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In this talk | will describe some quantum manifestations
of classical (mainly) chaotic dynamics
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In this respect it should be said that

@ classical chaos is a well defined phenomenon (i.e.
Lyapunov exponent), while

@ quantum chaos is still a very open question

F. Borondo Quantum Poincaré-Birkhoff Th 7/ 85
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Quantum Mechanics 101

The purpose of this paper is to provide a simple and understandable guide to some of the
fundamental ideas of Quantum Mechanics. The reason I'm writing this is because I constantly
see that people are being *“‘conned™ by people who claim to be experts in Quantum Mechanics.
and particularly by the complex and obscure language that these people use. I hope that by
imparting a very basic guide to the real concepts behind Quantum Mechanics, more people
will be able to see for themselves what’s likely to be true or false.

F. Borondo
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Motivation
Quantum Cons

This finally leads me on the purpose of this paper. To give the reader some idea of when
people are talking sense or not about Quantum Mechanics.

The first “rule” of quantum mechanics is that anything is possible and true, but some things are
more probable than others.

The second “rule” of quantum mechanics is that it is impossible to solve anything exactly and
prove anything with absolute certainty.

F. Borondo
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Physica Scripta. Vol. 40, 335-336, 1989.

Quantum Chaology, Not Quantum Chaos

Michael Berry

H. H. Wilts Physics Laboratory, Tyndall Avenue, Brisiol BS8 1TL, UK.
Abstract

There is no quantum chaos, in the sense of exponential sensitivity to initial
conditions, but there are several novel quantum phenomena which reflect the

presence of classical chaos. The study of these phenomena is guantum
chaolagy.
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Motivation

Quantum chaology

Michael Berry
Physics Department. University of Bristol Physics
ppl04-5 of Quantum: a guide for the perplexed by Jim Al-Khalili
(Weidenfeld and Nicolson 2003)

The quantum world appears very different from the world of classical
physies that it superseded. Quantum energy levels, wavefunctions and
probabilities seem incompatible with Newtonian particles moving along
well-defined orbits. Yet the two theories must be intimately related. Even the
Moon can be regarded as a quantum particle, so there must be circumstances
— roughly. large, heavy objects - where the quantum and classical predictions
agree. But the “classical limit” is subtle, and much current research is aimed
at understanding it.
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Motivation

@ In his pioneering work on
chaos Poincaré showed the

importance of

@ Periodic
orbits

@ Homoclinic
solutions

@ Heteroclinic
solutions

!
|
|

w\/\q

Homoclinic solution

PROBLEME DES TROIS CORPS

: D

vJ U U” QZ

Heteroclinic solution
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Motivation
Later (and before), the relevance of other classical structures

was demonstrated
Today, we will discuss manifestations of

@ Invariant tori
@ Periodic orbits
@ Homoclinic and Heteroclinic motions
@ Cantori
@ Poincaré-Birkhoff structures
in Quantum Mechanics )

F. Borondo Quantum Poincaré-Birkhoff Th 13/85
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LiCN molecule
@ Consider molecular vibrations

@ From this point of view molecules are

collections of oscillators
coupled and anharmonic
Hamiltonian systems

Mixed dynamical phase space

F. Borondo ntum Poincaré-Birkhoff Th



Introduction
Invariant tori in quantum mechanics Aim and Motivation
Periodic orbits in quantum mechanics: Scars Models
Homoclinic and heteroclinic motions Tools
Quantum-like Poincaré-Birkhoff theorem

LiCN molecule

PZ 1 1 1
H:—R+—(——)+VR,9
2u1 2 \ uiR? por? (,6)

V(R, 0) is the potential (energy surface)
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LiCN molecule

4000

R T
6 (m rad)

Dotted line: Minimum energy path: R.(0)
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LiCN molecule

8.5 T T T

8.0 |

, n
g 5 90 135 180
0 (deg)

Poincaré surfaces of section:
p=R—R(0); ¢=40
PPZPR; P¢:P9+PR[dRe/d9]
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Model: Billiards

@ Bunimovitch stadium billiard
@ Hyperbolic dynamics
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Model: Quartic oscillator

® H=3(P2+P2)+ 127 + 5(x* +)%), e =0.01
@ Smooth, homogeneous potential
@ Mechanical similarity

1/4 1/2 3/4 —1/4
_ ([ E P _ (E S _ (E T _ (E
“=(E2)2=8) 2=(8)"  Z=1Z)
Free from hassles due to phase space evolution (bif’s)
SOS:y=0,P, >0
@ Very chaotic dynamics -
@ Thought hyperbolic for e — 0

@ Dahlqgvist and Russberg
(1990) found POs fore =0

@ Also Waterland el at. for
e =1/240

X
S —
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Model: Quartic oscillator

Carles Simé (forgive me, please)
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Model: Harper map

The model that we have chosen to study is the Harper map in
the unit square,

Gnt1 = qn — ksin(2mpy) (mod 1),
Pntl = pn+ksin(2mg,) (mod 1), (1)

where k is a parameter measuring the strength of the
perturbation. This map can be understood as the stroboscopic
version of the flow corresponding to the (kicked) Hamiltonian

H(p,q,t) = —% cos(2mp) — % cos(2mq) Y " d(t—nk).  (2)

v
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Phase space representations of QM
@ Wigner transform (1932)

JUNE I, 1932 PHYSICAL REVIEW VOLUME 40

On the Quantum Correction For Thermodynamic Equilibrium

Oy E. Wionun
Depariinenl of Physics, Princeton Undversity
{Received March 14, 1932)

The probability of a configuration is given in classical theory by the Boltzmann
formula exp [— V/ET] where ¥ is the potential energy of this eonfiguration. For high
temperatures Lhis of course also holds in quantum theory. For lower temperatures,
however, a correction tefm has bo be btrodueed, which s be developed inko a power
series of b, The formula is developed for this correction by means of a probability func-
tion and the result discussed,

Wig,P) = [dse™ 4" (¢ —5) v (q+3)
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@ W(q, P) can be negative
@ Why?:
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Heisenberg’s uncertainty principle
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But ...
@ W(q,P) can be negative
@ Why?:
Heisenberg’s uncertainty principle
@ Solution: Husimi function

e Gaussian average in cells of area A"
H(qa P) = f th dql dP/Gq,P(qlvp/) W(q/aP/)
o Coherent state representation
H(g, P) = v (g, p10)
¢ minimum uncertainty coherent state
B(5,3, Pay Py) = [22]'/* emalen gmalbonl® gifts o7

F. Borondo Quantum Poincaré-Birkhoff Th 25/ 85
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Zeros of the Husimi function

@ Maxima of the Husimi function appear localized on the
important parts of the quantum density

@ Leboeuf and Voros showed that the zeros give also
relevant information

o Regular states: they appear on a line, sitting at the nodes
o Irregular/chaotic states: they spread over all available
phase space

F. Borondo Quantum Poincaré-Birkhoff Th 26/ 85
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9 Invariant tori in quantum mechanics
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Simpler example (even trivial), QM101

V(x)

® Yy =vm =0
°o I dd;/)z” + Vibu = Eyyy
dd;/lzu + k2,¢H’ k= Y 2hmE
@ But, don’t forget the dynamics:
k=2
n

F. Borondo
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‘1{4
@ 9(x) = asinkx + bcos kx N
@ First boundary condition: N |
P0)=0—b=0
Y = asinkx
¥
@ Normalization condition: ;
fOL|@ZJ|2dx:1—>a:\/% ~—_
@ Second boundary condition: »
PL)=0— ky ="T ;
@ Solutions: ,(x) = v,
%sm”Lﬂ, n=1,2,...
0

F. Borondo Quantum Poincaré-Birkhoff Th 29/ 85
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@ But, don’t forget the dynamics ... k =

>~

@ Classical action:
§ Pdx =2 [} Pdx =2 [ klidx = 2khL = 2"%hL = nh

@ Action is quantized in QM!
@ Classical actions = Quantum numbers

F. Borondo Quantum Poincaré-Birkhoff Th 30/ 85
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Quantization of the action. How?
@ Einstein—Brillouin—Kramers (EBK) Method

N .
fcj D Pidql':h(”j‘l‘%)
Classical info = Quantum condition

@ Associated WKB (Wentzel-Kramers—Brillouin) wave
function
b(g) = YA eSi@/h

F. Borondo Quantum Poincaré-Birkhoff Th 31/ 85
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Example: LiCN

6-5 T T T

6.0 =

5.5

1 1 1
2'BO 45 90 135 180

8 (deg)
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Example: LiCN

46 48
E=2300 em™
i} 3
Z of Z o 1
£
L]
o S !
45— :
T 1 1 1 1 ! | 1 2
v

F. Borondo




Introduction

Invariant tori in quantum mechanics

Periodic orbits in quantum mechanics: Scars
Homoclinic and heteroclinic motions
Quantum-like Poincaré-Birkhoff theorem

Example: LiCN

n=1 z,=0n=2 z=1 n=3 z,=2 n=4 /=3 n=6 =z,=4 n=" =z,=6

B

vall Pai Pasi P

]

n=18 z;=10n=21 z,=1

v
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e Periodic orbits in quantum mechanics: Scars
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Periodic orbits in quantum mechanics: Scars
@ What are scars?
Expected: Chaotic classical dynamics — uniformly
distributed quantum density

“& 1@\\‘

% "“\‘-»,"t
W

A
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Scarred functions

@ But in numerical calculations ...

Heller in 1984 coined the term scar to name an enhanced
localization of quantum probability density of certain
eigenstates on classical unstable periodic orbits

v

F. Borondo Quantum Poincaré-Birkhoff Th 35/ 85
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Scars and the zeros of the Husimi function

45 48
E=1500 em™ F=2300 em™
3| 3
E ol E of |
& o
-t
L L L L L L L o 0.5 1 1 2
18 ¥ (m rad.)
Husimi zeroes also tell about scarred states! |
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Scars and the zeros of the Husimi function

n=24 z,=18n=256 z,=12n=27 z;=13n=28 z,=13n=33 z,=14n=34 z;=14

|l 5
0 b

Husimi zeroes also tell about scarred states!
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Scars still generate interest after 25 years
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tical Fibers

VOLUME 88, NUMBER 1 PHYSICAL REVIEW LETTERS 7 JANUARY 2002

Light Scarring in an Optical Fiber

Valérie Doya. Olivier Legrand, and Fabrice Mortessagne
NRS UMR 6622, Université de Nice Sophia-Antipoliv, 06108 Ni

Labaratoire de Physique de la Matiére Condensée

Christian Miniatura
Laboratoire Ondes ¢t Désordre, CNRS FRE 2302, 1361 voute des Lucioles, Sophia-Antipalis, F-06560 Valbonne, France
(Received 31 July 2001: published 18 December 2001)
We report the first experimental study of wave scarring in an optical fiber with a noncircular cross
section. This optical multimode fiber serves as a powerful tool to image waves in a system where
light rays exhibit a chaotic dynamics. Far-field intensity measurements are used to provide a better
identification of scars in the Fourier domain. This first experimental characterization of scarring effect
in optics demonstrates the relevance of such an optical waveguide for novel experiments in wave chaos.
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filter and beam expander

(@) (b)
FIG. 1. Typical specklelike experimental intensity pattern at
the output of a chaotic D-shaped fiber for a plane wave illu-
L. mination at central wave vector k. = 19.0R ", (a) Near-field
lens or objective intensity; (b) far-field intensity.

Ammmm e}

—— e - - — -
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~ Scars in Microcavity lasers

VOLUME 88, NUMBER 9 PHYSICAL REVIEW LETTERS 4 MarcH 2002

Fresnel Iiltering in Lasing Emission from Scarred Modes of Wave-Chaotic Optical Resonators

N.B. Rex, H. E. Turect, H. G. L. Schwefel, R. K. Chang. and A. Douglas Stone
Department of Applied Physics, P.O. Box 208284, Yale University, New Haven, Connecticat 06520-8284
(Received 24 May 2001; published 19 February 2002)

We study lasing emission from asymmetric resonant cavity GaN microlasers. By companng far-field
intensity patterns with images of the microlaser we find that the{Tasing modes are concentraled on thiee- |
[FoUnce unstable periodic tay orbits: i.e.. he modes are searted. | Lhe high-intensity emission directions
of these scarred modes are completely different from those predicted by applying Snell’s law to the ray
orbit. This effect is due to the process of “Fresnel filtering” which occurs when a beam of finite angular
spread 1s incident at the critical angle for total internal reflection.

F. Borondo
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~ (Relativistic) Scars in Graphene sheets

PRL 103, 054101 (2009) PHYSICAL REVIEW LETTERS qyeok ot

E'S

Relativistic Quantum Scars

Liang Huang,' Ying-Cheng Lai,'* David K. Ferry,'”” Stephen M. Goodnick,'*” and Richard Akis'”
Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287, USA
*Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
*Center for Solid Stare Electronics Research, Arizona State Universiry, Tempe, Arizona 85287, USA
{Received 27 February 2009; published 27 July 2006)

The concentrations of wave functions sbowt classical periodic orbits, or gquantum scars, are a
fundamental phenomenon in physics. An open question is whether scarng can oceur in relativistic
quantum systems, To addmress this question, we investigate confinements made of graphene whise classical
dynamics are chaotic and find unequivocal evidence of relativistic quantum scars, The scarred states can
lead to stromg conductance fluctuations in the coresponding open quantum dots via the mechanism of
resonant tmnsmission.
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) Scars in Graphene sheets

F. Borondo

FIG. 1 {color online). Typical quantum scars [md (darker
region) indicates higher electron concentration] for a stadium-
shaped graphene confinement with zigeag horizontal boundaries
and contour plots of ensrgy in the wave vector plane (the band
structure). The energies for the paterns in {a—<) are Eft =
0.13252, 04024, and 0911 88, respectively. The stadium con-
sists of N = 118 14 carbon atoms. Panels (d—f) show the E — k
configuration for an infinite graphene flake for the same lattice
orientation and energy values as those for (a—c), respectively.
The allowed wave vectors are on the constant energy curves (as
indicated by the armws). The lattice constant is a = 2.46 A,
Dashed line segments in (a—c) are for eye guidance, and in (d-f)
they indicate the first Brillouin zone.
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~ (Relativistic) Scars in Graphene sheets .
o) 3

.‘”;ﬁh jw |
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FIG. 4 (color online) (2} An open stadinm-shaped graphens
gquantum dot with semi-infinite leads on both sides. The shape
has a mirror symmetry. (h) Transmission T vesus energy £/r
(¢} Tmnsmission T for the dot after removing the two carbon
atoms as indicated by the arrow i (o) so that the mimor
symmetry 15 broken,
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~ (Relativistic) Scars in Graphene sheets

FIG. 2 {color online).  Typical scars in the stadium-shaped
graphene confinement as in Fig. 1. The energy values for (a-h)
are Eft=10.25347, 036358 057665 060699, (081956,
091061, 097722, and 0.99198, respectively. The dashed lines
represent classical periodic orhits.

F. Borondo

FIG. 3 feolor online).  Scars in stadium-shaped graphene con-
finement with armchair horizontal boundaries. The number of
atoms is N = 13694, The comesponding energy values are
Eft=020031, 02599, 03106, 0.54954, 059238, 0.9168,
095216, and 099801 for (a-h), respectively.




Introduction

Invariant tori in quantum mechanics

Periodic orbits in quantum mechanics: Scars
Homoclinic and heteroclinic motions
Quantum-like Poincaré-Birkhoff theorem

Why do scars happen?
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Heller's dynamical explanation for scars

o/

Overlap

Recurrences

Fourier transform
between:

correlation function
C(1) = (9(0)|#(1)), and \
corresponding spectrum 26" 40 60 T80 105 120

Energy

I(E) = [ dt /7 C(1) s

Absorption

F. Borondo Quantum Poinc irkhoff Th
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Recurrences

F. Borondo



Introduction

Invariant tori in quantum mechanics

Periodic orbits in quantum mechanics: Scars
Homoclinic and heteroclinic motions
Quantum-like Poincaré-Birkhoff theorem

Peaks
@ Where?
Bohr—Sommerfeld quantization condition on the action:
S=¢ P-dg=2rh(n+ %)
@ Why?
Constructive interference in the WKB wavefunction
blg) = A SO/

F. Borondo Quantum Poincaré-Birkhoff Th 49/ 85
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BUT ...

What happens to the density that does not come back in the
recurrence along the scarring periodic orbit?

/ & \ N

=

This is the question that will be addressed now

F. Borondo Quantum Poincaré-Birkhoff Th 50/ 85
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How to systematically construct scar functions

@ Borondo et al., PRL 73, 1613 (1994); version 2007
@ Wavepacket initially localized on the PO
Ve (,y) = N [T dt e=os(—x'=as 03"
X cos [St - %—? + th(x - xt) =+ Pyt(y - Yt)]

ST TITTI T

1

05 ,iééﬁ E

=
e

v oo
0.5 ey = |
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In phase space

@ Quantum SOS based on Husimi function:
H(x, Px) = ‘ffooo dx' e_(x_xl)z/(zaﬁ)—iPxx’qb(x/7y/ _ 0)

‘2
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This can be improved
@ Propagate ¢ (x,y) in time and Fourier transform at Epg
Vsear(x,y) =N f_TgE 2 s (%) —I(H=Ess)t g ()
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Same in phase space

15 T T T T
n=d4

wtube (x » Y )

wscar (xv y)
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Lets us return to our previous question:

What happens to the density that does not come back in the
recurrence along the scarring periodic orbit?

/ ® \ N

=y
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@ Homoclinic and heteroclinic motions

F. Borondo
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The rest will leave the PO along the unstable manifold,
and the main part will return using two homoclinic circuits.
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Homoclinic motion and eigenvalues

Phys. Rev. Lett. 94, 054101 (2005)

The rest will leave the PO along the unstable manifold,
and the main part will return using two homoclinic circuits.

o q 1+m /2 (b)
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Quantization of the homoclinic torus

Under which circumstances the homoclinic trajectory reinforce
the quantization of the central one?

@ Quantization horizontal PO: kLy — Svy = 2mny
Scar condition

@ Quantization homoclinic torus: kLyr — Svur = 2nngr

@ These two conditions can be combined into a single one:
k(LHT — LH) — %(VHT — I/H) = 27T(I1HT — nH)
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Quantizing the homoclinic torus

@ The homoclinic motions (both 4; and &;) can be
approximated by two families of satellite PO’s
(Ozorio de Almeida)

1 —
. @ B kY
. . 5 Vﬂ'i
P :
_ SFI 5 A w1y
i .Y N \x
i ‘ L R .,-*\ s
. 1
1] EDA 55
we | ) =
., # ’ » 2 |
= .tf - A i 1
: Sy o L4 e b
7 o TN N,
(/ ‘ \‘. ‘.\
0 q 42 (b) (C)

4
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@ Quantization horizontal PO: kLy — Svy = 27ny
@ Quantization m—th satellite PO: kL,, — 5v,, = 27n,

@ Combination
k(Ly —mLy) — 5V — mvy

=27 (ny — mny)

m L, —mLy

Family h; Family h;
3 -3.367 727 48 -2.990 915 39
4 -3.368 367 57 -2.991 131 87
5 -3.368 389 68 -2.991 141 81
6 -3.368 39043 -2.991 142 21
7 -3.368 390 45 -2.991 142 22

v
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@ Which should be the effect in QM — Scarred states?

@ When both quantization conditions are fulfilled the scarred
state is better defined

@ When only the PO is quantized the scarred state is worse
defined

@ Then, when projecting the scars on the spectrum the width
should fluctuate periodically with the excitation number
along the PO
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@ Project scar functions on eigenstates spectrum
q
@ ! (b)
p
0.2 o
k c
Iy Kes (©)
0 n ' L HHH“ \ _]0 /2
211 211. 212
5ku q

o
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@ Compute o = \/Zn [(nl) [ (k2 — k)

@ Scale ¢ and make them adimensional

Oreg = 255 gy = %; A Lyapunov exp

(.0357

100 200 300
kBS
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@ Now Fourier analyze the signal
"The noise is the signal” (Landauer)

0.05

I Gl 0

0.014 -0.05

100 200 300
kBS

0.0054

0 0.5

n
[

@ Peaks at S = 0.633 and 1.007
Also at § = —3.367 and -2.9983, since FT is Ly = 4 periodic
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@ Peaks coincide with the value of primary homoclinic areas

aré-Birkhoff Th
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Homoclinic motion and wave functions

Phys. Rev. Lett. 97, 094101 (2006)

0 |scar) = [ pdt cos(L) elErs—Hi/h |0 )

(a)

(b)

o

{

(d) E

0 q

147/2
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Husimis for 4 scar function with quantization/antiquantization
conditions on the homoclinic torus (all quantized on the PO)

Label ng ks 7hoy Thes

NG

{a) 34 54585 29.01 25.99
(b) 40 64.010 34.07 30.47
(c) 44 70.293 37.43 33.46
() B0 TOTIR 4249 37.95

0

0
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@ Scar function n = 224

@ Homoclinic quantization:
ny, = 189.01, ny, = 168.07

@ Extra quantization on
heteroclinic orbits:

kShe = 21y,

Mhe, = 19.00, 1y, = 5.98 T
@ Husimis for T = 0.9¢5, 1.2t % |n,

and 3.3t¢ <

he,

0 0.7
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Classical phase space

0 q L2

y
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nveiling other classical invariants

Even other classical invariants can be unveiled in QM
i.e. Lazutkin homoclinic invariant
(thanks to Enerst Fontich)

EPL, 89 (2010) 40013 wwv.epljournal.org
doi: 10. 1209/0295-5075/89/40013

Diagonal matrix elements in a scar function basis set
E. G. Veramt'2(®, E. L. Siserr 111, F. Revuerta?, R. M. Benito? and F. Borospot

Abstract - We provide canonically invariant expressions to evaluate diagonal matrix elements
of powers of the Hamiltonian in a scar function basis set. As a function of the energy, each matrix
element consists of a smooth contribution associated with the central periodic orbit, plus cscillatory
contributions given by a finite set of relevant homoclinic orbits. Each homoclinic contribution
depends, in leading order, on four canonical invariants of the corresponding homoclinic orbit; &
geometrical interpretation of these not well-known invariants is given. The obtained expressions
are verified in a chaotic coupled quartic oscillator.

GerrmeElicH V. G, Lazutkin V. F. and Svanmze NV,
Physica 1. T1 (1994) 82
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VOLUME 57, NUMBER 23 PHYSICAL REVIEW LETTERS 8 DECEMBER 1986

Kolmogorov-Arnol’d-Moser Barriers in the Quantum Dynamics of Chaotic Systems

T. Geisel, G. Radons, and J. Rubner
Institut fiir Th ische Physik, Universiti burg, D-8400 burg, West
(Received 18 August 1986)

Classical Kolmogorov-Arnol'd-Moser tori and cantori are found to act as barriers in the quantum
dynamics of a kicked rotator. In their vicinity the asymptotic distribution decays exponentially. The
penetration depth of a Kolmogorov-Arnal'd-Moser torus scales as A% and the penetration probability
as h**%. Cantori can inhibit the diffusive growth of mean square displacements and thus act as barriers
more drastically than in classical systems.
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Cantori in QM

Barrlers to Chaotic Classical Motion and Quantum Mechanical Locallzation in
Muitiphoton Dissociation

Robert C. Brown' and Robert E. Wyart*

Institute of Theoretical Chemistry and Department of Chemistry, University of Texas,
Austin, Texas 78712-1167 (Received: January 15, 1986)

Recent work (MacKay, R. §.; Meiss, J. D; Percival, L. C. Physica D 1984, 13, 55. Bensimon, D.; Kadanoff, L. E. Physica
D 1984, 13, 82.) on locating and calculating the flux across global bottlenecks to classical diffusion in strongly chaotic regions
is used to study IR multiphoton dissociation for a model diatomic molecule. Particular attention is given to the correspondence
between the classical barriers and quantum mechanical dissociation rates. It is found that quantum mechanical localization
can arise in regions of x-p phase space which are strongly stochastic when the classical flux is smaller than k.
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Cantori in QM

The classical Hamiltonian for a nonrotating diatomic interacting
with a laser field can be written’?

Hc"—‘HM"‘HF"'RH[:E (1)
where Hg and H,; are Hamiltonians for the radiation field and

the HF (Morse oscillator) diatomie, respectively, and H, is the
field-molecule, nonlinear, dipole interaction

Hy = p*/(2u) + Dyl = eetr-xllj? (2a)
He = (1/2)[PF* + we? X7 (2b)
Hy = -D(x)Xp (2¢)
with
D(x) = Ax expj-gx¥] (2d)

The coupling parameter is related to the radiation field strength
Ej, and intensity I by

A = weEy/(2E)\? = well/og]' (3)

where ¢ is the speed of light, ¢ is the permittivity of free space,
and E is the conserved total energy of the laser/oscillator system
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Cantori in QM
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e Quantum-like Poincaré-Birkhoff theorem
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Classical Poincaré-Birkhoff theorem
After Berry.

_________ rational invariant « original fixed
CALVES pount
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Harper map: classical dynamics

Gnt1 = qn — ksin(2mpy) (mod 1),
Pnt1 = pn+ksin(27gy) (mod 1), 3)

for k: (a) 0.1, (b) 0.155, (c) 0.2, and (d) 0.25.
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Harper map: quantum dynamics
The idea is to construct and diagonalize an evolution operator

U = e~ HT/R = exp[iNk cos(2mg)] expliNk cos(27p)],

N = (2rh)~!

The simplicity of this model allows extremely detailed
calculations.
Diagonalization gives a series of eigenphases: ¢, = ¢/
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Eigenphases correlation diag

0.05 0.1 0.15 02 0.25 0.3

An = 10 (red squares); An = 6 (blue circles)
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Eigenphases correlation diagram
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Avoided crossings

@ States avoid crossing due to the Wigner-von Neumann rule
@ Locally states interact by pairs: {11, ¢»}

@ Hamiltonian is given by Hy, = (¢1|H|¢1), Hy, Hi2 = Hay

o Diagonalizing: Ey, = 21tz + L /(H|| — Hy)? + 4H),
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One avoided crossing

5 B
0.185 k021
An = 6 with ny,, = 4 and n,, = 10
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Semiclassical analysis of A¢

h AG
10—4 L

1 0—5 —
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107
0.16 0.21 ; 0.26 0.31
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An = 6: N=30 (A), 60 (), and 100 (x)




Introduction

Invariant tori in quantum mechanics

Periodic orbits in quantum mechanics: Scars
Homoclinic and heteroclinic motions
Quantum-like Poincaré-Birkhoff theorem

Thanks for your attention
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