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Observations: narrow planetary rings
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Saturn rings
PIA08329 (NASA/JPL/Space Science Institute)
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Uranus rings
PIA01977, PIA01976 (NASA/JPL/Space Science Institute)
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Saturn’s F ring and Encke gap; Prometheus and Pandora
PIA08305, PIA06143, PIA07523 (NASA/JPL/Space Science Institute)



Observations: narrow planetary rings
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Structure in Saturn’s F ring
PIA07522 (NASA/JPL/Space Science Institute)



Observations: narrow planetary rings
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Neptune rings and arcs
PIA01493 (NASA/JPL/Space Science Institute)



Open questions
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We have a first-order understanding of the dynamics and key processes in rings,
(...)Unfortunately, the models are often idealized (for example, treating all particles as
hard spheres of the same size) and cannot yet predict many phenomena in the detail
observed by spacecraft (for example, sharp edges). Non-intuitive collective effects
give rise to unusual structures.

(...) One such example is the case of shepherding satellites. The F ring is not exactly
placed where the shepherding torques would balance. Of the Uranian rings,
shepherds were found only for the largest ε (epsilon) ring; even so, they are too small
to hold it in place for the age of the solar system. Another issue is that the sharp
edges of rings are too sharp!

Larry Esposito, Planetary rings (Cambridge University Press, 2006).



Open questions
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Some open issues are:

• Rings with sharp–edges, narrow and eccentricity

• Multiple ring components: Strands

• Clumps and arcs

• Kinks and bendings

• Stability, life times, origin, ...



Scattering approach to narrow rings
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Consider the full gravitational (N + 1)-body problem in an inertial frame

H =
N
∑

i=0

[ 1

2Mi

| ~Pi|
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GM0Mi
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+ Vm−m +HKrp

+ Vm−rp+Vrp−rp
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Consider the full gravitational (N + 1)-body problem in an inertial frame

H =
N
∑

i=0

[ 1

2Mi

| ~Pi|
2 −

GM0Mi

| ~Ri − ~R0|

]

−
N
∑

i<j 6=0

GMiMj

| ~Ri − ~Rj |

= HKm
+ Vm−m +HKrp

+ Vm−rp

1st approx.: No interaction among ring particles.

2nd approx.: In the planetary case Mrp ≪ Mm ≪ M0.

Thus, we replace the full many-body problem by a collection of independent one–particle

time-dependent effective interactions:

H =
1

2
| ~P |2 + V0( ~X, t) + Veff( ~X, t)

⇒ Restricted (Nm + 1 + 1)–body problem



Scattering approach to narrow rings
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Basic ideas:

1. Ensemble (Nr ≫ 1) non-interacting particles whose dynamics is given by

H = 1
2
| ~P |2 + V0( ~X, t) + Veff( ~X, t)

2. Phase–space regions where escape to infinity dominates the dynamics (scattering)

3. Organizing centers in phase space (periodic orbits or tori) are stable.

Then, rings shall be obtained by projecting onto the X − Y space, at fixed time, the

phase-space position of all particles that are dynamically trapped.



The rotating billiard
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Ring particles evolution is given by

H( ~X, ~P , t) =
1

2
|~P |2 + V0( ~X, t) + Veff( ~X, t )

The simplest case: planar billiard on a Kepler orbit

V0(| ~X|) = 0,

Veff(| ~X − ~Rd(φ(t))| > d) = 0,

Veff(| ~X − ~Rd(φ(t))| ≤ d) = ∞,

Rd(φ) =
a(1− ε2)

1 + ε cosφ
, R2

dφ̇ = [a(1−ε2)]1/2

The Hamiltonian is:

J =
1

2

a2

Rd(φ)2
|~p|2 + Veff

(

Rd(φ)

a
|~x− ~rd|

)

−φ̇(xpy − ypx)− φ̇
1

Rd(φ)

dRd(φ)

dφ
(xpx + ypy)



Circular case: Periodic orbits and stability
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Radial periodic orbits:

Jn
(R− d)2

=
2 cos2 θ +∆φ sin(2θ)

(∆φ)2

with ∆φ = (2n− 1)π + 2θ

Stability:

TrDPJ = 2 +
(∆φ)2(1− tan2 θ)

d/R

−
4(1 + ∆φ tan θ)

d/R

Changes of stability at TrDPJ = ±2



Circular case: Periodic orbits and stability
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J/(R− d)2 = 0.29325 J/(R− d)2 = 0.29218

p = −d−R cosα− v sin(α− θ)



Circular case: Occurrence of rings
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Circular case: Occurrence of rings
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Eliptic case: Strands and Arcs
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We consider now elliptic Kepler motion (2 + 1/2 degrees of freedom)
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We consider now elliptic Kepler motion (2 + 1/2 degrees of freedom)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

-0.3004 -0.3002 -0.3 -0.2998 -0.2996

Y

X

(c)

ε = 0.00168



Eliptic case: Strands and Arcs
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We consider now elliptic Kepler motion (2 + 1/2 degrees of freedom)
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Phase-space volume of trapped regions
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Phase-space volume of trapped regions
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ε 6= 0
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Excitation of stability resonances separates regions in phase space



Mean-motion Resonances
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Mean-motion Resonances
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Dynamics
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filmclumpsNeg.mp4
Media File (video/mp4)



Summary
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• Using a scattering approach, we obtain consistently sharp–edged narrow eccentric

rings.

Scattering dynamics ⇒ rings have sharp edges

Eccentric orbits as organizing centers ⇒ eccentric rings

Small stable regions in phase space ⇒ narrow rings

• For more than two degrees of freedom, rings may have several components, strands.

They appear by exciting low-order stability resonances which spearate the regions of

trapped motion in phase space.

• Arcs (clumps) are related to the additional occurrence of mean-motion resonances

within the strands.

• For two degrees of freedom our results are robust for short-range circularly rotating

potentials.



Outlook (work in progress)
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Q: What about the non-planar case? A 3D billiard on a planar circular orbit
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Outlook (work in progress)
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Q: What about a realistic case? (in collaboration with À. Jorba)

Results for a consistent restricted (4+1)-body problem
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