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Introduction

We will discuss special solutions called the solitons of the
Ricci flow and the Yamabe flow.

Ricci flow equation: If (M, g0) is a smooth Riemannian
manifold then evolve the metric in time by

∂

∂t
gij = −2Rij , g(·, 0) = g0(·).

Yamabe flow equation: If (M, g0) is a smooth Riemannian
manifold then evolve the metric by

∂

∂t
gij = −Rgij , g(·, 0) = g0.

These two flows coincide in dimension n = 2.

Motivation for studying the solitons: they often arise as finite
time singularity models. In other words, if we encounter the
singularity, rescale, take the blown up limit and the limiting
solution is called the singularity model.
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Definitions ad notation

Solitons: Ricci (Yamabe) soliton g(·, t) is the solution to the
Ricci (Yamabe) flow that moves by 1 parameter family of
diffeomorphisms {φt} and by homotheties, that is,

g(·, t) = σ(t)φ∗t g(·, 0).

Equivalently, g(·, t) is the Ricci (Yamabe) soliton if it solves
the Ricci (Yamabe) equation and say g0 satisfies

Ric(g0) + LXg0 = ρg0, Ricci soliton,

Rg0 + LXg0 = ρg0, Yamabe soliton.

When X = ∇f , replace LXg0 above by the ∇∇f .

ρ > 0 - shrinking Ricci (Yamabe) solitons
ρ = 0 - steady Ricci (Yamabe) solitons
ρ < 0 - expanding Ricci (Yamabe) solitons
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Motivation

Singularity in both flows occur when the norm of the
curvature operator blows up.

If T <∞ is the singular time we say the singularity is of Type
I if

lim sup
t→T

sup
M

(T − t)|Rm|(·, t) <∞.

otherwise we say we have a Type II singularity.

Perform a parabolic rescaling (rescale by the maximum of the
curvature norm) and take the limit of the rescaled sequence -
singularity model.

Naber, Enders, Müller, Topping: There exists a rescaling
around a Type I singularity of the Ricci flow so that the
singularity model is the gradient shrinking Ricci soliton.
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Gradient shrinking Ricci solitons in lower dimensions

Hamilton, Ivey: The only closed gradient shrinking Ricci
solitons in dimensions n = 2, 3 are the ones with constant
positive curvature.

Böhm, Wilking: The compact gradient shrinking Ricci solitons
with positive curvature operator in any dimension have
constant positive curvature.

Hamilton-Ivey pinching estimate shows that three dimensional
ancient solutions (in particular, shrinking Ricci solitons) have
nonnegative sectional curvatures.
Perelman: Every κ-noncollapsed three dimensional gradient
shrinking Ricci soliton with bounded curvatures and strictly
positive Ricci curvature must be compact.
The assumptions on being κ-noncollapsed and of bounded
curvatures have been removed.
Combining the previous results we obtain: the three
dimensional gradient shrinking Ricci solitons are S3, R3,
S2 × R and the quotients of those.
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Gradient shrinking Ricci solitons in higher dimensions

Locally conformally flat solitons have been considered by
various people. Under additional assumptions on the
curvature of those it was obtained that the the only locally
conformally flat gradient shrinking Ricci solitons are Sn, Rn,
Sn−1 × R and the quotients of those (Ni-Wallach;
Cao-Wang-Zhang; Peterson-Wylie).

Zhang: The gradient shrinking Ricci solitons with vanishing
Weyl tensor must have nonnegative curvature operator. By
the result of Cao-Wang-Zhang we have the same classification
as above.

Cao, Zhu: For any fixed point p ∈ M there is a uniform
constant c > 0 so that

1

4
(r(x)− c)2 ≤ f (x) ≤ 1

4
(r(x + c)2,

where r(x) = dist(x , p).
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Curvature estimates for gradient shrinking Ricci solitons

Munteanu, S. Let Mn be a complete gradient shrinking Ricci
soliton normalized such that

Ric + Hessf =
1

2
g

Then for any λ > 0 we have
∫
M |Ric |2 e−λf <∞.

Munteanu, S. Assume that for some λ < 1 we have∫
M |Rm|2 e−λf <∞. Then the following identity holds∫

M
|∇Ric |2 e−f =

∫
M
|div (Rm)|2 e−f <∞.

Munteanu, S. The only complete shrinking gradient Ricci
solitons with harmonic Weyl tensor are the quotients of Rn,
Sn and Sn−1 × R.

harmonic Weyl tensor means that divW = 0.
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Topological properties of gradient shrinking Ricci solitons

A manifold is called nonparabolic if it admits a positive
symmetric Green’s function. Otherwise it is called parabolic.
A similar definition holds for manifold ends.

(M, g) is a Kähler-Ricci soliton if

Rαβ̄ + fαβ̄ = gαβ̄, fαβ = fᾱβ̄ = 0.

Munteanu, S. Let (M, g) be a gradient shrinking Kähler-Ricci
soliton as above. If u is a harmonic function with∫
M |∇u|2 <∞ then u has to be a constant function. As a

corollary, (M, g) has at most one nonparabolic end.

If (M, g) had at least 2 nonparabolic ends, Li and Tam have
constructed the nontrivial bounded harmonic function with
bounded total energy and therefore contradiction.
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Steady Ricci solitons

Rij = ∇i∇j f (occur as singularity models of Type II
singularities).

Bryant: There exists unique, up to scaling, rotationally
symmetric complete gradient steady Ricci soliton. It has
positive sectional curvatures. The volume of geodesic balls

Br (0) grow of the order r
n+1

2 .

H.-D. Cao, Chen Q. Let (Mn, g , f ), n ≥ 3, be a n-dimensional
complete noncompact locally conformally flat gradient steady
Ricci soliton with positive sectional curvature. Then
(Mn, g , f ) is isometric to the Bryant soliton.

Conjecture: The only gradient three dimensional steady Ricci
soliton with positive sectional curvature is the Bryant soliton.
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Topology and geometry of steady Ricci solitons

Munteanu, S. If M is a gradient steady Ricci soliton then it
has at most one nonparabolic end. They managed to show
that (M, g) is either connected at infinity or splits
isometrically as M = N ×R, for a compact Ricci flat manifold
N, assuming that (M, g) is Kähler and certain bounds on the
Ricci curvature and the volume noncollapsing.

Munteanu,Wang: By studying the spectrum of manifolds with
Ricf = Ric(g) +∇∇f ≥ 0 they have showed that steady
Ricci solitons either have one end (equivalently, connected at
infinity) or split isometrically as M = N × R, where N is a
compact steady Ricci soliton.

Munteanu, S. If (M, g) is a gradient steady Ricci soliton,
there exist uniform constants c0, r0 > 0 so that for any r > r0

vol(Bp(r)) ≥ c0r .
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Compact Yamabe flow

Definition: (M, g) is called a Yamabe gradient soliton if there
exists a smooth potential function f : M → R and a constant
ρ ∈ R so that

(R − ρ)gij = ∇i∇j f .

(by scaling assume ρ = −1, 0, 1.)

Yamabe solitons are the special solutions to the Yamabe flow
equation

∂

∂t
gij = −Rgij .

compact Yamabe flow: Chow,B., Ye,R., Struwe,M.,
Schwetlick,H., etc.

Brendle: If 3 ≤ n ≤ 5 or if n ≥ 6 (in the latter case he
imposes some mild technical assumptions), then starting at
any initial metric, the normalized Yamabe flow has the long
time existence and converges to a metric of constant scalar
curvature.
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Complete Yamabe flow

complete Yamabe flow is not well understood.
Type of singularities: If T <∞ is a singular time, which is the
time when the norm of the Riemannian curvature blows up,
then if

lim sup
t→T

[(T − t) sup
M
|Rm|(·, t)] <∞, Type I singularity.

Otherwise we have a Type II singularity.

Yamabe flow is conformal, that is, if e.g., we are on Rn and

we write g(·, t) = u(·, t)
4

n+2 dx2 then u(·, t) evolves by the fast
diffusion equation

∂

∂t
u =

(n − 1)

m
∆Rnum.

Barenblatt solutions: Bk(x , t) =
(

C∗(T−t)
k(T−t)2γ+|x |2

) 1
1−m

, where

m = n−2
n+2 , β = n

n−2−nm and γ = −β
n .
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Complete Yamabe flow

Assumption: The initial condition u0 is trapped in between
two Barenblatt solutions, i.e.(

C ∗ T

k1 + |x |2

) 1
1−m

≤ u0(x) ≤
(

C ∗ T

k2 + |x |2

) 1
1−m

,

for some constants k1 > k2 > 0.

Daskalopoulos, S. Let u solve the fast diffusion equation as
above, for N−4

N−2 < m < N−2
N , with initial value u0 satisfying

the assumption. Then, the rescaled solution converges, as
τ →∞, uniformly on RN , and also in L1(RN), to the rescaled

Barenblatt solution B̃k0 , for some k0 > 0 which turns out to
be the Yamabe shrinker.

Daskalopoulos, S. The previous theorem about the asymptotic
singular profile is valid even for ranges 0 < m ≤ n−4

n−2 , n ≥ 4 if
we assume, in addition, that for some k0, the difference
u0 − Bk0 ∈ L1(Rn).
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Complete Yamabe flow

The previous two results show that complete non-compact
solutions to the Yamabe flow develop a finite time singularity
of Type I, and after re-scaling the metric converges to the
Barenblatt solution.

Daskalopoulos, S. There exists a class of solutions u of the
fast diffusion equation with initial data

u0 =
(

C∗T
|x |2

) 1
1−m

(1 + o(1)) as |x | → ∞ with the following

properties:
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Complete Yamabe flow

The vanishing time T ∗ of u satisfies T ∗ > T .

The solution u satisfies as |x | → ∞, the growth conditions

u(x , t) ≥
(

C ∗ (T − t)

1 + |x |2

) 2
1−m

, on 0 < t < T

and

u(x , t) ≤ C (t)

|x |
m

N−2

, on T < t < T ∗.

In particular, u becomes integrable on t > T .

At time T there is a singularity. We conjecture it is the Type
II singularity.
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Singularity model - rigidity theorem

Daskalopoulos, S. Let g(x , t) be a complete eternal solution
to the locally conformally flat Yamabe flow on a simply
connected manifold M, with uniformly bounded sectional
curvature and strictly positive Ricci curvature. If the scalar
curvature R assumes its maximum at an interior space-time
point P0, then g(x , t) is necessarily a Yamabe gradient steady
soliton.

Singularity models of Type II singularities are eternal solutions
that live on (−∞,∞).
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Yamabe solitons

Daskalopolous, S. If (M, g , f ) is a compact gradient Yamabe
soliton, not necessarily locally conformally flat, then g is the
metric of constant scalar curvature.

interested in complete noncompact locally conformally flat
Yamabe gradient solitons with positive sectional curvature.

Carron, Herzlich: Every locally conformally flat complete
noncompact manifold with nonnegative Ricci curvature is
either globally conformally flat to plane or isometric to a flat
manifold or locally isometric to a cylinder.

we will first provide the classification of rotationally symmetric
Yamabe solitons, which are globally conformally flat.

Dsakalopoulos, S. All locally conformally flat complete
Yamabe solitons with positive sectional curvature have to be
rotationally symmetric.
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PDE formulation of Yamabe solitons

Proposition: Let gij = u
4

n+2 dx2 be a rotationally symmetric
Yamabe gradient soliton (R − ρ)gij = ∇i∇j f . Then, u is a
smooth solution of the elliptic equation

n − 1

m
∆um + β x · ∇u + γ u = 0, on Rn (1)

where β ≥ 0 and

γ =
2β + ρ

1−m
, m =

n − 2

n + 2
.

In addition, any smooth solution of the above elliptic equation
with β and γ as above defines a gradient Yamabe soliton.
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Classification of rotationally symmetric Yamabe solitons

Proposition: Let m = n−2
n+2 . The elliptic equation admits

non-trivial radially symmetric smooth solutions if and only if
β ≥ 0. More precisely, we have:

Yamabe shrinkers ρ = 1: For any β > 0 and γ = 2β+1
1−m , there

exists an one parameter family uλ, λ > 0, of smooth cigar

solutions with uλ(x) = O(|x |−
2

1−m ), as |x | → ∞. In the case
γ = βn the solutions are given in the closed form

uλ(x) =

(
Cn

λ2 + |x |2

) 1
1−m

, Cn = (n − 2)(n − 1),

known as the Barenblatt solutions. When β = 0 and γ = 1
1−m

we have the explicit solutions (spheres) of fast-decay rate

uλ(x) =

(
Cn λ

λ2 + |x |2

) 2
1−m

, Cn = (4n(n − 1))
1
2 .
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Classification of rotationally symmetric Yamabe solitons

Yamabe expanders ρ = −1: For any β > 0 and
γ = 2β−1

1−m > − 1
1−m , there exists an one parameter family uλ,

λ > 0 of smooth solutions .

Yamabe steady solitons ρ = 0: For any β > 0 and
γ = 2β

1−m > 0, there exists an one parameter family u = uλ,

λ > 0, of smooth solutions with u = O(( log |x |
|x |2 )

1
1−m ), as

|x | → ∞. We will refer to them as logarithmic cigars. If
β = 0 and therefore γ = 0, then u is a constant, defining the
euclidean metric on Rn.

In all of the above cases the solution uλ is uniquely
determined by its value at the origin.
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Positive sectional curvature

The logarithmic cigars and the Yamabe expanders found in
the previous Proposition have strictly positive sectional
curvatures as long as γ > 0. The Yamabe shrinkers have
strictly positive sectional curvatures as long as β > 1

n−2 .

PDE equation n−1
m ∆um + βx · ∇u + γu = 0 implies R(0) = γ.

We show the shrinkers have scalar curvature bigger than
ρ = 1 as long as β > 1

n−2 .

It turns out the nonnegativity of sectional curvature K0 which
is the curvature of the 2-planes perpendicular to the spheres
{x} × Sn−1 is equivalent to the scalar curvature R being
decreasing in distance r from the origin.

The last follows from : R can not attain local minimum. We
argue this using

(n − 1)∆R + βx · ∇Rv + R(R − ρ)v = 0,

where v is the conformal factor in cylindrical coordinates.
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Rotational symmetry of Yamabe solitons

Dsakalopoulos, S. All locally conformally flat complete
Yamabe solitons with positive sectional curvature have to be
rotationally symmetric.

inspired by the proof of H.D.-Cao, Chen,Q. in the case of
locally conformally flat complete steady Ricci solitons.

f is the Yamabe soliton potential function. Let Σc be the
level surface of f , that is

Σc = {x ∈ M : f (x) = c}.

if c is the regular value, we can express the metric g as

g =
1

G (f , θ)
df 2 + hab(f , θ)dθa dθb,

where G (f , θ) = |∇f |2 and θ2, . . . θn are the intrinsic
coordinates for Σc .
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Rotational symmetry for Yamabe solitons

Goal: G = G (f ), hab = hab(f ) and (Σc , hab) is a space form
with constant positive curvature. This would imply

g = ψ2(f )df 2 + φ2(f )gSn−1 .

Identities on Yamabe solitons:

∇G = 2R∇f , (n − 1)∇R = Ric(∇f , ·).

we show that the Ricci tensor of our soliton metric g has at
most 2 distinct eigenvalues.

we use the Harnack expression for the Yamabe flow,
introduced by Chow, which is

Z (g ,X ) = (n − 1)∆R + 〈∇R,X 〉+
1

2(n − 1)
RijXiXj + R2.
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The eigenvalues of Ricci tensor

At any point p ∈ Σc , the Ricci tensor of g has either a unique
eigenvalue λ, or it has two distinct eigenvalues λ and µ, of
multiplicity 1 and n − 1 respectively. In either case, e1 = ∇f

|∇f |
is an eigenvector with eigenvalue λ. Moreover, for any
orthonormal basis e2, . . . en tangent to the level surface Σc at
p, we have

Ric(e1, e1) = λ

Ric(e1, eb) = R1b = 0, b = 2, . . . n

Ric(ea, eb) = Raaδab, a, b = 2, . . . , n,

where either R11 = . . .Rnn = λ or R11 = λ and
R22 = · · · = Rnn = µ.
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Eigenvalues of Ricci tensor

Ric > 0 so choose a vector field X to satisfy

∇iR +
1

n − 1
RijXj = 0.

Z evolves by

�Z = RZ + AijXiXj + gklRij(Rgik −∇iXk)(Rgjl −∇jXl).

in local coordinates {xi} where gij = δij and the Ricci tensor is
diagonal with eigenvalues {λ1, . . . λn} we have

Aij =

 ν1
. . .

νn

 .

where

νi =
1

2(n − 1)(n − 2)

∑
k,l 6=i ,k>l

(λk − λl)
2.
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Lemma: Let c be a regular value of f and Σc = {f = c}.
Then,

the function G = |∇f |2 and the scalar curvature R are
constant on Σc , that is, they are functions of f only.

the mean curvature H of Σc is constant.

the sectional curvature of the induced metric on Σc is
constant.

proof: let {e1, e2, . . . en} be an orthonormal frame with
e1 = ∇f

|∇f | and e2, . . . en tangent to Σc .

∇G = 2R∇f ⇒ ∇aG = 0,

(n−1)∇R = Ric(∇f , ·)⇒ (n − 1)∇aR = Ric(∇f , ea) = R1a = 0.

for a ∈ {2, . . . n}.
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Questions

What is the classification of Yamabe solitons if we drop the
assumption on being locally conformally flat?

Is there an analogue of Perelman’s W functional or the
reduced volume functional for the Yamabe flow which will
have a consequence that every finite time singularity model of
a Type I singularity is a Yamabe shrinker?

Examples of Type II singularities in the complete Yamabe flow.

Classification of gradient shrinking Ricci solitons and the
geometric properties of those.
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