quad |t| \le \delta \varepsilon^{-1},$

so taking $\delta = \varepsilon^{c}$, c > 0 arbitrarily small, a priori one has only

$$\lim_{\varepsilon\to 0}\left(\sup_{|t|<\varepsilon^{-1}}|I(t)-I_0|\right)=0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロト < 個 ト < 目 ト < 目 ト 三 ・ の < (*)</p>

Effective stability: h is effectively stable if for any small perturbation f of size ε , all solutions $(\theta(t), I(t))$ of the system H = h + f satisfy

$$\lim_{\varepsilon \to 0} \left(\sup_{0 \le |t| \le \varepsilon^{-1}} |I(t) - I_0| \right) = 0.$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Effective stability: *h* is effectively stable if for any small perturbation *f* of size ε , all solutions ($\theta(t)$, I(t)) of the system H = h + f satisfy

$$\lim_{\varepsilon \to 0} \left(\sup_{0 \le |t| \le \varepsilon^{-1}} |I(t) - I_0| \right) = 0.$$

Nekhoroshev (\sim 70), Niederman (06): if the restriction of *h* to some affine subspace, which has a basis of integer vectors, has a non-isolated critical point, then *h* is not effectively stable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Effective stability: *h* is effectively stable if for any small perturbation *f* of size ε , all solutions ($\theta(t)$, I(t)) of the system H = h + f satisfy

$$\lim_{\varepsilon \to 0} \left(\sup_{0 \le |t| \le \varepsilon^{-1}} |I(t) - I_0| \right) = 0.$$

Nekhoroshev (\sim 70), Niederman (06): if the restriction of *h* to some affine subspace, which has a basis of integer vectors, has a non-isolated critical point, then *h* is not effectively stable.

Rational steepness: *h* is rationally steep if its restriction to any affine subspace, generated by integer vectors, has isolated critical points.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Effective stability: *h* is effectively stable if for any small perturbation *f* of size ε , all solutions ($\theta(t)$, I(t)) of the system H = h + f satisfy

$$\lim_{\varepsilon \to 0} \left(\sup_{0 \le |t| \le \varepsilon^{-1}} |I(t) - I_0| \right) = 0$$

Nekhoroshev (\sim 70), Niederman (06): if the restriction of *h* to some affine subspace, which has a basis of integer vectors, has a non-isolated critical point, then *h* is not effectively stable.

Rational steepness: *h* is rationally steep if its restriction to any affine subspace, generated by integer vectors, has isolated critical points.

Theorem *h* is effectively stable \iff *h* is rationally steep.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We shall restrict to perturbations of linear integrable Hamiltonians:

 $h(I) = \omega . I, \quad \omega \in \mathbb{R}^n \setminus \{0\}$

so that $\nabla h(I) = \omega$ is constant.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

We shall restrict to perturbations of linear integrable Hamiltonians:

$$h(I) = \omega . I, \quad \omega \in \mathbb{R}^n \setminus \{0\}$$

so that $\nabla h(I) = \omega$ is constant.

h is not rationally steep $\iff \omega$ is resonant: there exists $k \in \mathbb{Z}^n \setminus \{0\}$ such that $k.\omega = 0$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We shall restrict to perturbations of linear integrable Hamiltonians:

$$h(I) = \omega . I, \quad \omega \in \mathbb{R}^n \setminus \{0\}$$

so that $\nabla h(I) = \omega$ is constant.

h is not rationally steep $\iff \omega$ is resonant: there exists $k \in \mathbb{Z}^n \setminus \{0\}$ such that $k.\omega = 0$.

Then the system $H(\theta, I) = \omega . I + \varepsilon \cos(k . \theta)$ has solutions for which

$$\sup_{0\leq t\leq \varepsilon^{-1}}|I(t)-I_0|=|I(\varepsilon^{-1})-I_0|=|k|\geq 1.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

We shall restrict to perturbations of linear integrable Hamiltonians:

$$h(I) = \omega . I, \quad \omega \in \mathbb{R}^n \setminus \{0\}$$

so that $\nabla h(I) = \omega$ is constant.

h is not rationally steep $\iff \omega$ is resonant: there exists $k \in \mathbb{Z}^n \setminus \{0\}$ such that $k.\omega = 0$. Then the system $H(\theta, I) = \omega I + \varepsilon \cos(k.\theta)$ has solutions for which

$$\sup_{0\leq t\leq \varepsilon^{-1}}|I(t)-I_0|=|I(\varepsilon^{-1})-I_0|=|k|\geq 1.$$

If ω is (γ, τ) -Diophantine, that is $|k.\omega| \ge \gamma |k|^{-\tau}$ for all $k \in \mathbb{Z}^n \setminus \{0\}$ and for some $\gamma > 0$ and $\tau \ge n - 1$, it has been proved

$$|I(t) - I_0| \lesssim (\gamma^{-1} \varepsilon)^{rac{1}{1+ au}}, \quad |t| \lesssim (\gamma \varepsilon^{-1})^{rac{1}{1+ au}} \exp\left((\gamma \varepsilon^{-1})^{rac{1}{1+ au}}
ight).$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト ・ 語 ・ ・ 語 ・ ・ 語 ・ ・ 日 ・

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

1 Introduction

2 Results

3 Proofs

Notations

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

We fix the integrable part $h(I) = \omega I$. Wlog, assume $|\omega| = 1$, hence $\omega = (1, \alpha) = (1, \alpha_1, \dots, \alpha_{n-1})$ with $\alpha = (\alpha_1, \dots, \alpha_{n-1}) \in \mathbb{R}^{n-1}$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

We fix the integrable part $h(I) = \omega I$. Wlog, assume $|\omega| = 1$, hence $\omega = (1, \alpha) = (1, \alpha_1, \dots, \alpha_{n-1})$ with $\alpha = (\alpha_1, \dots, \alpha_{n-1}) \in \mathbb{R}^{n-1}$.

Let $|.|_{\mathbb{Z}} = d(.,\mathbb{Z})$, and define $\Psi = \Psi_{\omega}$ by

$$\Psi(\mathcal{K}) = \max\left\{ |k.lpha|_{\mathbb{Z}}^{-1} \mid k \in \mathbb{Z}^{n-1}, \, 0 < |k| \leq \mathcal{K}
ight\}, \quad \mathcal{K} \in \mathbb{N}^*.$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We fix the integrable part $h(I) = \omega I$. Wlog, assume $|\omega| = 1$, hence $\omega = (1, \alpha) = (1, \alpha_1, \dots, \alpha_{n-1})$ with $\alpha = (\alpha_1, \dots, \alpha_{n-1}) \in \mathbb{R}^{n-1}$.

Let $|.|_{\mathbb{Z}} = d(.,\mathbb{Z})$, and define $\Psi = \Psi_{\omega}$ by

$$\Psi(\mathcal{K}) = \max\left\{ |k.\alpha|_{\mathbb{Z}}^{-1} \mid k \in \mathbb{Z}^{n-1}, \, 0 < |k| \le \mathcal{K} \right\}, \quad \mathcal{K} \in \mathbb{N}^*.$$

Extend Ψ as a strictly increasing continuous function defined on $[1,+\infty),$ and then define

 $\Lambda(x) = x\Psi(x), \quad \Delta(x) = \Lambda^{-1}(x), \quad x \ge 1.$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

We fix the integrable part $h(I) = \omega I$. Wlog, assume $|\omega| = 1$, hence $\omega = (1, \alpha) = (1, \alpha_1, \dots, \alpha_{n-1})$ with $\alpha = (\alpha_1, \dots, \alpha_{n-1}) \in \mathbb{R}^{n-1}$.

Let $|.|_{\mathbb{Z}} = d(.,\mathbb{Z})$, and define $\Psi = \Psi_{\omega}$ by

$$\Psi(\mathcal{K}) = \max\left\{ |k.\alpha|_{\mathbb{Z}}^{-1} \mid k \in \mathbb{Z}^{n-1}, \, 0 < |k| \le \mathcal{K} \right\}, \quad \mathcal{K} \in \mathbb{N}^*.$$

Extend Ψ as a strictly increasing continuous function defined on $[1,+\infty),$ and then define

$$\Lambda(x) = x\Psi(x), \quad \Delta(x) = \Lambda^{-1}(x), \quad x \ge 1.$$

For instance, if ω is (γ, τ) -Diophantine, then we can choose

$$\Psi(x) = \gamma^{-1} x^{\tau}, \quad \Lambda(x) = \gamma^{-1} x^{1+\tau}, \quad \Delta(x) = (\gamma x)^{\frac{1}{1+\tau}}$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Theorem 1

For any sufficiently small perturbation f of size ε , all solutions $(\theta(t), I(t))$ of H = h + f satisfy the estimates

$$|I(t) - I_0| \lesssim \delta, \quad |t| \lesssim \delta arepsilon^{-1} \exp\left(\Delta(arepsilon^{-1})
ight).$$

for any $\left(\Delta\left(\varepsilon^{-1}\right)\right)^{-1}\lesssim\delta\lesssim 1.$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Theorem 1

For any sufficiently small perturbation f of size ε , all solutions $(\theta(t), I(t))$ of H = h + f satisfy the estimates

$$|I(t) - I_0| \lesssim \delta, \quad |t| \lesssim \delta arepsilon^{-1} \exp\left(\Delta(arepsilon^{-1})
ight).$$

for any $\left(\Delta\left(\varepsilon^{-1}\right)\right)^{-1}\lesssim\delta\lesssim 1.$

Diophantine case: taking $\delta \simeq \left(\Delta\left(\varepsilon^{-1}\right)\right)^{-1} = (\gamma^{-1}\varepsilon)^{\frac{1}{1+\tau}}$ one recovers

$$|I(t) - I_0| \lesssim (\gamma^{-1} arepsilon)^{rac{1}{1+ au}}, \quad |t| \lesssim (\gamma arepsilon^{-1})^{rac{1}{1+ au}} \exp\left((\gamma arepsilon^{-1})^{rac{1}{1+ au}}
ight).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Theorem 1

For any sufficiently small perturbation f of size ε , all solutions $(\theta(t), I(t))$ of H = h + f satisfy the estimates

$$|I(t) - I_0| \lesssim \delta, \quad |t| \lesssim \delta arepsilon^{-1} \exp\left(\Delta(arepsilon^{-1})
ight).$$

for any $\left(\Delta\left(\varepsilon^{-1}\right)\right)^{-1} \lesssim \delta \lesssim 1$.

Diophantine case: taking $\delta \simeq \left(\Delta\left(\varepsilon^{-1}\right)\right)^{-1} = (\gamma^{-1}\varepsilon)^{\frac{1}{1+\tau}}$ one recovers

$$|I(t) - I_0| \lesssim (\gamma^{-1} arepsilon)^{rac{1}{1+ au}}, \quad |t| \lesssim (\gamma arepsilon^{-1})^{rac{1}{1+ au}} \exp\left((\gamma arepsilon^{-1})^{rac{1}{1+ au}}
ight).$$

Taking $\delta \simeq \varepsilon^{c}$ with c > 0 arbitrarily close to zero, we obtain

Corollary 1

If h is linear, h is effectively stable \iff h is rationally steep.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロ> <0</p>

Theorem 2

There exists a sequence of perturbation $(f_j)_{j \in \mathbb{N}}$, $|f_j| \leq \varepsilon_j \to 0$ when $j \to +\infty$, and solutions $(\theta(t), I(t))$ of $H_j = h + f_j$ for which

$$|I(t) - I_0| \simeq |t| arepsilon_j \exp\left(-\Delta(arepsilon_j^{-1})
ight)$$
 .

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Theorem 2

There exists a sequence of perturbation $(f_j)_{j \in \mathbb{N}}$, $|f_j| \leq \varepsilon_j \to 0$ when $j \to +\infty$, and solutions $(\theta(t), I(t))$ of $H_j = h + f_j$ for which

$$|I(t) - I_0| \simeq |t| arepsilon_j \exp\left(-\Delta(arepsilon_j^{-1})
ight)$$
 .

For some arbitrarily small perturbation and for some solutions of the perturbed system, Theorem 2 says that for $\delta > 0$,

 $|I(t) - I_0| = \delta, \quad |t| \simeq \delta arepsilon_j^{-1} \exp\left(\Delta(arepsilon_j^{-1})
ight),$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Theorem 2

There exists a sequence of perturbation $(f_j)_{j \in \mathbb{N}}$, $|f_j| \leq \varepsilon_j \to 0$ when $j \to +\infty$, and solutions $(\theta(t), I(t))$ of $H_j = h + f_j$ for which

$$|I(t) - I_0| \simeq |t| \varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})
ight)$$

For some arbitrarily small perturbation and for some solutions of the perturbed system, Theorem 2 says that for $\delta > 0$,

$$|I(t) - I_0| = \delta, \quad |t| \simeq \delta arepsilon_j^{-1} \exp\left(\Delta(arepsilon_j^{-1})
ight),$$

while for any small perturbation and any solutions of the perturbed system, Theorem 1 says that

$$|I(t) - I_0| \lesssim \delta, \quad |t| \lesssim \delta arepsilon^{-1} \exp\left(\Delta(arepsilon^{-1})
ight)$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem 2

There exists a sequence of perturbation $(f_j)_{j \in \mathbb{N}}$, $|f_j| \leq \varepsilon_j \to 0$ when $j \to +\infty$, and solutions $(\theta(t), I(t))$ of $H_j = h + f_j$ for which

$$|I(t) - I_0| \simeq |t| \varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})
ight)$$

For some arbitrarily small perturbation and for some solutions of the perturbed system, Theorem 2 says that for $\delta > 0$,

$$|I(t) - I_0| = \delta, \quad |t| \simeq \delta arepsilon_j^{-1} \exp\left(\Delta(arepsilon_j^{-1})
ight),$$

while for any small perturbation and any solutions of the perturbed system, Theorem 1 says that

$$|I(t) - I_0| \lesssim \delta, \quad |t| \lesssim \delta \varepsilon^{-1} \exp\left(\Delta(\varepsilon^{-1})
ight).$$

Therefore Theorem 1 and Theorem 2 cannot be improved in general.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロト < 個 ト < 目 ト < 目 ト 目 の Q (?)</p>

The dynamics in the neighbourhood of a linearly stable quasi-periodic invariant torus (isotropic, reducible) can be brought to a perturbation of a linear integrable Hamiltonian system, where ε is (the square) of the distance to the torus.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

The dynamics in the neighbourhood of a linearly stable quasi-periodic invariant torus (isotropic, reducible) can be brought to a perturbation of a linear integrable Hamiltonian system, where ε is (the square) of the distance to the torus.

There are at least two differences:

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

The dynamics in the neighbourhood of a linearly stable quasi-periodic invariant torus (isotropic, reducible) can be brought to a perturbation of a linear integrable Hamiltonian system, where ε is (the square) of the distance to the torus.

There are at least two differences:

- no angle-action coordinates everywhere unless the torus is Lagrangian (not very essential)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

The dynamics in the neighbourhood of a linearly stable quasi-periodic invariant torus (isotropic, reducible) can be brought to a perturbation of a linear integrable Hamiltonian system, where ε is (the square) of the distance to the torus.

There are at least two differences:

- no angle-action coordinates everywhere unless the torus is Lagrangian (not very essential)

- the perturbation is more specific (for instance, $f(\theta, I) = O(|I|^2)$, this is essential)

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

The dynamics in the neighbourhood of a linearly stable quasi-periodic invariant torus (isotropic, reducible) can be brought to a perturbation of a linear integrable Hamiltonian system, where ε is (the square) of the distance to the torus.

There are at least two differences:

- no angle-action coordinates everywhere unless the torus is Lagrangian (not very essential)

- the perturbation is more specific (for instance, $f(\theta, I) = O(|I|^2)$, this is essential)

Theorem 1 applies, but it gives a stability result which is not very relevant (especially in the case of a non-resonant elliptic fixed point).

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

The dynamics in the neighbourhood of a linearly stable quasi-periodic invariant torus (isotropic, reducible) can be brought to a perturbation of a linear integrable Hamiltonian system, where ε is (the square) of the distance to the torus.

There are at least two differences:

- no angle-action coordinates everywhere unless the torus is Lagrangian (not very essential)

- the perturbation is more specific (for instance, $f(\theta, I) = O(|I|^2)$, this is essential)

Theorem 1 applies, but it gives a stability result which is not very relevant (especially in the case of a non-resonant elliptic fixed point).

Theorem 2 does not apply at all.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Plan

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

1 Introduction

2 Results

3 Proofs

Comments on the proofs

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロト < 個 ト < 目 ト < 目 ト 目 の Q (?)</p>

Comments on the proofs

Proof of Theorem 1 uses approximations by rational numbers and a one-phase averaging (an idea introduced by Lochak for convex integrable Hamiltonians).

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Comments on the proofs

Proof of Theorem 1 uses approximations by rational numbers and a one-phase averaging (an idea introduced by Lochak for convex integrable Hamiltonians).

Proof of Theorem 2 follows from the (idea of the) proof of Theorem 1.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proof of Theorem 1 uses approximations by rational numbers and a one-phase averaging (an idea introduced by Lochak for convex integrable Hamiltonians).

Proof of Theorem 2 follows from the (idea of the) proof of Theorem 1.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

For simplicity, here we shall restrict to the case n = 2.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proof of Theorem 1 uses approximations by rational numbers and a one-phase averaging (an idea introduced by Lochak for convex integrable Hamiltonians).

Proof of Theorem 2 follows from the (idea of the) proof of Theorem 1.

For simplicity, here we shall restrict to the case n = 2.

For $n \ge 2$, the proof of Theorem 1 can either be obtained by a suitable induction, or by using general resonant normal forms.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proof of Theorem 1 uses approximations by rational numbers and a one-phase averaging (an idea introduced by Lochak for convex integrable Hamiltonians).

Proof of Theorem 2 follows from the (idea of the) proof of Theorem 1.

For simplicity, here we shall restrict to the case n = 2.

For $n \ge 2$, the proof of Theorem 1 can either be obtained by a suitable induction, or by using general resonant normal forms.

For $n \ge 2$, the proof of Theorem 2 is the same as for n = 2.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロト <回 > < 三 > < 三 > < 三 > のへの

Recall $\omega = (1, \alpha) \in \mathbb{R}^2$, Ψ is the function associated to ω , ε is the size of the perturbation. Take a free parameter $K \ge 1$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Recall $\omega = (1, \alpha) \in \mathbb{R}^2$, Ψ is the function associated to ω , ε is the size of the perturbation. Take a free parameter $K \ge 1$.

Step 1: approximation by a resonant vector.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

ntroduction

Results

Recall $\omega = (1, \alpha) \in \mathbb{R}^2$, Ψ is the function associated to ω , ε is the size of the perturbation. Take a free parameter $K \ge 1$.

Step 1: approximation by a resonant vector. We approximate α by a rational number: one can find a non-zero rational p/q such that

$$|qlpha - p| \leq \Psi(\mathcal{K})^{-1}, \quad 1 < q < \Psi(\mathcal{K}), \quad |lpha - p/q| \leq q^{-1}\Psi(\mathcal{K})^{-1},$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Recall $\omega = (1, \alpha) \in \mathbb{R}^2$, Ψ is the function associated to ω , ε is the size of the perturbation. Take a free parameter $K \ge 1$.

Step 1: approximation by a resonant vector. We approximate α by a rational number: one can find a non-zero rational p/q such that

$$|q\alpha - p| \leq \Psi(\mathcal{K})^{-1}, \quad 1 < q < \Psi(\mathcal{K}), \quad |\alpha - p/q| \leq q^{-1}\Psi(\mathcal{K})^{-1}.$$

By definition of Ψ , q > K, so $|\alpha - p/q| \le K^{-1}\Psi(K)^{-1}$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト・日本・日本・日本・日本・今日・

Recall $\omega = (1, \alpha) \in \mathbb{R}^2$, Ψ is the function associated to ω , ε is the size of the perturbation. Take a free parameter $K \ge 1$.

Step 1: approximation by a resonant vector. We approximate α by a rational number: one can find a non-zero rational p/q such that

$$|qlpha - p| \leq \Psi(\mathcal{K})^{-1}, \quad 1 < q < \Psi(\mathcal{K}), \quad |lpha - p/q| \leq q^{-1}\Psi(\mathcal{K})^{-1}.$$

By definition of Ψ , q > K, so $|\alpha - p/q| \le K^{-1} \Psi(K)^{-1}$. Choose K such that

$$\mathcal{K}^{-1}\Psi(\mathcal{K})^{-1} \simeq \varepsilon, \quad \mathcal{K}\Psi(\mathcal{K}) \simeq \varepsilon^{-1}, \quad \mathcal{K} \simeq \Delta(\varepsilon^{-1}).$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Recall $\omega = (1, \alpha) \in \mathbb{R}^2$, Ψ is the function associated to ω , ε is the size of the perturbation. Take a free parameter $K \ge 1$.

Step 1: approximation by a resonant vector. We approximate α by a rational number: one can find a non-zero rational p/q such that

$$|qlpha - p| \leq \Psi(\mathcal{K})^{-1}, \quad 1 < q < \Psi(\mathcal{K}), \quad |lpha - p/q| \leq q^{-1}\Psi(\mathcal{K})^{-1}.$$

By definition of Ψ , q > K, so $|\alpha - p/q| \le K^{-1} \Psi(K)^{-1}$. Choose K such that

$$\mathcal{K}^{-1}\Psi(\mathcal{K})^{-1} \simeq \varepsilon, \quad \mathcal{K}\Psi(\mathcal{K}) \simeq \varepsilon^{-1}, \quad \mathcal{K} \simeq \Delta(\varepsilon^{-1}).$$

Let v = (1, p/q), $h(I) = \omega I$, $h_v(I) = v I$ then

$$|\omega - \mathbf{v}| \lesssim \varepsilon, \quad |h - h_{\mathbf{v}}| \lesssim \varepsilon.$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Recall $\omega = (1, \alpha) \in \mathbb{R}^2$, Ψ is the function associated to ω , ε is the size of the perturbation. Take a free parameter $K \ge 1$.

Step 1: approximation by a resonant vector. We approximate α by a rational number: one can find a non-zero rational p/q such that

$$|qlpha - p| \leq \Psi(\mathcal{K})^{-1}, \quad 1 < q < \Psi(\mathcal{K}), \quad |lpha - p/q| \leq q^{-1}\Psi(\mathcal{K})^{-1},$$

By definition of Ψ , q > K, so $|\alpha - p/q| \le K^{-1} \Psi(K)^{-1}$. Choose K such that

$$\mathcal{K}^{-1}\Psi(\mathcal{K})^{-1} \simeq \varepsilon, \quad \mathcal{K}\Psi(\mathcal{K}) \simeq \varepsilon^{-1}, \quad \mathcal{K} \simeq \Delta(\varepsilon^{-1}).$$

Let v = (1, p/q), $h(I) = \omega I$, $h_v(I) = v I$ then

$$|\omega-v|\lesssim \varepsilon, \quad |h-h_v|\lesssim \varepsilon.$$

The system can be written

$$H = h_v + f_v, \quad f_v = h - h_v + f, \quad |f_v| \lesssim \varepsilon.$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

うしん 同一人用 人用 人用 人口 マ

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロト <回 > < 三 > < 三 > < 三 > のへの

Step 2: one-phase averaging.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Step 2: one-phase averaging. We have $q\varepsilon \lesssim K^{-1}$, so we can find an analytic symplectic transformation Φ , with $|\Phi - \text{Id}| \lesssim K^{-1}$, such that

 $H \circ \Phi = h_v + g + f', \quad |g| \lesssim \varepsilon, \quad \{g, h_v\} = 0, \quad |f'| \lesssim \varepsilon e^{-\kappa}.$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Step 2: one-phase averaging. We have $q\varepsilon \lesssim K^{-1}$, so we can find an analytic symplectic transformation Φ , with $|\Phi - \text{Id}| \lesssim K^{-1}$, such that

 $H \circ \Phi = h_v + g + f', \quad |g| \lesssim \varepsilon, \quad \{g, h_v\} = 0, \quad |f'| \lesssim \varepsilon e^{-\kappa}.$

Step 3: cut-off.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Step 2: one-phase averaging. We have $q\varepsilon \lesssim K^{-1}$, so we can find an analytic symplectic transformation Φ , with $|\Phi - \text{Id}| \lesssim K^{-1}$, such that

 $H \circ \Phi = h_v + g + f', \quad |g| \lesssim \varepsilon, \quad \{g, h_v\} = 0, \quad |f'| \lesssim \varepsilon e^{-\kappa}.$

Step 3: cut-off. Write $g = g_0 + g'$, with

c

$$g_0(I) = \int_{\mathbb{T}^n} g(heta, I) d heta, \quad g'(heta, I) = \sum_{k \in \mathbb{Z}^n \setminus \{0\}} \hat{g}_k(I) e^{2i\pi k. heta}$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Step 2: one-phase averaging. We have $q\varepsilon \lesssim K^{-1}$, so we can find an analytic symplectic transformation Φ , with $|\Phi - \text{Id}| \lesssim K^{-1}$, such that

 $H \circ \Phi = h_v + g + f', \quad |g| \lesssim \varepsilon, \quad \{g, h_v\} = 0, \quad |f'| \lesssim \varepsilon e^{-\kappa}.$

Step 3: cut-off. Write $g = g_0 + g'$, with

$$g_0(I) = \int_{\mathbb{T}^n} g(heta, I) d heta, \quad g'(heta, I) = \sum_{k \in \mathbb{Z}^n \setminus \{0\}} \hat{g}_k(I) e^{2i\pi k. heta}$$

Then $\{g, h_v\} = 0 \iff \hat{g}_k(I) = 0, \ k.v \neq 0$ so

$$g'(\theta, I) = \sum_{k.\nu=0, \ k\neq 0} \hat{g}_k(I) e^{2i\pi k.\theta}$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Step 2: one-phase averaging. We have $q\varepsilon \lesssim K^{-1}$, so we can find an analytic symplectic transformation Φ , with $|\Phi - \text{Id}| \lesssim K^{-1}$, such that

$$H \circ \Phi = h_v + g + f', \quad |g| \lesssim \varepsilon, \quad \{g, h_v\} = 0, \quad |f'| \lesssim \varepsilon e^{-\kappa}.$$

Step 3: cut-off. Write $g = g_0 + g'$, with

r

$$g_0(I) = \int_{\mathbb{T}^n} g(heta, I) d heta, \quad g'(heta, I) = \sum_{k \in \mathbb{Z}^n \setminus \{0\}} \hat{g}_k(I) e^{2i\pi k. heta}$$

Then $\{g, h_v\} = 0 \iff \hat{g}_k(I) = 0, \ k.v \neq 0$ so

$$g'(heta, I) = \sum_{k.v=0, \ k\neq 0} \hat{g}_k(I) e^{2i\pi k. heta}$$

But k.v = 0, $k \neq 0 \Longrightarrow |k| > q > K$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Step 2: one-phase averaging. We have $q\varepsilon \lesssim K^{-1}$, so we can find an analytic symplectic transformation Φ , with $|\Phi - \text{Id}| \lesssim K^{-1}$, such that

$$H \circ \Phi = h_v + g + f', \quad |g| \lesssim \varepsilon, \quad \{g, h_v\} = 0, \quad |f'| \lesssim \varepsilon e^{-\kappa}.$$

Step 3: cut-off. Write $g = g_0 + g'$, with

r

$$g_0(I) = \int_{\mathbb{T}^n} g(heta, I) d heta, \quad g'(heta, I) = \sum_{k \in \mathbb{Z}^n \setminus \{0\}} \hat{g}_k(I) e^{2i\pi k. heta}$$

Then $\{g, h_v\} = 0 \iff \hat{g}_k(I) = 0, \ k.v \neq 0$ so

$$g'(heta, I) = \sum_{k.v=0, \ k\neq 0} \hat{g}_k(I) e^{2i\pi k. heta}$$

But $k.v = 0, \ k \neq 0 \Longrightarrow |k| > q > K$. So $|g'| \lesssim |g|e^{-K} \lesssim \varepsilon e^{-K}$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト・日本・日本・日本・日本・日本

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロト <回 > < 三 > < 三 > < 三 > のへの

Step 4: stability estimates.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Step 4: stability estimates. Let $(\theta, I) = \Phi(\theta', I')$. Since $H \circ \Phi$ is integrable up to a term of size εe^{-K} , given any $0 < \delta' \lesssim 1$

 $|I'(t) - I'_0| \lesssim \delta', \quad |t| \lesssim \delta' \varepsilon^{-1} e^K.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Step 4: stability estimates. Let $(\theta, I) = \Phi(\theta', I')$. Since $H \circ \Phi$ is integrable up to a term of size εe^{-K} , given any $0 < \delta' \lesssim 1$

$$|I'(t) - I'_0| \lesssim \delta', \quad |t| \lesssim \delta' \varepsilon^{-1} e^{\kappa}.$$

Now $|\Phi - \mathrm{Id}| \lesssim \mathcal{K}^{-1}$, so for any $\mathcal{K}^{-1} \lesssim \delta \lesssim 1$

$$|I(t) - I_0| \lesssim \delta, \quad |t| \lesssim \delta \varepsilon^{-1} e^{\kappa}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Step 4: stability estimates. Let $(\theta, I) = \Phi(\theta', I')$. Since $H \circ \Phi$ is integrable up to a term of size εe^{-K} , given any $0 < \delta' \lesssim 1$

$$|I'(t) - I'_0| \lesssim \delta', \quad |t| \lesssim \delta' \varepsilon^{-1} e^{\kappa}.$$

Now $|\Phi - \mathrm{Id}| \lesssim \mathcal{K}^{-1}$, so for any $\mathcal{K}^{-1} \lesssim \delta \lesssim 1$

$$|I(t) - I_0| \lesssim \delta$$
, $|t| \lesssim \delta \varepsilon^{-1} e^{\kappa}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Finally $K \simeq \Delta(\varepsilon^{-1})$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For any $j \in \mathbb{N}$, we want to construct a system $H_j = h + f_j$, $|f_j| \lesssim \varepsilon_j$, which has orbits satisfying

$$|I(t) - I_0| \simeq |t| \varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})\right).$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

For any $j \in \mathbb{N}$, we want to construct a system $H_j = h + f_j$, $|f_j| \lesssim \varepsilon_j$, which has orbits satisfying

$$|I(t) - I_0| \simeq |t| \varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})\right)$$

The perturbation f_j will be of the form $f_j(\theta, I) = f_j^1(I) + f_j^2(\theta)$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

For any $j \in \mathbb{N}$, we want to construct a system $H_j = h + f_j$, $|f_j| \lesssim \varepsilon_j$, which has orbits satisfying

$$|I(t) - I_0| \simeq |t| \varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})\right)$$

The perturbation f_j will be of the form $f_j(\theta, I) = f_j^1(I) + f_j^2(\theta)$. Step 1: first perturbation. Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

For any $j \in \mathbb{N}$, we want to construct a system $H_j = h + f_j$, $|f_j| \lesssim \varepsilon_j$, which has orbits satisfying

$$|I(t) - I_0| \simeq |t| \varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})\right)$$

The perturbation f_j will be of the form $f_j(\theta, I) = f_j^1(I) + f_j^2(\theta)$.

Step 1: first perturbation. Let $(p_j/q_j)_{j \in \mathbb{N}}$ be the sequence of convergents of α . Then

$$(q_j + q_{j+1})^{-1} < |q_j \alpha - p_j| < q_{j+1}^{-1}, \quad |\alpha - p_j/q_j| < (q_j q_{j+1})^{-1} \quad j \in \mathbb{N}.$$

・ロット (雪) ・ (日) ・ (日) ・ (日)

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

ntroduction

Results

For any $j \in \mathbb{N}$, we want to construct a system $H_j = h + f_j$, $|f_j| \lesssim \varepsilon_j$, which has orbits satisfying

$$|I(t) - I_0| \simeq |t| \varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})\right)$$

The perturbation f_j will be of the form $f_j(\theta, I) = f_j^1(I) + f_j^2(\theta)$.

Step 1: first perturbation. Let $(p_j/q_j)_{j \in \mathbb{N}}$ be the sequence of convergents of α . Then

$$(q_j + q_{j+1})^{-1} < |q_j \alpha - p_j| < q_{j+1}^{-1}, \quad |\alpha - p_j/q_j| < (q_j q_{j+1})^{-1} \quad j \in \mathbb{N}.$$

So $q_{j+1} < \Psi(q_j) < 2q_{j+1}$, hence $|\alpha - p_j/q_j| \lesssim (q_j \Psi(q_j))^{-1}$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

ntroduction

Results

For any $j \in \mathbb{N}$, we want to construct a system $H_j = h + f_j$, $|f_j| \lesssim \varepsilon_j$, which has orbits satisfying

$$|I(t) - I_0| \simeq |t| \varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})\right)$$

The perturbation f_j will be of the form $f_j(\theta, I) = f_j^1(I) + f_j^2(\theta)$.

Step 1: first perturbation. Let $(p_j/q_j)_{j \in \mathbb{N}}$ be the sequence of convergents of α . Then

$$(q_j + q_{j+1})^{-1} < |q_j \alpha - p_j| < q_{j+1}^{-1}, \quad |\alpha - p_j/q_j| < (q_j q_{j+1})^{-1} \quad j \in \mathbb{N}.$$

So $q_{j+1} < \Psi(q_j) < 2q_{j+1}$, hence $|\alpha - p_j/q_j| \lesssim (q_j \Psi(q_j))^{-1}$. Define
 $\varepsilon_j \simeq (q_j \Psi(q_j))^{-1}, \quad \varepsilon_j^{-1} \simeq q_j \Psi(q_j), \quad q_j \simeq \Delta(\varepsilon_j^{-1}).$

・ロット (雪) ・ (日) ・ (日) ・ (日)

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

ntroduction

Results

For any $j \in \mathbb{N}$, we want to construct a system $H_j = h + f_j$, $|f_j| \lesssim \varepsilon_j$, which has orbits satisfying

$$|I(t) - I_0| \simeq |t| \varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})\right)$$

The perturbation f_j will be of the form $f_j(\theta, I) = f_j^1(I) + f_j^2(\theta)$.

Step 1: first perturbation. Let $(p_j/q_j)_{j \in \mathbb{N}}$ be the sequence of convergents of α . Then

$$\begin{split} (q_j + q_{j+1})^{-1} &< |q_j \alpha - p_j| < q_{j+1}^{-1}, \quad |\alpha - p_j/q_j| < (q_j q_{j+1})^{-1} \quad j \in \mathbb{N} \\ \text{So } q_{j+1} &< \Psi(q_j) < 2q_{j+1}, \text{ hence } |\alpha - p_j/q_j| \lesssim (q_j \Psi(q_j))^{-1}. \text{ Define} \\ \varepsilon_j &\simeq (q_j \Psi(q_j))^{-1}, \quad \varepsilon_j^{-1} \simeq q_j \Psi(q_j), \quad q_j \simeq \Delta(\varepsilon_j^{-1}). \\ \text{Let } v_j &= (1, p_j/q_j) \text{ and } h_{v_j}(I) = v_j.I, \text{ the first perturbation is} \end{split}$$

$$f_j^1(I) = h(I) - h_{v_j}(I), \quad |f_j^1| \lesssim \varepsilon_j.$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Step 2: second perturbation.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Step 2: second perturbation. After the first perturbation, $h + f_j^1 = h_{v_j}$ with v_j resonant, $k_j \cdot v_j = 0$ for $k_j = (p_j, -q_j)$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Step 2: second perturbation. After the first perturbation, $h + f_j^1 = h_{v_j}$ with v_j resonant, $k_j \cdot v_j = 0$ for $k_j = (p_j, -q_j)$. So we define

$$f_j^2(\theta) = \varepsilon_j \mu_j \cos(k_j \cdot \theta).$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Step 2: second perturbation. After the first perturbation, $h + f_j^1 = h_{v_j}$ with v_j resonant, $k_j \cdot v_j = 0$ for $k_j = (p_j, -q_j)$. So we define

$$f_j^2(\theta) = \varepsilon_j \mu_j \cos(k_j \cdot \theta).$$

But $|k_j| = q_j \simeq \Delta(\varepsilon_j^{-1})$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・日・・四・・川・・山・・日・・日・

Step 2: second perturbation. After the first perturbation, $h + f_j^1 = h_{v_j}$ with v_j resonant, $k_j \cdot v_j = 0$ for $k_j = (p_j, -q_j)$. So we define

$$f_j^2(\theta) = \varepsilon_j \mu_j \cos(k_j.\theta).$$

But $|k_j| = q_j \simeq \Delta(\varepsilon_j^{-1})$. So for $\theta \in \mathbb{C}^2$ with $|Im(\theta)| \lesssim 1$,

$$|\cos(k_j. heta)|\lesssim \exp|k_j|=\exp q_j riangle \exp\left(\Delta(arepsilon_j^{-1})
ight).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Step 2: second perturbation. After the first perturbation, $h + f_j^1 = h_{v_j}$ with v_j resonant, $k_j \cdot v_j = 0$ for $k_j = (p_j, -q_j)$. So we define

$$f_j^2(\theta) = \varepsilon_j \mu_j \cos(k_j \cdot \theta).$$

But $|k_j| = q_j \simeq \Delta(\varepsilon_j^{-1})$. So for $\theta \in \mathbb{C}^2$ with $|Im(\theta)| \lesssim 1$,

$$|\cos(k_j. heta)|\lesssim \exp|k_j|=\exp q_j arpropto \exp\left(\Delta(arepsilon_j^{-1})
ight).$$

So we need to choose

$$\mu_j \simeq \exp\left(-\Delta(\varepsilon_j^{-1})
ight) \Longrightarrow |f_j^2| \lesssim \varepsilon_j$$

・ロット (日)・ (日)・ (日)・ (日)・ (日)・

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Step 2: second perturbation. After the first perturbation, $h + f_j^1 = h_{v_j}$ with v_j resonant, $k_j \cdot v_j = 0$ for $k_j = (p_j, -q_j)$. So we define

$$f_j^2(\theta) = \varepsilon_j \mu_j \cos(k_j \cdot \theta).$$

But $|k_j| = q_j \simeq \Delta(\varepsilon_j^{-1})$. So for $\theta \in \mathbb{C}^2$ with $|Im(\theta)| \lesssim 1$,

$$|\cos(k_j. heta)|\lesssim \exp|k_j|=\exp q_j arpropto \exp\left(\Delta(arepsilon_j^{-1})
ight).$$

So we need to choose

$$\mu_{j} \simeq \exp\left(-\Delta(arepsilon_{j}^{-1})
ight) \Longrightarrow |f_{j}^{2}| \lesssim arepsilon_{j}$$

Now the system $H_j = h + f_j = h + f_j^1 + f_j^2$ is

$$H_{j}(\theta, I) = v_{j}.I + \varepsilon_{j}\mu_{j}\cos(k_{j}.\theta) \simeq v_{j}.I + \varepsilon_{j}\exp\left(-\Delta(\varepsilon_{j}^{-1})\right)\cos(k_{j}.\theta)$$

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

うしん 同一人用 人用 人用 人口 マ

Step 2: second perturbation. After the first perturbation, $h + f_j^1 = h_{v_j}$ with v_j resonant, $k_j \cdot v_j = 0$ for $k_j = (p_j, -q_j)$. So we define

$$f_j^2(\theta) = \varepsilon_j \mu_j \cos(k_j \cdot \theta).$$

But $|k_j| = q_j \simeq \Delta(\varepsilon_j^{-1})$. So for $\theta \in \mathbb{C}^2$ with $|Im(\theta)| \lesssim 1$,

$$|\cos(k_j. heta)|\lesssim \exp|k_j|=\exp q_j arpropto \exp\left(\Delta(arepsilon_j^{-1})
ight).$$

So we need to choose

$$\mu_j \simeq \exp\left(-\Delta(arepsilon_j^{-1})
ight) \Longrightarrow |f_j^2| \lesssim arepsilon_j$$

Now the system $H_j = h + f_j = h + f_j^1 + f_j^2$ is

$$H_j(\theta, I) = v_j I + \varepsilon_j \mu_j \cos(k_j \theta) \simeq v_j I + \varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})\right) \cos(k_j \theta)$$

so it has orbits for which $|I(t) - I_0| \simeq |t|\varepsilon_j \exp\left(-\Delta(\varepsilon_j^{-1})\right)$.

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

・ロト ・ 語 ・ ・ 語 ・ ・ 語 ・ ・ 日 ・

Stability and instability for near-linear Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Obrigado