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What is Dimension Reduction?

x3

-1

-2

Billy Chang ()

-1
-2

x1

Subspace Constraint

X2



What is Dimension Reduction?
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Why Dimension Reduction?
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@ Visualization, feature extraction for regression.
@ Principal Component Analysis, Factor Analysis.
@ Measures for model diagnosis: reconstruction error, likelihood.
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What is Nonlinear Dimension Reduction?
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Challenges in Nonlinear Dimension Reduction
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@ No explicit mapping from original space to low-dimensional space.

@ Model checking and parameter tuning difficult.
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Principal Curve (Hastie et. al. 1989)
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@ A curve that passes through the centre of the data.
@ Explicit mapping and reconstruction error available.
@ Can over-fit, or under-fit.

Principal Curve, df=8 Principal Curve, df=3
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Subspace Constraint

@ Assume the nonlinearity lies on a lower-dimensional subspace.

— true signal
— principal curve, df=8
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@ Reconstruction: embed the principal curve back into the original
space.

@ Question: How to find that constraint subspace?
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Subspace Search: Kernel PCA and Maximum Eigenvalue
Maximization

@ Kernel PCA (Schélkopf et. al. 1998) solves:

max var(g(x)), 1
9€Hk:|IGll3e, =1 (9(x)) ()

where H is the Hilbert Space of functions induced by the kernel
K (Hastie et. al. 2009).

@ Assuming the objective (1) is a measure of nonlinearity, we search
for a projection matrix H such that:

2 T
max max var(g(H'x
HiHTH:l{QEHK:”g”HK—1 (ol ))}

@ The term inside {} is proportional to the largest eigenvalue of the
Gaussian kernel matrix KM for the projected data:

IHT (x;—x)12
H I B L
Ki=e G

@ Further dimension reduction can be performed on (I — HHT)x.
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Simulation
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Sinusoidal Circular
xy = (—0.67...0.67) 0= (—m..m)
Xo = Ssin(2x1) +e€ X1 = sin(H) + €4
x3 ~ N(0,0 =3) Xp = 2c0S(0) + e2
X3 ~ N(O,U = 3)

@ 50 training samples, 500 validation samples.

@ d.f. for principal curve and o for Gaussian Kernel chosen by
reconstruction error on the validation set.
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Results (—- True Curve, —- Fitted Principal Curve)
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Conclusion

@ Regularization for nonlinear dimension reduction:
roughness-penalty is not enough.

@ Subspace constraint regularizes by controlling the direction
principal curve can move.

@ Future work: a better measure of nonlinearity.
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