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Near-integrable Hamiltonian systems: definition

Tn = Rn/Zn, B ball of Rn, (θ, I ) ∈ Tn × B “angle-action” coordinates.
For a Hamiltonian H : Tn × B → R, we study solutions (θ(t), I (t)) of{

θ̇ = ∂I H(θ, I ),

İ = −∂θH(θ, I ),

{
H(θ, I ) = h(I ) + f (θ, I ),

|f | ≤ ε << 1.
(∗)

Here we consider the analytic case, h, f are bounded and real analytic,
the norm | . | = | . |σ is the sup norm on a complex neighbourhood
Vσ(Tn × B) of size σ > 0.

For ε = 0, the system H = h is integrable:
(1) action variables I (t) are integral of motions, I (t) = I0, t ∈ R
(2) the tori Tn × {I0} are invariant and the dynamic is quasi-periodic, if
ω0 = ∇h(I0), the flow is Φh

t : (θ0, I0) 7−→ (θ0 + tω0 [Zn], I0).

For ε > 0 small, the system H = h + f is near-integrable, what happens
to (1) and (2) ?
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Near-integrable Hamiltonian systems: KAM stability

KAM stability: h is KAM stable if for any small perturbation f of size ε,
the system H = h + f possesses a set of quasi-periodic solutions:
- δ(ε)-closed to unperturbed quasi-periodic solutions, lim

ε→0
δ(ε) = 0

- the measure of the complement of this set satisfies lim
ε→0

m(ε) = 0.

Rüssmann non-degeneracy: h is Rüssmann non-degenerate if the image
of the frequency map ∇h : B → Rn is not contained in a hyperplane

Rüssmann (∼80): h is Rüssmann non-degenerate =⇒ h is KAM stable.

Sevryuk (95): h is KAM stable =⇒ h is Rüssmann non-degenerate.
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Near-integrable Hamiltonian systems: infinite vs finite stability

KAM stability gives infinite stability for some solutions: if a solution
(θ(t), I (t)) is quasi-periodic, then

lim
ε→0

(
sup
t∈R
|I (t)− I0|

)
= 0,

but this is not true for all solutions.

For all solutions, usually one only have finite stability. Given δ > 0,
without assumption on h we have the trivial estimate

|I (t)− I0| . δ, |t| ≤ δε−1,

so taking δ = εc , c > 0 arbitrarily small, a priori one has only

lim
ε→0

(
sup
|t|<ε−1

|I (t)− I0|

)
= 0.
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Near-integrable Hamiltonian systems: effective stability

Effective stability: h is effectively stable if for any small perturbation f
of size ε, all solutions (θ(t), I (t)) of the system H = h + f satisfy

lim
ε→0

(
sup

0≤|t|≤ε−1

|I (t)− I0|

)
= 0.

Nekhoroshev (∼70), Niederman (06): if the restriction of h to some
affine subspace, which has a basis of integer vectors, has a non-isolated
critical point, then h is not effectively stable.

Rational steepness: h is rationally steep if its restriction to any affine
subspace, generated by integer vectors, has isolated critical points.

Theorem
h is effectively stable ⇐⇒ h is rationally steep.



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Near-integrable Hamiltonian systems: effective stability

Effective stability: h is effectively stable if for any small perturbation f
of size ε, all solutions (θ(t), I (t)) of the system H = h + f satisfy

lim
ε→0

(
sup

0≤|t|≤ε−1

|I (t)− I0|

)
= 0.

Nekhoroshev (∼70), Niederman (06): if the restriction of h to some
affine subspace, which has a basis of integer vectors, has a non-isolated
critical point, then h is not effectively stable.

Rational steepness: h is rationally steep if its restriction to any affine
subspace, generated by integer vectors, has isolated critical points.

Theorem
h is effectively stable ⇐⇒ h is rationally steep.



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Near-integrable Hamiltonian systems: effective stability

Effective stability: h is effectively stable if for any small perturbation f
of size ε, all solutions (θ(t), I (t)) of the system H = h + f satisfy

lim
ε→0

(
sup

0≤|t|≤ε−1

|I (t)− I0|

)
= 0.

Nekhoroshev (∼70), Niederman (06): if the restriction of h to some
affine subspace, which has a basis of integer vectors, has a non-isolated
critical point, then h is not effectively stable.

Rational steepness: h is rationally steep if its restriction to any affine
subspace, generated by integer vectors, has isolated critical points.

Theorem
h is effectively stable ⇐⇒ h is rationally steep.



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Near-integrable Hamiltonian systems: effective stability

Effective stability: h is effectively stable if for any small perturbation f
of size ε, all solutions (θ(t), I (t)) of the system H = h + f satisfy

lim
ε→0

(
sup

0≤|t|≤ε−1

|I (t)− I0|

)
= 0.

Nekhoroshev (∼70), Niederman (06): if the restriction of h to some
affine subspace, which has a basis of integer vectors, has a non-isolated
critical point, then h is not effectively stable.

Rational steepness: h is rationally steep if its restriction to any affine
subspace, generated by integer vectors, has isolated critical points.

Theorem
h is effectively stable ⇐⇒ h is rationally steep.



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Near-integrable Hamiltonian systems: effective stability

Effective stability: h is effectively stable if for any small perturbation f
of size ε, all solutions (θ(t), I (t)) of the system H = h + f satisfy

lim
ε→0

(
sup

0≤|t|≤ε−1

|I (t)− I0|

)
= 0.

Nekhoroshev (∼70), Niederman (06): if the restriction of h to some
affine subspace, which has a basis of integer vectors, has a non-isolated
critical point, then h is not effectively stable.

Rational steepness: h is rationally steep if its restriction to any affine
subspace, generated by integer vectors, has isolated critical points.

Theorem
h is effectively stable ⇐⇒ h is rationally steep.



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Near-Linear Hamiltonian systems

We shall restrict to perturbations of linear integrable Hamiltonians:

h(I ) = ω.I , ω ∈ Rn \ {0}

so that ∇h(I ) = ω is constant.

h is not rationally steep ⇐⇒ ω is resonant: there exists k ∈ Zn \ {0}
such that k.ω = 0.
Then the system H(θ, I ) = ω.I + ε cos(k.θ) has solutions for which

sup
0≤t≤ε−1

|I (t)− I0| = |I (ε−1)− I0| = |k| ≥ 1.

If ω is (γ, τ)-Diophantine, that is |k.ω| ≥ γ|k|−τ for all k ∈ Zn \ {0}
and for some γ > 0 and τ ≥ n − 1, it has been proved

|I (t)− I0| . (γ−1ε)
1

1+τ , |t| . (γε−1)
1

1+τ exp
(

(γε−1)
1

1+τ

)
.



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Near-Linear Hamiltonian systems

We shall restrict to perturbations of linear integrable Hamiltonians:

h(I ) = ω.I , ω ∈ Rn \ {0}

so that ∇h(I ) = ω is constant.

h is not rationally steep ⇐⇒ ω is resonant: there exists k ∈ Zn \ {0}
such that k.ω = 0.
Then the system H(θ, I ) = ω.I + ε cos(k.θ) has solutions for which

sup
0≤t≤ε−1

|I (t)− I0| = |I (ε−1)− I0| = |k| ≥ 1.

If ω is (γ, τ)-Diophantine, that is |k.ω| ≥ γ|k|−τ for all k ∈ Zn \ {0}
and for some γ > 0 and τ ≥ n − 1, it has been proved

|I (t)− I0| . (γ−1ε)
1

1+τ , |t| . (γε−1)
1

1+τ exp
(

(γε−1)
1

1+τ

)
.



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Near-Linear Hamiltonian systems

We shall restrict to perturbations of linear integrable Hamiltonians:

h(I ) = ω.I , ω ∈ Rn \ {0}

so that ∇h(I ) = ω is constant.

h is not rationally steep ⇐⇒ ω is resonant: there exists k ∈ Zn \ {0}
such that k.ω = 0.

Then the system H(θ, I ) = ω.I + ε cos(k.θ) has solutions for which

sup
0≤t≤ε−1

|I (t)− I0| = |I (ε−1)− I0| = |k| ≥ 1.

If ω is (γ, τ)-Diophantine, that is |k.ω| ≥ γ|k|−τ for all k ∈ Zn \ {0}
and for some γ > 0 and τ ≥ n − 1, it has been proved

|I (t)− I0| . (γ−1ε)
1

1+τ , |t| . (γε−1)
1

1+τ exp
(

(γε−1)
1

1+τ

)
.



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Near-Linear Hamiltonian systems

We shall restrict to perturbations of linear integrable Hamiltonians:

h(I ) = ω.I , ω ∈ Rn \ {0}

so that ∇h(I ) = ω is constant.

h is not rationally steep ⇐⇒ ω is resonant: there exists k ∈ Zn \ {0}
such that k.ω = 0.
Then the system H(θ, I ) = ω.I + ε cos(k.θ) has solutions for which

sup
0≤t≤ε−1

|I (t)− I0| = |I (ε−1)− I0| = |k| ≥ 1.

If ω is (γ, τ)-Diophantine, that is |k.ω| ≥ γ|k|−τ for all k ∈ Zn \ {0}
and for some γ > 0 and τ ≥ n − 1, it has been proved

|I (t)− I0| . (γ−1ε)
1

1+τ , |t| . (γε−1)
1

1+τ exp
(

(γε−1)
1

1+τ

)
.



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Near-Linear Hamiltonian systems

We shall restrict to perturbations of linear integrable Hamiltonians:

h(I ) = ω.I , ω ∈ Rn \ {0}

so that ∇h(I ) = ω is constant.

h is not rationally steep ⇐⇒ ω is resonant: there exists k ∈ Zn \ {0}
such that k.ω = 0.
Then the system H(θ, I ) = ω.I + ε cos(k.θ) has solutions for which

sup
0≤t≤ε−1

|I (t)− I0| = |I (ε−1)− I0| = |k| ≥ 1.

If ω is (γ, τ)-Diophantine, that is |k.ω| ≥ γ|k|−τ for all k ∈ Zn \ {0}
and for some γ > 0 and τ ≥ n − 1, it has been proved

|I (t)− I0| . (γ−1ε)
1

1+τ , |t| . (γε−1)
1

1+τ exp
(

(γε−1)
1

1+τ

)
.



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Plan

1 Introduction

2 Results

3 Proofs



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Notations

We fix the integrable part h(I ) = ω.I . Wlog, assume |ω| = 1, hence
ω = (1, α) = (1, α1, . . . , αn−1) with α = (α1, . . . , αn−1) ∈ Rn−1.

Let | . |Z = d(.,Z), and define Ψ = Ψω by

Ψ(K) = max
{
|k.α|−1

Z | k ∈ Zn−1, 0 < |k| ≤ K
}
, K ∈ N∗.

Extend Ψ as a strictly increasing continuous function defined on
[1,+∞), and then define

Λ(x) = xΨ(x), ∆(x) = Λ−1(x), x ≥ 1.

For instance, if ω is (γ, τ)-Diophantine, then we can choose

Ψ(x) = γ−1xτ , Λ(x) = γ−1x1+τ , ∆(x) = (γx)
1

1+τ .
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Stability result

Theorem 1
For any sufficiently small perturbation f of size ε, all solutions
(θ(t), I (t)) of H = h + f satisfy the estimates

|I (t)− I0| . δ, |t| . δε−1 exp
(

∆(ε−1)
)
.

for any
(
∆
(
ε−1
))−1

. δ . 1.

Diophantine case: taking δ w
(
∆
(
ε−1
))−1

= (γ−1ε)
1

1+τ one recovers

|I (t)− I0| . (γ−1ε)
1

1+τ , |t| . (γε−1)
1

1+τ exp
(

(γε−1)
1

1+τ

)
.

Taking δ w εc with c > 0 arbitrarily close to zero, we obtain

Corollary 1

If h is linear, h is effectively stable ⇐⇒ h is rationally steep.
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Instability result

Theorem 2
There exists a sequence of perturbation (fj)j∈N, |fj | ≤ εj → 0 when
j → +∞, and solutions (θ(t), I (t)) of Hj = h + fj for which

|I (t)− I0| w |t|εj exp
(
−∆(ε−1

j )
)
.

For some arbitrarily small perturbation and for some solutions of the
perturbed system, Theorem 2 says that for δ > 0,

|I (t)− I0| = δ, |t| w δε−1
j exp

(
∆(ε−1

j )
)
,

while for any small perturbation and any solutions of the perturbed
system, Theorem 1 says that

|I (t)− I0| . δ, |t| . δε−1 exp
(

∆(ε−1)
)
.

Therefore Theorem 1 and Theorem 2 cannot be improved in general.
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Neighbourhood of invariant tori

The dynamics in the neighbourhood of a linearly stable quasi-periodic
invariant torus (isotropic, reducible) can be brought to a perturbation of
a linear integrable Hamiltonian system, where ε is (the square) of the
distance to the torus.

There are at least two differences:
- no angle-action coordinates everywhere unless the torus is Lagrangian
(not very essential)
- the perturbation is more specific (for instance, f (θ, I ) = O(|I |2), this
is essential)

Theorem 1 applies, but it gives a stability result which is not very
relevant (especially in the case of a non-resonant elliptic fixed point).

Theorem 2 does not apply at all.
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Comments on the proofs

Proof of Theorem 1 uses approximations by rational numbers and a
one-phase averaging (an idea introduced by Lochak for convex
integrable Hamiltonians).

Proof of Theorem 2 follows from the (idea of the) proof of Theorem 1.

For simplicity, here we shall restrict to the case n = 2.

For n ≥ 2, the proof of Theorem 1 can either be obtained by a suitable
induction, or by using general resonant normal forms.

For n ≥ 2, the proof of Theorem 2 is the same as for n = 2.
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Proof of Theorem 1

Recall ω = (1, α) ∈ R2, Ψ is the function associated to ω, ε is the size
of the perturbation. Take a free parameter K ≥ 1.

Step 1: approximation by a resonant vector. We approximate α by a
rational number: one can find a non-zero rational p/q such that

|qα− p| ≤ Ψ(K)−1, 1 < q < Ψ(K), |α− p/q| ≤ q−1Ψ(K)−1.

By definition of Ψ, q > K , so |α− p/q| ≤ K−1Ψ(K)−1. Choose K
such that

K−1Ψ(K)−1 w ε, KΨ(K) w ε−1, K w ∆(ε−1).

Let v = (1, p/q), h(I ) = ω.I , hv (I ) = v .I then

|ω − v | . ε, |h − hv | . ε.

The system can be written

H = hv + fv , fv = h − hv + f , |fv | . ε.
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|qα− p| ≤ Ψ(K)−1, 1 < q < Ψ(K), |α− p/q| ≤ q−1Ψ(K)−1.

By definition of Ψ, q > K , so |α− p/q| ≤ K−1Ψ(K)−1. Choose K
such that

K−1Ψ(K)−1 w ε, KΨ(K) w ε−1, K w ∆(ε−1).

Let v = (1, p/q), h(I ) = ω.I , hv (I ) = v .I then

|ω − v | . ε, |h − hv | . ε.

The system can be written

H = hv + fv , fv = h − hv + f , |fv | . ε.
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Step 2: one-phase averaging. We have qε . K−1, so we can find an
analytic symplectic transformation Φ, with |Φ− Id| . K−1, such that

H ◦ Φ = hv + g + f ′, |g | . ε, {g , hv} = 0, |f ′| . εe−K .

Step 3: cut-off. Write g = g0 + g ′, with

g0(I ) =

∫
Tn

g(θ, I )dθ, g ′(θ, I ) =
∑

k∈Zn\{0}

ĝk(I )e2iπk.θ.

Then {g , hv} = 0⇐⇒ ĝk(I ) = 0, k.v 6= 0 so

g ′(θ, I ) =
∑

k.v=0, k 6=0

ĝk(I )e2iπk.θ.

But k.v = 0, k 6= 0 =⇒ |k| > q > K . So |g ′| . |g |e−K . εe−K .
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ĝk(I )e2iπk.θ.
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ĝk(I )e2iπk.θ.

But k.v = 0, k 6= 0 =⇒ |k| > q > K . So |g ′| . |g |e−K . εe−K .



Stability and instability
for near-linear

Hamiltonian systems

Abed Bounemoura

Introduction

Results

Proofs

Proof of Theorem 1

Step 2: one-phase averaging. We have qε . K−1, so we can find an
analytic symplectic transformation Φ, with |Φ− Id| . K−1, such that

H ◦ Φ = hv + g + f ′, |g | . ε, {g , hv} = 0, |f ′| . εe−K .

Step 3: cut-off. Write g = g0 + g ′, with

g0(I ) =

∫
Tn

g(θ, I )dθ, g ′(θ, I ) =
∑

k∈Zn\{0}
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Then {g , hv} = 0⇐⇒ ĝk(I ) = 0, k.v 6= 0 so

g ′(θ, I ) =
∑

k.v=0, k 6=0
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Step 4: stability estimates. Let (θ, I ) = Φ(θ′, I ′). Since H ◦ Φ is
integrable up to a term of size εe−K , given any 0 < δ′ . 1

|I ′(t)− I ′0| . δ′, |t| . δ′ε−1eK .

Now |Φ− Id| . K−1, so for any K−1 . δ . 1

|I (t)− I0| . δ, |t| . δε−1eK .

Finally K w ∆(ε−1).
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For any j ∈ N, we want to construct a system Hj = h + fj , |fj | . εj ,
which has orbits satisfying

|I (t)− I0| w |t|εj exp
(
−∆(ε−1

j )
)
.

The perturbation fj will be of the form fj(θ, I ) = f 1
j (I ) + f 2

j (θ).

Step 1: first perturbation. Let (pj/qj)j∈N be the sequence of
convergents of α. Then

(qj + qj+1)−1 < |qjα− pj | < q−1
j+1, |α− pj/qj | < (qjqj+1)−1 j ∈ N.

So qj+1 < Ψ(qj) < 2qj+1, hence |α− pj/qj | . (qjΨ(qj))−1. Define

εj w (qjΨ(qj))−1, ε−1
j w qjΨ(qj), qj w ∆(ε−1

j ).

Let vj = (1, pj/qj) and hvj (I ) = vj .I , the first perturbation is

f 1
j (I ) = h(I )− hvj (I ), |f 1

j | . εj .
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Let vj = (1, pj/qj) and hvj (I ) = vj .I , the first perturbation is

f 1
j (I ) = h(I )− hvj (I ), |f 1

j | . εj .
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Step 2: second perturbation. After the first perturbation, h + f 1
j = hvj

with vj resonant, kj .vj = 0 for kj = (pj ,−qj). So we define

f 2
j (θ) = εjµj cos(kj .θ).

But |kj | = qj w ∆(ε−1
j ). So for θ ∈ C2 with |Im(θ)| . 1,

| cos(kj .θ)| . exp |kj | = exp qj w exp
(

∆(ε−1
j )
)
.

So we need to choose

µj w exp
(
−∆(ε−1

j )
)

=⇒ |f 2
j | . εj

Now the system Hj = h + fj = h + f 1
j + f 2

j is

Hj(θ, I ) = vj .I + εjµj cos(kj .θ) w vj .I + εj exp
(
−∆(ε−1

j )
)

cos(kj .θ)

so it has orbits for which |I (t)− I0| w |t|εj exp
(
−∆(ε−1

j )
)
.
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