Conformal Geometry and
 Metrics of Holonomy Split G_{2}

Robin Graham
University of Washington

Connections in Geometry and Physics
Fields Institute
May 14, 2011

Holonomy

Let (M, g) be a connected pseudo-Riemannian manifold of signature $(p, q), p+q=n$.

Holonomy

Let (M, g) be a connected pseudo-Riemannian manifold of signature $(p, q), p+q=n$.
Can define $\operatorname{Hol}(M, g) \subset S O_{e}(p, q) \quad$ (Restricted holonomy group)

Holonomy

Let (M, g) be a connected pseudo-Riemannian manifold of signature $(p, q), p+q=n$.

Can define $\operatorname{Hol}(M, g) \subset S O_{e}(p, q) \quad$ (Restricted holonomy group)
$\operatorname{Hol}(M, g)$ is all the linear transformations obtained by parallel translation around contractible loops.

Holonomy

Let (M, g) be a connected pseudo-Riemannian manifold of signature $(p, q), p+q=n$.
Can define $\operatorname{Hol}(M, g) \subset S O_{e}(p, q) \quad$ (Restricted holonomy group)
$\operatorname{Hol}(M, g)$ is all the linear transformations obtained by parallel translation around contractible loops.
$\operatorname{Hol}(M, g)$ measures the structure preserved by parallel translation.

Holonomy

Let (M, g) be a connected pseudo-Riemannian manifold of signature $(p, q), p+q=n$.
Can define $\operatorname{Hol}(M, g) \subset S O_{e}(p, q) \quad$ (Restricted holonomy group)
$\operatorname{Hol}(M, g)$ is all the linear transformations obtained by parallel translation around contractible loops.
$\operatorname{Hol}(M, g)$ measures the structure preserved by parallel translation.
Most (M, g) have holonomy $S O_{e}(p, q)$.

Holonomy

Let (M, g) be a connected pseudo-Riemannian manifold of signature $(p, q), p+q=n$.

Can define $\operatorname{Hol}(M, g) \subset S O_{e}(p, q) \quad$ (Restricted holonomy group)
$\operatorname{Hol}(M, g)$ is all the linear transformations obtained by parallel translation around contractible loops.
$\operatorname{Hol}(M, g)$ measures the structure preserved by parallel translation.
Most (M, g) have holonomy $S O_{e}(p, q)$.
$\operatorname{Hol}(M, g)=\{e\}$ if and only if g is flat.

Holonomy

Let (M, g) be a connected pseudo-Riemannian manifold of signature $(p, q), p+q=n$.

Can define $\operatorname{Hol}(M, g) \subset S O_{e}(p, q) \quad$ (Restricted holonomy group)
$\operatorname{Hol}(M, g)$ is all the linear transformations obtained by parallel translation around contractible loops.
$\operatorname{Hol}(M, g)$ measures the structure preserved by parallel translation.
Most (M, g) have holonomy $S O_{e}(p, q)$.
$\operatorname{Hol}(M, g)=\{e\}$ if and only if g is flat.

Example: $\operatorname{Hol}(M, g) \subset U(n / 2)$ if and only if g is Kähler.

Holonomy

Question. Which subgroups of $S O_{e}(p, q)$ can arise as $\operatorname{Hol}(M, g)$?

Holonomy

Question. Which subgroups of $S O_{e}(p, q)$ can arise as $\operatorname{Hol}(M, g)$?
Say that $G \subset S O_{e}(p, q)$ is irreducible if its action on \mathbb{R}^{n} has no nontrivial invariant subspaces.

Holonomy

Question. Which subgroups of $S O_{e}(p, q)$ can arise as $\operatorname{Hol}(M, g)$?
Say that $G \subset S O_{e}(p, q)$ is irreducible if its action on \mathbb{R}^{n} has no nontrivial invariant subspaces.

In 1953 Berger derived list of irreducible subgroups for each p, q, n.

Holonomy

Question. Which subgroups of $S O_{e}(p, q)$ can arise as $\operatorname{Hol}(M, g)$?
Say that $G \subset S O_{e}(p, q)$ is irreducible if its action on \mathbb{R}^{n} has no nontrivial invariant subspaces.
In 1953 Berger derived list of irreducible subgroups for each p, q, n.
Every irreducible subgroup of $S O_{e}(p, q)$ which arises as $\operatorname{Hol}(M, g)$ for some non-symmetric (M, g) is on the list.

Holonomy

Question. Which subgroups of $S O_{e}(p, q)$ can arise as $\operatorname{Hol}(M, g)$?
Say that $G \subset S O_{e}(p, q)$ is irreducible if its action on \mathbb{R}^{n} has no nontrivial invariant subspaces.
In 1953 Berger derived list of irreducible subgroups for each p, q, n.
Every irreducible subgroup of $S O_{e}(p, q)$ which arises as $\operatorname{Hol}(M, g)$ for some non-symmetric (M, g) is on the list.

Question becomes: Does every group on Berger's list arise as a holonomy group?

Holonomy

Question. Which subgroups of $S O_{e}(p, q)$ can arise as $\operatorname{Hol}(M, g)$?
Say that $G \subset S O_{e}(p, q)$ is irreducible if its action on \mathbb{R}^{n} has no nontrivial invariant subspaces.
In 1953 Berger derived list of irreducible subgroups for each p, q, n.
Every irreducible subgroup of $S O_{e}(p, q)$ which arises as $\operatorname{Hol}(M, g)$ for some non-symmetric (M, g) is on the list.

Question becomes: Does every group on Berger's list arise as a holonomy group?

For many, but not all, groups on the list, examples were known of (M, g) with that holonomy.

Holonomy

Other than $S O_{e}(p, q)$, every group on Berger's list occurs for n even, with two exceptions.

Holonomy

Other than $S O_{e}(p, q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for $n=7$.

Holonomy

Other than $S O_{e}(p, q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for $n=7$.
They are the two real forms of G_{2} :
$G_{2}^{c} \subset S O(7)$ and $G_{2}^{s} \subset S O(3,4)$.

Holonomy

Other than $S O_{e}(p, q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for $n=7$.
They are the two real forms of G_{2} :

$$
G_{2}^{c} \subset S O(7) \text { and } G_{2}^{s} \subset S O(3,4)
$$

The existence question for these groups remained open until 1987.

Holonomy

Other than $S O_{e}(p, q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for $n=7$.
They are the two real forms of G_{2} :

$$
G_{2}^{c} \subset S O(7) \text { and } G_{2}^{s} \subset S O(3,4)
$$

The existence question for these groups remained open until 1987.

Theorem. (R. Bryant, 1987) There exist metrics of holonomy equal to G_{2}^{c} and G_{2}^{s}.

Holonomy

Other than $S O_{e}(p, q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for $n=7$.
They are the two real forms of G_{2} :
$G_{2}^{c} \subset S O(7)$ and $G_{2}^{s} \subset S O(3,4)$.
The existence question for these groups remained open until 1987.

Theorem. (R. Bryant, 1987) There exist metrics of holonomy equal to G_{2}^{c} and G_{2}^{s}.

More such metrics are known now, but they are not easy to come by. New examples are of interest.

Holonomy

Other than $S O_{e}(p, q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for $n=7$.
They are the two real forms of G_{2} :
$G_{2}^{c} \subset S O(7)$ and $G_{2}^{s} \subset S O(3,4)$.
The existence question for these groups remained open until 1987.

Theorem. (R. Bryant, 1987) There exist metrics of holonomy equal to G_{2}^{c} and G_{2}^{s}.

More such metrics are known now, but they are not easy to come by. New examples are of interest.

Manifolds of holonomy G_{2}^{c} arise in M-theory as an analogue of Calabi-Yau manifolds.
G_{2}
Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *}$.
G_{2}
Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *}$. Define $\langle\cdot, \cdot\rangle_{\varphi}$ by

$$
(X\lrcorner \varphi) \wedge(Y\lrcorner \varphi) \wedge \varphi=\langle X, Y\rangle_{\varphi} e_{1}^{*} \wedge \ldots \wedge e_{7}^{*}
$$

G_{2}

Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *}$. Define $\langle\cdot, \cdot\rangle_{\varphi}$ by

$$
(X\lrcorner \varphi) \wedge(Y\lrcorner \varphi) \wedge \varphi=\langle X, Y\rangle_{\varphi} e_{1}^{*} \wedge \ldots \wedge e_{7}^{*}
$$

Definition. φ is nondegenerate if $\langle X, Y\rangle_{\varphi}$ is nondegenerate.

Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *}$. Define $\langle\cdot, \cdot\rangle_{\varphi}$ by

$$
(X\lrcorner \varphi) \wedge(Y\lrcorner \varphi) \wedge \varphi=\langle X, Y\rangle_{\varphi} e_{1}^{*} \wedge \ldots \wedge e_{7}^{*}
$$

Definition. φ is nondegenerate if $\langle X, Y\rangle_{\varphi}$ is nondegenerate.
Theorem. φ nondegenerate \Longrightarrow

$$
\pm\langle\cdot, \cdot\rangle_{\varphi} \text { has signature }(7,0) \text { or }(3,4) .
$$

Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *}$. Define $\langle\cdot, \cdot\rangle_{\varphi}$ by

$$
(X\lrcorner \varphi) \wedge(Y\lrcorner \varphi) \wedge \varphi=\langle X, Y\rangle_{\varphi} e_{1}^{*} \wedge \ldots \wedge e_{7}^{*}
$$

Definition. φ is nondegenerate if $\langle X, Y\rangle_{\varphi}$ is nondegenerate.
Theorem. φ nondegenerate \Longrightarrow

$$
\pm\langle\cdot, \cdot\rangle_{\varphi} \text { has signature }(7,0) \text { or }(3,4)
$$

Say φ is compact type if $(7,0)$

Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *}$. Define $\langle\cdot, \cdot\rangle_{\varphi}$ by

$$
(X\lrcorner \varphi) \wedge(Y\lrcorner \varphi) \wedge \varphi=\langle X, Y\rangle_{\varphi} e_{1}^{*} \wedge \ldots \wedge e_{7}^{*}
$$

Definition. φ is nondegenerate if $\langle X, Y\rangle_{\varphi}$ is nondegenerate.
Theorem. φ nondegenerate \Longrightarrow

$$
\pm\langle\cdot, \cdot\rangle_{\varphi} \text { has signature }(7,0) \text { or }(3,4)
$$

Say φ is compact type if $(7,0)\left(\varphi^{c}\right)$,

Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *}$. Define $\langle\cdot, \cdot\rangle_{\varphi}$ by

$$
(X\lrcorner \varphi) \wedge(Y\lrcorner \varphi) \wedge \varphi=\langle X, Y\rangle_{\varphi} e_{1}^{*} \wedge \ldots \wedge e_{7}^{*}
$$

Definition. φ is nondegenerate if $\langle X, Y\rangle_{\varphi}$ is nondegenerate.
Theorem. φ nondegenerate \Longrightarrow

$$
\pm\langle\cdot, \cdot\rangle_{\varphi} \text { has signature }(7,0) \text { or }(3,4) .
$$

Say φ is compact type if $(7,0)\left(\varphi^{c}\right), \varphi$ split type if $(3,4)$

Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *}$. Define $\langle\cdot, \cdot\rangle_{\varphi}$ by

$$
(X\lrcorner \varphi) \wedge(Y\lrcorner \varphi) \wedge \varphi=\langle X, Y\rangle_{\varphi} e_{1}^{*} \wedge \ldots \wedge e_{7}^{*}
$$

Definition. φ is nondegenerate if $\langle X, Y\rangle_{\varphi}$ is nondegenerate.
Theorem. φ nondegenerate \Longrightarrow

$$
\pm\langle\cdot, \cdot\rangle_{\varphi} \text { has signature }(7,0) \text { or }(3,4)
$$

Say φ is compact type if $(7,0)\left(\varphi^{c}\right), \varphi$ split type if $(3,4)\left(\varphi^{s}\right)$.

Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *}$. Define $\langle\cdot, \cdot\rangle_{\varphi}$ by

$$
(X\lrcorner \varphi) \wedge(Y\lrcorner \varphi) \wedge \varphi=\langle X, Y\rangle_{\varphi} e_{1}^{*} \wedge \ldots \wedge e_{7}^{*}
$$

Definition. φ is nondegenerate if $\langle X, Y\rangle_{\varphi}$ is nondegenerate.
Theorem. φ nondegenerate \Longrightarrow

$$
\pm\langle\cdot, \cdot\rangle_{\varphi} \text { has signature }(7,0) \text { or }(3,4)
$$

Say φ is compact type if $(7,0)\left(\varphi^{c}\right), \varphi$ split type if $(3,4)\left(\varphi^{s}\right)$.
Fact. φ^{c} and φ^{s} are unique up to $G L(7, \mathbb{R})$.

Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *} . \quad$ Define $\langle\cdot, \cdot\rangle_{\varphi}$ by

$$
(X\lrcorner \varphi) \wedge(Y\lrcorner \varphi) \wedge \varphi=\langle X, Y\rangle_{\varphi} e_{1}^{*} \wedge \ldots \wedge e_{7}^{*}
$$

Definition. φ is nondegenerate if $\langle X, Y\rangle_{\varphi}$ is nondegenerate.
Theorem. φ nondegenerate \Longrightarrow

$$
\pm\langle\cdot, \cdot\rangle_{\varphi} \text { has signature }(7,0) \text { or }(3,4)
$$

Say φ is compact type if $(7,0)\left(\varphi^{c}\right), \varphi$ split type if $(3,4)\left(\varphi^{s}\right)$.
Fact. φ^{c} and φ^{s} are unique up to $G L(7, \mathbb{R})$.
Definition. $G_{2}^{c}=\left\{A \in G L(7, \mathbb{R}): A^{*} \varphi^{c}=\varphi^{c}\right\} \subset S O(7)$

$$
G_{2}^{s}=\left\{A \in G L(7, \mathbb{R}): A^{*} \varphi^{s}=\varphi^{s}\right\} \subset S O(3,4)
$$

Let $\varphi \in \Lambda^{3} \mathbb{R}^{7 *} . \quad$ Define $\langle\cdot, \cdot\rangle_{\varphi}$ by

$$
(X\lrcorner \varphi) \wedge(Y\lrcorner \varphi) \wedge \varphi=\langle X, Y\rangle_{\varphi} e_{1}^{*} \wedge \ldots \wedge e_{7}^{*}
$$

Definition. φ is nondegenerate if $\langle X, Y\rangle_{\varphi}$ is nondegenerate.
Theorem. φ nondegenerate \Longrightarrow

$$
\pm\langle\cdot, \cdot\rangle_{\varphi} \text { has signature }(7,0) \text { or }(3,4)
$$

Say φ is compact type if $(7,0)\left(\varphi^{c}\right), \varphi$ split type if $(3,4)\left(\varphi^{s}\right)$.
Fact. φ^{c} and φ^{s} are unique up to $G L(7, \mathbb{R})$.
Definition. $G_{2}^{c}=\left\{A \in G L(7, \mathbb{R}): A^{*} \varphi^{c}=\varphi^{c}\right\} \subset S O(7)$

$$
G_{2}^{s}=\left\{A \in G L(7, \mathbb{R}): A^{*} \varphi^{s}=\varphi^{s}\right\} \subset S O(3,4)
$$

From now on, $G_{2}=G_{2}^{s}$.

2-plane Fields in Dimension 5

2-plane Fields in Dimension 5

Let $\mathcal{D} \subset T M^{5}, \operatorname{dim} \mathcal{D}_{x}=2$.

2-plane Fields in Dimension 5

Let $\mathcal{D} \subset T M^{5}, \operatorname{dim} \mathcal{D}_{x}=2 . \quad X, Y$ local frame.

2-plane Fields in Dimension 5

Let $\mathcal{D} \subset T M^{5}, \operatorname{dim} \mathcal{D}_{x}=2 . \quad X, Y$ local frame. \quad Set $Z=[X, Y]$.

2-plane Fields in Dimension 5

Let $\mathcal{D} \subset T M^{5}, \operatorname{dim} \mathcal{D}_{X}=2 . \quad X, Y$ local frame. Set $Z=[X, Y]$.
Definition. \mathcal{D} is generic if $X, Y, Z,[X, Z],[Y, Z]$ are everywhere linearly independent.

2-plane Fields in Dimension 5

Let $\mathcal{D} \subset T M^{5}, \operatorname{dim} \mathcal{D}_{x}=2 . \quad X, Y$ local frame. Set $Z=[X, Y]$.
Definition. \mathcal{D} is generic if $X, Y, Z,[X, Z],[Y, Z]$ are everywhere linearly independent.
E. Cartan (1910) solved the equivalence problem for such \mathcal{D}.

Constructed a principal bundle and Cartan connection.

2-plane Fields in Dimension 5

Let $\mathcal{D} \subset T M^{5}, \operatorname{dim} \mathcal{D}_{x}=2 . \quad X, Y$ local frame. Set $Z=[X, Y]$.
Definition. \mathcal{D} is generic if $X, Y, Z,[X, Z],[Y, Z]$ are everywhere linearly independent.
E. Cartan (1910) solved the equivalence problem for such \mathcal{D}.

Constructed a principal bundle and Cartan connection.
The model is $G_{2} / P \cong S^{2} \times S^{3}, P \subset G_{2}$ parabolic subgroup.

2-plane Fields in Dimension 5

Let $\mathcal{D} \subset T M^{5}, \operatorname{dim} \mathcal{D}_{x}=2 . \quad X, Y$ local frame. Set $Z=[X, Y]$.
Definition. \mathcal{D} is generic if $X, Y, Z,[X, Z],[Y, Z]$ are everywhere linearly independent.
E. Cartan (1910) solved the equivalence problem for such \mathcal{D}.

Constructed a principal bundle and Cartan connection.
The model is $G_{2} / P \cong S^{2} \times S^{3}, P \subset G_{2}$ parabolic subgroup.
So G_{2} acts on $S^{2} \times S^{3}$ preserving the model $\mathcal{D} \subset T\left(S^{2} \times S^{3}\right)$.

2-plane Fields in Dimension 5

Let $\mathcal{D} \subset T M^{5}, \operatorname{dim} \mathcal{D}_{x}=2 . \quad X, Y$ local frame. Set $Z=[X, Y]$.
Definition. \mathcal{D} is generic if $X, Y, Z,[X, Z],[Y, Z]$ are everywhere linearly independent.
E. Cartan (1910) solved the equivalence problem for such \mathcal{D}. Constructed a principal bundle and Cartan connection.

The model is $G_{2} / P \cong S^{2} \times S^{3}, P \subset G_{2}$ parabolic subgroup.
So G_{2} acts on $S^{2} \times S^{3}$ preserving the model $\mathcal{D} \subset T\left(S^{2} \times S^{3}\right)$.
The model $\mathcal{D} \subset T\left(S^{2} \times S^{3}\right)$ can be defined algebraically using the algebraic structure of the imaginary split octonians,

2-plane Fields in Dimension 5

Let $\mathcal{D} \subset T M^{5}, \operatorname{dim} \mathcal{D}_{X}=2 . \quad X, Y$ local frame. Set $Z=[X, Y]$.
Definition. \mathcal{D} is generic if $X, Y, Z,[X, Z],[Y, Z]$ are everywhere linearly independent.
E. Cartan (1910) solved the equivalence problem for such \mathcal{D}. Constructed a principal bundle and Cartan connection.

The model is $G_{2} / P \cong S^{2} \times S^{3}, P \subset G_{2}$ parabolic subgroup.
So G_{2} acts on $S^{2} \times S^{3}$ preserving the model $\mathcal{D} \subset T\left(S^{2} \times S^{3}\right)$.
The model $\mathcal{D} \subset T\left(S^{2} \times S^{3}\right)$ can be defined algebraically using the algebraic structure of the imaginary split octonians,
or as a nonholonomic constraint in a classical mechanical system.

Rolling Balls

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions.

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^{2} \times S O(3)$.

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^{2} \times S O(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T \mathcal{C}$.

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^{2} \times S O(3)$.
The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T \mathcal{C}$.
If $r_{1}=r_{2}$, then \mathcal{D} is integrable.

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^{2} \times S O(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T \mathcal{C}$.
If $r_{1}=r_{2}$, then \mathcal{D} is integrable. Otherwise \mathcal{D} is generic.

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^{2} \times S O(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T \mathcal{C}$.
If $r_{1}=r_{2}$, then \mathcal{D} is integrable. Otherwise \mathcal{D} is generic.
The group of local diffeomorphisms of $S^{2} \times S O(3)$ preserving \mathcal{D} contains $S O(3) \times S O(3)$

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^{2} \times S O(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T \mathcal{C}$.
If $r_{1}=r_{2}$, then \mathcal{D} is integrable. Otherwise \mathcal{D} is generic.
The group of local diffeomorphisms of $S^{2} \times S O(3)$ preserving \mathcal{D} contains $S O(3) \times S O(3)$ with equality if $\left(r_{1} / r_{2}\right)^{ \pm 1} \neq \sqrt{3}$.

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^{2} \times S O(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T \mathcal{C}$.
If $r_{1}=r_{2}$, then \mathcal{D} is integrable. Otherwise \mathcal{D} is generic.
The group of local diffeomorphisms of $S^{2} \times S O(3)$ preserving \mathcal{D} contains $S O(3) \times S O(3)$ with equality if $\left(r_{1} / r_{2}\right)^{ \pm 1} \neq \sqrt{3}$.

But if $r_{1} / r_{2}=\sqrt{3}$, this local symmetry group is G_{2}.

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions.
The configuration space is then $\mathcal{C}=S^{2} \times S O(3)$.
The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T \mathcal{C}$.
If $r_{1}=r_{2}$, then \mathcal{D} is integrable. Otherwise \mathcal{D} is generic.
The group of local diffeomorphisms of $S^{2} \times S O(3)$ preserving \mathcal{D} contains $S O(3) \times S O(3)$ with equality if $\left(r_{1} / r_{2}\right)^{ \pm 1} \neq \sqrt{3}$.

But if $r_{1} / r_{2}=\sqrt{3}$, this local symmetry group is G_{2}. Lift \mathcal{D} via the double cover $S^{2} \times S^{3} \rightarrow S^{2} \times S O(3)$.

Rolling Balls

Consider 2 balls in \mathbb{R}^{3} of radii r_{1}, r_{2} rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions.
The configuration space is then $\mathcal{C}=S^{2} \times S O(3)$.
The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T \mathcal{C}$.
If $r_{1}=r_{2}$, then \mathcal{D} is integrable. Otherwise \mathcal{D} is generic.
The group of local diffeomorphisms of $S^{2} \times S O(3)$ preserving \mathcal{D} contains $S O(3) \times S O(3)$ with equality if $\left(r_{1} / r_{2}\right)^{ \pm 1} \neq \sqrt{3}$.

But if $r_{1} / r_{2}=\sqrt{3}$, this local symmetry group is G_{2}. Lift \mathcal{D} via the double cover $S^{2} \times S^{3} \rightarrow S^{2} \times S O(3)$.
This gives the model $\mathcal{D} \subset T\left(S^{2} \times S^{3}\right)$.

Conformal Group

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$?

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$ and null cone $\mathcal{N}=\left\{|x|^{2}=|y|^{2}\right\}$.

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$ and null cone $\mathcal{N}=\left\{|x|^{2}=|y|^{2}\right\}$.
Then $\mathcal{N} / \mathbb{R}_{+}=\left\{|x|^{2}=|y|^{2}=1\right\}=S^{p} \times S^{q}$.

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$ and null cone $\mathcal{N}=\left\{|x|^{2}=|y|^{2}\right\}$.
Then $\mathcal{N} / \mathbb{R}_{+}=\left\{|x|^{2}=|y|^{2}=1\right\}=S^{p} \times S^{q}$.
$S O(p+1, q+1)$ acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N};

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$ and null cone $\mathcal{N}=\left\{|x|^{2}=|y|^{2}\right\}$.
Then $\mathcal{N} / \mathbb{R}_{+}=\left\{|x|^{2}=|y|^{2}=1\right\}=S^{p} \times S^{q}$.
$S O(p+1, q+1)$ acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N}; this induces an action on $S^{p} \times S^{q}$.

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$ and null cone $\mathcal{N}=\left\{|x|^{2}=|y|^{2}\right\}$.
Then $\mathcal{N} / \mathbb{R}_{+}=\left\{|x|^{2}=|y|^{2}=1\right\}=S^{p} \times S^{q}$.
$S O(p+1, q+1)$ acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N}; this induces an action on $S^{p} \times S^{q}$.

This action preserves the (p, q) metric $g_{S^{p}}-g_{S q}$ up to scale and realizes $S O(p+1, q+1)$ as the conformal group of $S^{p} \times S^{q}$.

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$ and null cone $\mathcal{N}=\left\{|x|^{2}=|y|^{2}\right\}$.
Then $\mathcal{N} / \mathbb{R}_{+}=\left\{|x|^{2}=|y|^{2}=1\right\}=S^{p} \times S^{q}$.
$S O(p+1, q+1)$ acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N}; this induces an action on $S^{p} \times S^{q}$.

This action preserves the (p, q) metric $g_{S^{p}}-g_{S q}$ up to scale and realizes $S O(p+1, q+1)$ as the conformal group of $S^{p} \times S^{q}$.

Now recall $G_{2} \subset S O(3,4)$

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$ and null cone $\mathcal{N}=\left\{|x|^{2}=|y|^{2}\right\}$.
Then $\mathcal{N} / \mathbb{R}_{+}=\left\{|x|^{2}=|y|^{2}=1\right\}=S^{p} \times S^{q}$.
$S O(p+1, q+1)$ acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N}; this induces an action on $S^{p} \times S^{q}$.

This action preserves the (p, q) metric $g_{S^{p}}-g_{S q}$ up to scale and realizes $S O(p+1, q+1)$ as the conformal group of $S^{p} \times S^{q}$.

Now recall $G_{2} \subset S O(3,4)=$ conformal group of $S^{2} \times S^{3}$.

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$ and null cone $\mathcal{N}=\left\{|x|^{2}=|y|^{2}\right\}$.
Then $\mathcal{N} / \mathbb{R}_{+}=\left\{|x|^{2}=|y|^{2}=1\right\}=S^{p} \times S^{q}$.
$S O(p+1, q+1)$ acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N}; this induces an action on $S^{p} \times S^{q}$.

This action preserves the (p, q) metric $g_{S^{p}}-g_{S q}$ up to scale and realizes $S O(p+1, q+1)$ as the conformal group of $S^{p} \times S^{q}$.

Now recall $G_{2} \subset S O(3,4)=$ conformal group of $S^{2} \times S^{3}$.
This conformal action of G_{2} is the action preserving \mathcal{D}.

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$ and null cone $\mathcal{N}=\left\{|x|^{2}=|y|^{2}\right\}$.
Then $\mathcal{N} / \mathbb{R}_{+}=\left\{|x|^{2}=|y|^{2}=1\right\}=S^{p} \times S^{q}$.
$S O(p+1, q+1)$ acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N}; this induces an action on $S^{p} \times S^{q}$.

This action preserves the (p, q) metric $g_{S^{p}}-g_{S^{q}}$ up to scale and realizes $S O(p+1, q+1)$ as the conformal group of $S^{p} \times S^{q}$.

Now recall $G_{2} \subset S O(3,4)=$ conformal group of $S^{2} \times S^{3}$.
This conformal action of G_{2} is the action preserving \mathcal{D}.
So any diffeomorphism preserving \mathcal{D} also preserves the $(2,3)$ conformal structure on $S^{2} \times S^{3}$!

Conformal Group

How does G_{2} act on $S^{2} \times S^{3}$? By conformal transformations!
Consider $\mathbb{R}^{p+q+2}=\left\{(x, y): x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\right\}$ with quadratic form $|x|^{2}-|y|^{2}$ and null cone $\mathcal{N}=\left\{|x|^{2}=|y|^{2}\right\}$.
Then $\mathcal{N} / \mathbb{R}_{+}=\left\{|x|^{2}=|y|^{2}=1\right\}=S^{p} \times S^{q}$.
$S O(p+1, q+1)$ acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N}; this induces an action on $S^{p} \times S^{q}$.

This action preserves the (p, q) metric $g_{S^{p}}-g_{S^{q}}$ up to scale and realizes $S O(p+1, q+1)$ as the conformal group of $S^{p} \times S^{q}$.

Now recall $G_{2} \subset S O(3,4)=$ conformal group of $S^{2} \times S^{3}$.
This conformal action of G_{2} is the action preserving \mathcal{D}.
So any diffeomorphism preserving \mathcal{D} also preserves the $(2,3)$ conformal structure on $S^{2} \times S^{3}$! True locally too.

Nurowski's Conformal Structures

Nurowski's Conformal Structures

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset T M^{5}$ generic. There is a conformal class $[g]$ on M of signature $(2,3)$ associated to \mathcal{D}.

Nurowski's Conformal Structures

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset T M^{5}$ generic. There is a conformal class $[g]$ on M of signature $(2,3)$ associated to \mathcal{D}.

Follows immediately from the existence of the Cartan connection.

Nurowski's Conformal Structures

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset T M^{5}$ generic. There is a conformal class $[g]$ on M of signature $(2,3)$ associated to \mathcal{D}.

Follows immediately from the existence of the Cartan connection.
For any \mathcal{D}, can choose local coordinates (x, y, z, p, q) on M so that

$$
\mathcal{D}=\operatorname{span}\left\{\partial_{q}, \partial_{x}+p \partial_{y}+q \partial_{p}+F \partial_{z}\right\}
$$

where $F=F(x, y, z, p, q)$ and $F_{q q}$ is nonvanishing.

Nurowski's Conformal Structures

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset T M^{5}$ generic. There is a conformal class $[g]$ on M of signature $(2,3)$ associated to \mathcal{D}.

Follows immediately from the existence of the Cartan connection.
For any \mathcal{D}, can choose local coordinates (x, y, z, p, q) on M so that

$$
\mathcal{D}=\operatorname{span}\left\{\partial_{q}, \partial_{x}+p \partial_{y}+q \partial_{p}+F \partial_{z}\right\}
$$

where $F=F(x, y, z, p, q)$ and $F_{q q}$ is nonvanishing.
$F=q^{2}$ for the model.

Nurowski's Conformal Structures

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset T M^{5}$ generic. There is a conformal class $[g]$ on M of signature $(2,3)$ associated to \mathcal{D}.

Follows immediately from the existence of the Cartan connection.
For any \mathcal{D}, can choose local coordinates (x, y, z, p, q) on M so that

$$
\mathcal{D}=\operatorname{span}\left\{\partial_{q}, \partial_{x}+p \partial_{y}+q \partial_{p}+F \partial_{z}\right\}
$$

where $F=F(x, y, z, p, q)$ and $F_{q q}$ is nonvanishing.
$F=q^{2}$ for the model.
Nurowski gives a formula for g in terms of F and its derivatives of orders ≤ 4.

Nurowski's Conformal Structures

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset T M^{5}$ generic. There is a conformal class $[g]$ on M of signature $(2,3)$ associated to \mathcal{D}.

Follows immediately from the existence of the Cartan connection.
For any \mathcal{D}, can choose local coordinates (x, y, z, p, q) on M so that

$$
\mathcal{D}=\operatorname{span}\left\{\partial_{q}, \partial_{x}+p \partial_{y}+q \partial_{p}+F \partial_{z}\right\}
$$

where $F=F(x, y, z, p, q)$ and $F_{q q}$ is nonvanishing.
$F=q^{2}$ for the model.
Nurowski gives a formula for g in terms of F and its derivatives of orders ≤ 4.

Approximately 70 terms. Very nasty.

Ambient Metric

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$.

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Conformally flat case: for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$,

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Conformally flat case: for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$, Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Conformally flat case: for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$, Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,
$\mathcal{G}=\mathcal{N}=$ null cone of $|x|^{2}-|y|^{2}$

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Conformally flat case: for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$, Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$, $\mathcal{G}=\mathcal{N}=$ null cone of $|x|^{2}-|y|^{2}$
The ambient metric is the flat metric $\tilde{g}=|d x|^{2}-|d y|^{2}$.

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Conformally flat case: for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$, Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$, $\mathcal{G}=\mathcal{N}=$ null cone of $|x|^{2}-|y|^{2}$
The ambient metric is the flat metric $\tilde{g}=|d x|^{2}-|d y|^{2}$.
General case:

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Conformally flat case: for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$, Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$, $\mathcal{G}=\mathcal{N}=$ null cone of $|x|^{2}-|y|^{2}$
The ambient metric is the flat metric $\tilde{g}=|d x|^{2}-|d y|^{2}$.
General case:
Let $\mathcal{G}=\left\{\left(x, g_{x}\right): x \in M, g \in[g]\right\} \subset S^{2} T^{*} M$. Metric bundle.

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Conformally flat case: for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$, Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$, $\mathcal{G}=\mathcal{N}=$ null cone of $|x|^{2}-|y|^{2}$
The ambient metric is the flat metric $\widetilde{g}=|d x|^{2}-|d y|^{2}$.
General case:
Let $\mathcal{G}=\left\{\left(x, g_{x}\right): x \in M, g \in[g]\right\} \subset S^{2} T^{*} M$. Metric bundle.
Dilations $\delta_{s}: \mathcal{G} \rightarrow \mathcal{G}$

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Conformally flat case: for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$, Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$, $\mathcal{G}=\mathcal{N}=$ null cone of $|x|^{2}-|y|^{2}$
The ambient metric is the flat metric $\widetilde{g}=|d x|^{2}-|d y|^{2}$.
General case:
Let $\mathcal{G}=\left\{\left(x, g_{x}\right): x \in M, g \in[g]\right\} \subset S^{2} T^{*} M$. Metric bundle.
Dilations $\delta_{s}: \mathcal{G} \rightarrow \mathcal{G} \quad \delta_{s}\left(x, g_{x}\right)=\left(x, s^{2} g_{x}\right)$

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Conformally flat case: for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$, Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$, $\mathcal{G}=\mathcal{N}=$ null cone of $|x|^{2}-|y|^{2}$
The ambient metric is the flat metric $\tilde{g}=|d x|^{2}-|d y|^{2}$.
General case:
Let $\mathcal{G}=\left\{\left(x, g_{x}\right): x \in M, g \in[g]\right\} \subset S^{2} T^{*} M$. Metric bundle.
Dilations $\delta_{s}: \mathcal{G} \rightarrow \mathcal{G} \quad \delta_{s}\left(x, g_{x}\right)=\left(x, s^{2} g_{x}\right)$
Set $\widetilde{\mathcal{G}}=\mathcal{G} \times(-1,1)$.

Ambient Metric

Given conformal manifold $(M,[g])$ of signature $(p, q), p+q=n$. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension $n+2$ with an embedded hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Conformally flat case: for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$,
Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,
$\mathcal{G}=\mathcal{N}=$ null cone of $|x|^{2}-|y|^{2}$
The ambient metric is the flat metric $\widetilde{g}=|d x|^{2}-|d y|^{2}$.
General case:
Let $\mathcal{G}=\left\{\left(x, g_{x}\right): x \in M, g \in[g]\right\} \subset S^{2} T^{*} M$. Metric bundle.
Dilations $\delta_{s}: \mathcal{G} \rightarrow \mathcal{G} \quad \delta_{s}\left(x, g_{x}\right)=\left(x, s^{2} g_{x}\right)$
Set $\widetilde{\mathcal{G}}=\mathcal{G} \times(-1,1) . \quad$ Inclusion: $\quad \iota: \mathcal{G} \rightarrow \widetilde{\mathcal{G}}, \quad \iota(z)=(z, 0)$.

Ambient Metric

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$.

Ambient Metric

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$. Required to satisfy:

Ambient Metric

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$. Required to satisfy:

- $\delta_{s}^{*} \widetilde{g}=s^{2} \widetilde{g} \quad$ Homogeneous

Ambient Metric

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$. Required to satisfy:

- $\delta_{s}^{*} \widetilde{g}=s^{2} \widetilde{g} \quad$ Homogeneous
- Initial condition on \mathcal{G} determined by the conformal structure

Ambient Metric

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$. Required to satisfy:

- $\delta_{s}^{*} \widetilde{g}=s^{2} \widetilde{g} \quad$ Homogeneous
- Initial condition on \mathcal{G} determined by the conformal structure
- $\operatorname{Ric}(\widetilde{g})=0 \quad$ to infinite order on \mathcal{G}.

Ambient Metric

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$. Required to satisfy:

- $\delta_{s}^{*} \widetilde{g}=s^{2} \widetilde{g} \quad$ Homogeneous
- Initial condition on \mathcal{G} determined by the conformal structure
- $\operatorname{Ric}(\widetilde{g})=0 \quad$ to infinite order on \mathcal{G}.

Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \tilde{g}, unique to infinite order up to diffeomorphism.

Ambient Metric

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$. Required to satisfy:

- $\delta_{s}^{*} \widetilde{g}=s^{2} \widetilde{g} \quad$ Homogeneous
- Initial condition on \mathcal{G} determined by the conformal structure
- $\operatorname{Ric}(\widetilde{g})=0 \quad$ to infinite order on \mathcal{G}.

Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \tilde{g}, unique to infinite order up to diffeomorphism.

If (M, g) is real-analytic, then series for \widetilde{g} converges.

Ambient Metric

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature $(p+1, q+1)$. Required to satisfy:

- $\delta_{s}^{*} \widetilde{g}=s^{2} \widetilde{g} \quad$ Homogeneous
- Initial condition on \mathcal{G} determined by the conformal structure
- $\operatorname{Ric}(\widetilde{g})=0 \quad$ to infinite order on \mathcal{G}.

Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \widetilde{g}, unique to infinite order up to diffeomorphism.

If (M, g) is real-analytic, then series for \widetilde{g} converges.

If n is even, there is a formal obstruction at order $n / 2$.

Leistner-Nurowski Holonomy Result

Leistner-Nurowski Holonomy Result

Put these together:

$$
\mathcal{D} \subset T M^{5} \xrightarrow{\text { Nurowski }}(M,[g]) \quad \xrightarrow{\text { Ambientmetric }}\left(\widetilde{\mathcal{G}}^{7}, \widetilde{g}\right)
$$

Leistner-Nurowski Holonomy Result

Put these together:

$$
\mathcal{D} \subset T M^{5} \xrightarrow{\text { Nurowski }} \quad(M,[g]) \quad \xrightarrow{\text { Ambientmetric }} \quad\left(\widetilde{\mathcal{G}}^{7}, \widetilde{g}\right)
$$

Produces a metric \widetilde{g} of signature $(3,4)$ from \mathcal{D}.

Leistner-Nurowski Holonomy Result

Put these together:

$$
\mathcal{D} \subset T M^{5} \xrightarrow{\text { Nurowski }}(M,[g]) \xrightarrow{\text { Ambientmetric }}\left(\widetilde{\mathcal{G}}^{7}, \widetilde{g}\right)
$$

Produces a metric \widetilde{g} of signature $(3,4)$ from \mathcal{D}.
Nurowski (2007). Consider $\mathcal{D} \subset T \mathbb{R}^{5}$ given by

$$
F=q^{2}+\sum_{k=0}^{6} a_{k} p^{k}+b z, \quad a_{k}, b \in \mathbb{R}
$$

Leistner-Nurowski Holonomy Result

Put these together:

$$
\mathcal{D} \subset T M^{5} \xrightarrow{\text { Nurowski }}(M,[g]) \xrightarrow{\text { Ambientmetric }}\left(\widetilde{\mathcal{G}}^{7}, \widetilde{g}\right)
$$

Produces a metric \widetilde{g} of signature $(3,4)$ from \mathcal{D}.
Nurowski (2007). Consider $\mathcal{D} \subset T \mathbb{R}^{5}$ given by

$$
F=q^{2}+\sum_{k=0}^{6} a_{k} p^{k}+b z, \quad a_{k}, b \in \mathbb{R}
$$

Then can write \widetilde{g} explicitly.

Leistner-Nurowski Holonomy Result

Put these together:

$$
\mathcal{D} \subset T M^{5} \xrightarrow{\text { Nurowski }}(M,[g]) \xrightarrow{\text { Ambientmetric }}\left(\widetilde{\mathcal{G}}^{7}, \widetilde{g}\right)
$$

Produces a metric \widetilde{g} of signature $(3,4)$ from \mathcal{D}.
Nurowski (2007). Consider $\mathcal{D} \subset T \mathbb{R}^{5}$ given by

$$
F=q^{2}+\sum_{k=0}^{6} a_{k} p^{k}+b z, \quad a_{k}, b \in \mathbb{R}
$$

Then can write \widetilde{g} explicitly. Expansion terminates at order 2.

Leistner-Nurowski Holonomy Result

Put these together:

$$
\mathcal{D} \subset T M^{5} \xrightarrow{\text { Nurowski }}(M,[g]) \xrightarrow{\text { Ambientmetric }}\left(\widetilde{\mathcal{G}}^{7}, \widetilde{g}\right)
$$

Produces a metric \widetilde{g} of signature $(3,4)$ from \mathcal{D}.
Nurowski (2007). Consider $\mathcal{D} \subset T \mathbb{R}^{5}$ given by

$$
F=q^{2}+\sum_{k=0}^{6} a_{k} p^{k}+b z, \quad a_{k}, b \in \mathbb{R}
$$

Then can write \widetilde{g} explicitly. Expansion terminates at order 2.

Theorem. (Leistner-Nurowski, 2009) F as above.

- For all a_{k}, b, have $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$

Leistner-Nurowski Holonomy Result

Put these together:

$$
\mathcal{D} \subset T M^{5} \xrightarrow{\text { Nurowski }}(M,[g]) \xrightarrow{\text { Ambientmetric }}\left(\widetilde{\mathcal{G}}^{7}, \widetilde{g}\right)
$$

Produces a metric \widetilde{g} of signature $(3,4)$ from \mathcal{D}.
Nurowski (2007). Consider $\mathcal{D} \subset T \mathbb{R}^{5}$ given by

$$
F=q^{2}+\sum_{k=0}^{6} a_{k} p^{k}+b z, \quad a_{k}, b \in \mathbb{R}
$$

Then can write \widetilde{g} explicitly. Expansion terminates at order 2.

Theorem. (Leistner-Nurowski, 2009) F as above.

- For all a_{k}, b, have $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$
- If one of $a_{3}, a_{4}, a_{5}, a_{6} \neq 0$, then $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$.

Leistner-Nurowski Holonomy Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_{2}.

Leistner-Nurowski Holonomy Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_{2}.

To show a metric in dimension 7 has holonomy $\subset G_{2}$, need to construct a parallel 3 -form φ compatible with the metric.

Leistner-Nurowski Holonomy Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_{2}.

To show a metric in dimension 7 has holonomy $\subset G_{2}$, need to construct a parallel 3 -form φ compatible with the metric.

For model \mathcal{D} on $S^{2} \times S^{3}=G_{2} / P$, have

Leistner-Nurowski Holonomy Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_{2}.

To show a metric in dimension 7 has holonomy $\subset G_{2}$, need to construct a parallel 3 -form φ compatible with the metric.

For model \mathcal{D} on $S^{2} \times S^{3}=G_{2} / P$, have
$\widetilde{g}=$ flat metric of signature $(3,4)$ on \mathbb{R}^{7}.

Leistner-Nurowski Holonomy Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_{2}.

To show a metric in dimension 7 has holonomy $\subset G_{2}$, need to construct a parallel 3 -form φ compatible with the metric.

For model \mathcal{D} on $S^{2} \times S^{3}=G_{2} / P$, have
$\widetilde{g}=$ flat metric of signature $(3,4)$ on \mathbb{R}^{7}.
Take $\varphi=$ the three form on \mathbb{R}^{7} defining G_{2}.

Leistner-Nurowski Holonomy Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_{2}.

To show a metric in dimension 7 has holonomy $\subset G_{2}$, need to construct a parallel 3 -form φ compatible with the metric.

For model \mathcal{D} on $S^{2} \times S^{3}=G_{2} / P$, have
$\widetilde{g}=$ flat metric of signature $(3,4)$ on \mathbb{R}^{7}.
Take $\varphi=$ the three form on \mathbb{R}^{7} defining G_{2}.

Leistner-Nurowski write down φ for their F's explicitly.

Leistner-Nurowski Holonomy Result

Gives a completely explicit 8-parameter family of metrics of holonomy G_{2}.

To show a metric in dimension 7 has holonomy $\subset G_{2}$, need to construct a parallel 3 -form φ compatible with the metric.

For model \mathcal{D} on $S^{2} \times S^{3}=G_{2} / P$, have
$\widetilde{g}=$ flat metric of signature $(3,4)$ on \mathbb{R}^{7}.
Take $\varphi=$ the three form on \mathbb{R}^{7} defining G_{2}.

Leistner-Nurowski write down φ for their F's explicitly.

But what about \widetilde{g} for other \mathcal{D} ?

General Generic Distributions \mathcal{D}

General Generic Distributions \mathcal{D}

Work with Travis Willse.

General Generic Distributions \mathcal{D}

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset T M^{5}$ be generic and real-analytic.

General Generic Distributions \mathcal{D}

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset T M^{5}$ be generic and real-analytic.

- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$ always.

General Generic Distributions \mathcal{D}

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset T M^{5}$ be generic and real-analytic.

- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$ for an explicit open dense set of \mathcal{D}.

General Generic Distributions \mathcal{D}

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset T M^{5}$ be generic and real-analytic.

- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$ for an explicit open dense set of \mathcal{D}.

So we obtain an infinite-dimensional space of metrics \widetilde{g} of holonomy G_{2}, parametrized by an almost arbitrary generic 2 -plane field \mathcal{D}.

General Generic Distributions \mathcal{D}

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset T M^{5}$ be generic and real-analytic.

- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$ for an explicit open dense set of \mathcal{D}.

So we obtain an infinite-dimensional space of metrics \widetilde{g} of holonomy G_{2}, parametrized by an almost arbitrary generic 2 -plane field \mathcal{D}.

In the remaining time:

General Generic Distributions \mathcal{D}

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset T M^{5}$ be generic and real-analytic.

- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$ for an explicit open dense set of \mathcal{D}.

So we obtain an infinite-dimensional space of metrics \widetilde{g} of holonomy G_{2}, parametrized by an almost arbitrary generic 2 -plane field \mathcal{D}.

In the remaining time:

1. Formulate conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$.

General Generic Distributions \mathcal{D}

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset T M^{5}$ be generic and real-analytic.

- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$ for an explicit open dense set of \mathcal{D}.

So we obtain an infinite-dimensional space of metrics \widetilde{g} of holonomy G_{2}, parametrized by an almost arbitrary generic 2 -plane field \mathcal{D}.

In the remaining time:

1. Formulate conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$.
2. Outline the proof that $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.

General Generic Distributions \mathcal{D}

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset T M^{5}$ be generic and real-analytic.

- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$ for an explicit open dense set of \mathcal{D}.

So we obtain an infinite-dimensional space of metrics \widetilde{g} of holonomy G_{2}, parametrized by an almost arbitrary generic 2 -plane field \mathcal{D}.

In the remaining time:

1. Formulate conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$.
2. Outline the proof that $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.
3. Describe associated Poincaré-Einstein metrics.

Conditions for $\operatorname{Hol}(\mathcal{G}, \widetilde{\mathfrak{g}})=G_{2}$

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathfrak{g}})=G_{2}$

Let $W_{i j k l}=$ Weyl tensor, $C_{j k l}=$ Cotton tensor of Nurowski's g.

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathfrak{g}})=G_{2}$

Let $W_{i j k l}=$ Weyl tensor, $C_{j k l}=$ Cotton tensor of Nurowski's g.
Define $L_{p}: T_{p} M \times \mathbb{R} \rightarrow \otimes^{3} T_{p}^{*} M$ by

$$
L(v, \lambda)=W_{i j k l} v^{i}+C_{j k l} \lambda
$$

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$

Let $W_{i j k l}=$ Weyl tensor, $C_{j k l}=$ Cotton tensor of Nurowski's g.
Define $L_{p}: T_{p} M \times \mathbb{R} \rightarrow \otimes^{3} T_{p}^{*} M$ by

$$
L(v, \lambda)=W_{i j k l} v^{i}+C_{j k l} \lambda
$$

Impose: L_{p} is injective.

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathfrak{g}})=G_{2}$

Let $W_{i j k l}=$ Weyl tensor, $C_{j k l}=$ Cotton tensor of Nurowski's g.
Define $L_{p}: T_{p} M \times \mathbb{R} \rightarrow \otimes^{3} T_{p}^{*} M$ by

$$
L(v, \lambda)=W_{i j k l} v^{i}+C_{j k l} \lambda
$$

Impose: L_{p} is injective. Nondegeneracy condition on (W, C).

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathcal{G}})=G_{2}$

Let $W_{i j k l}=$ Weyl tensor, $C_{j k l}=$ Cotton tensor of Nurowski's g.
Define $L_{p}: T_{p} M \times \mathbb{R} \rightarrow \otimes^{3} T_{p}^{*} M$ by

$$
L(v, \lambda)=W_{i j k l} v^{i}+C_{j k l} \lambda
$$

Impose: L_{p} is injective. Nondegeneracy condition on (W, C).
Let $\mathcal{A} \in \Gamma\left(S^{4} \mathcal{D}^{*}\right)$ be Cartan's fundamental curvature invariant for generic distributions $\mathcal{D} \subset T M^{5}$.

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$

Let $W_{i j k l}=$ Weyl tensor, $C_{j k l}=$ Cotton tensor of Nurowski's g.
Define $L_{p}: T_{p} M \times \mathbb{R} \rightarrow \otimes^{3} T_{p}^{*} M$ by

$$
L(v, \lambda)=W_{i j k l} v^{i}+C_{j k l} \lambda
$$

Impose: L_{p} is injective. Nondegeneracy condition on (W, C).
Let $\mathcal{A} \in \Gamma\left(S^{4} \mathcal{D}^{*}\right)$ be Cartan's fundamental curvature invariant for generic distributions $\mathcal{D} \subset T M^{5} . \quad \mathcal{A}$ is a binary quartic.

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$

Let $W_{i j k l}=$ Weyl tensor, $C_{j k l}=$ Cotton tensor of Nurowski's g.
Define $L_{p}: T_{p} M \times \mathbb{R} \rightarrow \otimes^{3} T_{p}^{*} M$ by

$$
L(v, \lambda)=W_{i j k l} v^{i}+C_{j k l} \lambda
$$

Impose: L_{p} is injective. Nondegeneracy condition on (W, C).
Let $\mathcal{A} \in \Gamma\left(S^{4} \mathcal{D}^{*}\right)$ be Cartan's fundamental curvature invariant for generic distributions $\mathcal{D} \subset T M^{5}$. \mathcal{A} is a binary quartic.

Say that \mathcal{A} is 3 -nondegenerate at p if the only vector $X \in \mathcal{D}_{p}$ such that $\mathcal{A}(X, Y, Y, Y)=0$ for all $Y \in \mathcal{D}_{p}$ is $X=0$.

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$

Let $W_{i j k l}=$ Weyl tensor, $C_{j k l}=$ Cotton tensor of Nurowski's g.
Define $L_{p}: T_{p} M \times \mathbb{R} \rightarrow \otimes^{3} T_{p}^{*} M$ by

$$
L(v, \lambda)=W_{i j k l} v^{i}+C_{j k l} \lambda
$$

Impose: L_{p} is injective. Nondegeneracy condition on (W, C).
Let $\mathcal{A} \in \Gamma\left(S^{4} \mathcal{D}^{*}\right)$ be Cartan's fundamental curvature invariant for generic distributions $\mathcal{D} \subset T M^{5} . \quad \mathcal{A}$ is a binary quartic.

Say that \mathcal{A} is 3 -nondegenerate at p if the only vector $X \in \mathcal{D}_{p}$ such that $\mathcal{A}(X, Y, Y, Y)=0$ for all $Y \in \mathcal{D}_{p}$ is $X=0$.

Theorem. Given (M, \mathcal{D}) real analytic. If there are $p, q \in M$ so that L_{p} is injective and \mathcal{A}_{q} is 3-nondegenerate, then \widetilde{g} has holonomy $=G_{2}$.

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathfrak{g}})=G_{2}$

In particular, have $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$ if there is $p \in M$ so that L_{p} is injective and \mathcal{A}_{p} is 3 -nondegenerate.

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathfrak{g}})=G_{2}$

In particular, have $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$ if there is $p \in M$ so that L_{p} is injective and \mathcal{A}_{p} is 3 -nondegenerate.

Each condition is an algebraic condition on the 7 -jet of F at p.

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathcal{G}})=G_{2}$

In particular, have $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$ if there is $p \in M$ so that L_{p} is injective and \mathcal{A}_{p} is 3 -nondegenerate.

Each condition is an algebraic condition on the 7 -jet of F at p.
So if the 7-jet of F avoids a particular algebraic set at a single point, then $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$.

Conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathcal{G}})=G_{2}$

In particular, have $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$ if there is $p \in M$ so that L_{p} is injective and \mathcal{A}_{p} is 3 -nondegenerate.

Each condition is an algebraic condition on the 7 -jet of F at p.
So if the 7 -jet of F avoids a particular algebraic set at a single point, then $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g})=G_{2}$.

This is a weak condition, explicitly checkable.

Proof that $\operatorname{Hol}(\overline{\mathcal{G}}, \widetilde{\mathfrak{g}}) \subset G_{2}$

Proof that $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathcal{G}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}$,

Proof that $\operatorname{Hol}(\overline{\mathcal{G}}, \widetilde{\mathfrak{g}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}, \quad[g]=$ Nurowski's,

Proof that $\operatorname{Hol}(\mathcal{G}, \widetilde{\mathcal{G}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}, \quad[g]=$ Nurowski's, $\quad \widetilde{g}=$ ambient metric.

Proof that $\operatorname{Hol}(\overline{\mathcal{G}}, \widetilde{\mathfrak{g}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}, \quad[g]=$ Nurowski's, $\quad \widetilde{g}=$ ambient metric.
Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.

Proof that $\operatorname{Hol}(\overline{\mathcal{G}}, \widetilde{\mathfrak{g}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}, \quad[g]=$ Nurowski's, $\quad \widetilde{g}=$ ambient metric.
Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.
Proof. Construct parallel φ.

Proof that $\operatorname{Hol}(\overline{\mathcal{G}}, \widetilde{\mathfrak{g}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}, \quad[g]=$ Nurowski's, $\quad \widetilde{g}=$ ambient metric.
Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.
Proof. Construct parallel φ. There are 2 steps:

Proof that $\operatorname{Hol}(\overline{\mathcal{G}}, \widetilde{\mathfrak{g}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}, \quad[g]=$ Nurowski's, $\quad \widetilde{g}=$ ambient metric.
Theorem. $\mathrm{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.
Proof. Construct parallel φ. There are 2 steps:

1. Construct $\left.\varphi\right|_{\mathcal{G}}$. Should be homogeneous of degree 3 .

Proof that $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathfrak{g}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}, \quad[g]=$ Nurowski's, $\quad \widetilde{g}=$ ambient metric.
Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.
Proof. Construct parallel φ. There are 2 steps:

1. Construct $\left.\varphi\right|_{\mathcal{G}}$. Should be homogeneous of degree 3 .
2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel.

Proof that $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathfrak{g}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}, \quad[g]=$ Nurowski's, $\quad \widetilde{g}=$ ambient metric.
Theorem. $\mathrm{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.
Proof. Construct parallel φ. There are 2 steps:

1. Construct $\left.\varphi\right|_{\mathcal{G}}$. Should be homogeneous of degree 3 .
2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel.

Step 1. Construct $\left.\varphi\right|_{\mathcal{G}}$

Proof that $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{\mathfrak{g}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}, \quad[g]=$ Nurowski's, $\quad \widetilde{g}=$ ambient metric.
Theorem. $\mathrm{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.
Proof. Construct parallel φ. There are 2 steps:

1. Construct $\left.\varphi\right|_{\mathcal{G}}$. Should be homogeneous of degree 3 .
2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel.

Step 1. Construct $\left.\varphi\right|_{\mathcal{G}}$

This reduces to a problem just involving conformal geometry of ($M,[g]$)-no ambient considerations.

Proof that $\operatorname{Hol}(\overline{\mathcal{G}}, \widetilde{\mathfrak{g}}) \subset G_{2}$

Let $\mathcal{D} \subset T M^{5}, \quad[g]=$ Nurowski's, $\quad \widetilde{g}=$ ambient metric.
Theorem. $\mathrm{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.
Proof. Construct parallel φ. There are 2 steps:

1. Construct $\left.\varphi\right|_{\mathcal{G}}$. Should be homogeneous of degree 3 .
2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel.

Step 1. Construct $\left.\varphi\right|_{\mathcal{G}}$

This reduces to a problem just involving conformal geometry of ($M,[g]$)-no ambient considerations.

Reinterpret $\left.\varphi\right|_{\mathcal{G}}$ in terms of the tractor bundle of $(M,[g])$.

Tractor bundle and connection
($M,[g]$) conformal manifold.

Tractor bundle and connection

($M,[g]$) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

Tractor bundle and connection

($M,[g]$) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank $n+2$ vector bundle $\mathcal{T} \rightarrow M$ with fiber metric of signature $(p+1, q+1)$ and connection ∇.

Tractor bundle and connection

($M,[g]$) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank $n+2$ vector bundle $\mathcal{T} \rightarrow M$ with fiber metric of signature $(p+1, q+1)$ and connection ∇.
\mathcal{T} is an associated bundle to the Cartan principal structure bundle.

Tractor bundle and connection

($M,[g]$) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank $n+2$ vector bundle $\mathcal{T} \rightarrow M$ with fiber metric of signature $(p+1, q+1)$ and connection ∇.
\mathcal{T} is an associated bundle to the Cartan principal structure bundle.
Can alternately realize \mathcal{T} as homogeneous sections of $\left.T \widetilde{\mathcal{G}}\right|_{\mathcal{G}}$:

Tractor bundle and connection

($M,[g]$) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank $n+2$ vector bundle $\mathcal{T} \rightarrow M$ with fiber metric of signature $(p+1, q+1)$ and connection ∇.
\mathcal{T} is an associated bundle to the Cartan principal structure bundle.
Can alternately realize \mathcal{T} as homogeneous sections of $\left.T \widetilde{\mathcal{G}}\right|_{\mathcal{G}}$: Recall metric bundle \mathcal{G}, with $\pi: \mathcal{G} \rightarrow M$.

Tractor bundle and connection

($M,[g]$) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank $n+2$ vector bundle $\mathcal{T} \rightarrow M$ with fiber metric of signature $(p+1, q+1)$ and connection ∇.
\mathcal{T} is an associated bundle to the Cartan principal structure bundle.
Can alternately realize \mathcal{T} as homogeneous sections of $\left.T \widetilde{\mathcal{G}}\right|_{\mathcal{G}}$: Recall metric bundle \mathcal{G}, with $\pi: \mathcal{G} \rightarrow M$. If $p \in M$,

Tractor bundle and connection

($M,[g]$) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank $n+2$ vector bundle $\mathcal{T} \rightarrow M$ with fiber metric of signature $(p+1, q+1)$ and connection ∇.
\mathcal{T} is an associated bundle to the Cartan principal structure bundle.
Can alternately realize \mathcal{T} as homogeneous sections of $\left.T \widetilde{\mathcal{G}}\right|_{\mathcal{G}}$: Recall metric bundle \mathcal{G}, with $\pi: \mathcal{G} \rightarrow M$. If $p \in M$,

$$
\mathcal{T}_{p}=\left\{U \in \Gamma\left(\left.T \widetilde{\mathcal{G}}\right|_{\pi^{-1}(p)}\right):\left(\delta_{s}\right)_{*} U=s U, s>0\right\} .
$$

Tractor bundle and connection

($M,[g]$) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank $n+2$ vector bundle $\mathcal{T} \rightarrow M$ with fiber metric of signature $(p+1, q+1)$ and connection ∇.
\mathcal{T} is an associated bundle to the Cartan principal structure bundle.
Can alternately realize \mathcal{T} as homogeneous sections of $\left.T \widetilde{\mathcal{G}}\right|_{\mathcal{G}}$: Recall metric bundle \mathcal{G}, with $\pi: \mathcal{G} \rightarrow M$. If $p \in M$,

$$
\mathcal{T}_{p}=\left\{U \in \Gamma\left(\left.T \widetilde{\mathcal{G}}\right|_{\pi^{-1}(p)}\right):\left(\delta_{s}\right)_{*} U=s U, s>0\right\} .
$$

The tractor metric and connection are induced from \widetilde{g} and $\widetilde{\nabla}$.

Tractor bundle and connection

($M,[g]$) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank $n+2$ vector bundle $\mathcal{T} \rightarrow M$ with fiber metric of signature $(p+1, q+1)$ and connection ∇.
\mathcal{T} is an associated bundle to the Cartan principal structure bundle.
Can alternately realize \mathcal{T} as homogeneous sections of $\left.T \widetilde{\mathcal{G}}\right|_{\mathcal{G}}$: Recall metric bundle \mathcal{G}, with $\pi: \mathcal{G} \rightarrow M$. If $p \in M$,

$$
\mathcal{T}_{p}=\left\{U \in \Gamma\left(\left.T \widetilde{\mathcal{G}}\right|_{\pi^{-1}(p)}\right):\left(\delta_{s}\right)_{*} U=s U, s>0\right\} .
$$

The tractor metric and connection are induced from \widetilde{g} and $\widetilde{\nabla}$.
Conclusion. $\left.\varphi\right|_{\mathcal{G}}$ can be viewed as a section of $\Lambda^{3} \mathcal{T}^{*}$:

Tractor bundle and connection

($M,[g]$) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank $n+2$ vector bundle $\mathcal{T} \rightarrow M$ with fiber metric of signature $(p+1, q+1)$ and connection ∇.
\mathcal{T} is an associated bundle to the Cartan principal structure bundle.
Can alternately realize \mathcal{T} as homogeneous sections of $\left.T \widetilde{\mathcal{G}}\right|_{\mathcal{G}}$: Recall metric bundle \mathcal{G}, with $\pi: \mathcal{G} \rightarrow M$. If $p \in M$,

$$
\mathcal{T}_{p}=\left\{U \in \Gamma\left(\left.T \widetilde{\mathcal{G}}\right|_{\pi^{-1}(p)}\right):\left(\delta_{s}\right)_{*} U=s U, s>0\right\} .
$$

The tractor metric and connection are induced from \widetilde{g} and $\widetilde{\nabla}$.
Conclusion. $\left.\varphi\right|_{\mathcal{G}}$ can be viewed as a section of $\Lambda^{3} \mathcal{T}^{*}$: a tractor 3-form.

Step 1: Construct $\left.\varphi\right|_{\mathcal{G}}$.

Step 1: Construct $\left.\varphi\right|_{\mathcal{G}}$.

If $\widetilde{\nabla} \varphi=0$, in particular must have $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.

Step 1: Construct $\left.\varphi\right|_{\mathcal{G}}$.

If $\widetilde{\nabla} \varphi=0$, in particular must have $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.
Equivalent to saying that $\left.\varphi\right|_{\mathcal{G}}$ is a parallel tractor 3-form associated to ($M,[g]$).

Step 1: Construct $\left.\varphi\right|_{\mathcal{G}}$.

If $\widetilde{\nabla} \varphi=0$, in particular must have $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.
Equivalent to saying that $\left.\varphi\right|_{\mathcal{G}}$ is a parallel tractor 3-form associated to ($M,[g]$).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_{2} fixes a 3 -form on \mathbb{R}^{7}.

Step 1: Construct $\left.\varphi\right|_{\mathcal{G}}$.

If $\widetilde{\nabla} \varphi=0$, in particular must have $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.
Equivalent to saying that $\left.\varphi\right|_{\mathcal{G}}$ is a parallel tractor 3-form associated to ($M,[g]$).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_{2} fixes a 3 -form on \mathbb{R}^{7}.

So this solves Step 1: construct $\left.\varphi\right|_{\mathcal{G}}$ such that $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.

Step 1: Construct $\left.\varphi\right|_{\mathcal{G}}$.

If $\widetilde{\nabla} \varphi=0$, in particular must have $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.
Equivalent to saying that $\left.\varphi\right|_{\mathcal{G}}$ is a parallel tractor 3-form associated to ($M,[g]$).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_{2} fixes a 3 -form on \mathbb{R}^{7}.

So this solves Step 1: construct $\left.\varphi\right|_{\mathcal{G}}$ such that $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.

Remark. Other direction is true as well:

Step 1: Construct $\left.\varphi\right|_{\mathcal{G}}$.

If $\widetilde{\nabla} \varphi=0$, in particular must have $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.
Equivalent to saying that $\left.\varphi\right|_{\mathcal{G}}$ is a parallel tractor 3-form associated to ($M,[g]$).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_{2} fixes a 3 -form on \mathbb{R}^{7}.

So this solves Step 1: construct $\left.\varphi\right|_{\mathcal{G}}$ such that $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.

Remark. Other direction is true as well:
Theorem. (Hammerl-Sagerschnig, 2009) Nurowski's conformal structures $(M,[g])$ associated to generic \mathcal{D} are characterized by the existence of a compatible parallel tractor 3-form.

Step 1: Construct $\left.\varphi\right|_{\mathcal{g}}$.

If $\widetilde{\nabla} \varphi=0$, in particular must have $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.
Equivalent to saying that $\left.\varphi\right|_{\mathcal{G}}$ is a parallel tractor 3-form associated to ($M,[g]$).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_{2} fixes a 3 -form on \mathbb{R}^{7}.

So this solves Step 1: construct $\left.\varphi\right|_{\mathcal{G}}$ such that $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.

Remark. Other direction is true as well:
Theorem. (Hammerl-Sagerschnig, 2009) Nurowski's conformal structures $(M,[g])$ associated to generic \mathcal{D} are characterized by the existence of a compatible parallel tractor 3-form.

This is a conformal holonomy characterization.

Step 1: Construct $\left.\varphi\right|_{\mathrm{g}}$.

If $\widetilde{\nabla} \varphi=0$, in particular must have $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.
Equivalent to saying that $\left.\varphi\right|_{\mathcal{G}}$ is a parallel tractor 3-form associated to ($M,[g]$).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_{2} fixes a 3 -form on \mathbb{R}^{7}.

So this solves Step 1: construct $\left.\varphi\right|_{\mathcal{G}}$ such that $\widetilde{\nabla}_{X}\left(\left.\varphi\right|_{\mathcal{G}}\right)=0$ for $X \in T \mathcal{G}$.

Remark. Other direction is true as well:
Theorem. (Hammerl-Sagerschnig, 2009) Nurowski's conformal structures $(M,[g])$ associated to generic \mathcal{D} are characterized by the existence of a compatible parallel tractor 3-form.

This is a conformal holonomy characterization.
(Conformal holonomy = holonomy of tractor connection.)

Parallel Extension Theorem

Parallel Extension Theorem

Step 2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

Parallel Extension Theorem

Step 2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel
We prove an ambient extension theorem for parallel tractor-tensors.

Parallel Extension Theorem

Step 2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel
We prove an ambient extension theorem for parallel tractor-tensors.
Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Parallel Extension Theorem

Step 2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel
We prove an ambient extension theorem for parallel tractor-tensors.
Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry. Let $\mathcal{T}=$ tractor bundle.

Parallel Extension Theorem

Step 2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel
We prove an ambient extension theorem for parallel tractor-tensors.
Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry. Let $\mathcal{T}=$ tractor bundle. Tractor-tensor means a section of $\otimes^{r} \mathcal{T}^{*}$.

Parallel Extension Theorem

Step 2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel
We prove an ambient extension theorem for parallel tractor-tensors.
Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry. Let $\mathcal{T}=$ tractor bundle. Tractor-tensor means a section of $\otimes^{r} \mathcal{T}^{*}$.

Theorem. Let $(M,[g])$ be a conformal manifold, with ambient metric \widetilde{g}. Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

Parallel Extension Theorem

Step 2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel
We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry. Let $\mathcal{T}=$ tractor bundle. Tractor-tensor means a section of $\otimes^{r} \mathcal{T}^{*}$.

Theorem. Let $(M,[g])$ be a conformal manifold, with ambient metric \widetilde{g}. Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\widetilde{\varphi}$ such that $\widetilde{\nabla} \widetilde{\varphi}$ vanishes to infinite order along \mathcal{G}.

Parallel Extension Theorem

Step 2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel
We prove an ambient extension theorem for parallel tractor-tensors.
Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry. Let $\mathcal{T}=$ tractor bundle. Tractor-tensor means a section of $\otimes^{r} \mathcal{T}^{*}$.

Theorem. Let $(M,[g])$ be a conformal manifold, with ambient metric \widetilde{g}. Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\widetilde{\varphi}$ such that $\widetilde{\nabla} \widetilde{\varphi}$ vanishes to infinite order along \mathcal{G}.
- If n is even, then φ has an ambient extension such that $\widetilde{\nabla} \widetilde{\varphi}$ vanishes to order $n / 2-1$.

Parallel Extension Theorem

Step 2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel
We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry. Let $\mathcal{T}=$ tractor bundle. Tractor-tensor means a section of $\otimes^{r} \mathcal{T}^{*}$.

Theorem. Let $(M,[g])$ be a conformal manifold, with ambient metric \widetilde{g}. Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\widetilde{\varphi}$ such that $\widetilde{\nabla} \widetilde{\varphi}$ vanishes to infinite order along \mathcal{G}.
- If n is even, then φ has an ambient extension such that $\widetilde{\nabla} \widetilde{\varphi}$ vanishes to order $n / 2-1$.

This had been previously proved by Gover for $r=1$, different proof.

Parallel Extension Theorem

Step 2. Extend $\left.\varphi\right|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel
We prove an ambient extension theorem for parallel tractor-tensors. Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry. Let $\mathcal{T}=$ tractor bundle. Tractor-tensor means a section of $\otimes^{r} \mathcal{T}^{*}$.

Theorem. Let $(M,[g])$ be a conformal manifold, with ambient metric \widetilde{g}. Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\widetilde{\varphi}$ such that $\widetilde{\nabla} \widetilde{\varphi}$ vanishes to infinite order along \mathcal{G}.
- If n is even, then φ has an ambient extension such that $\widetilde{\nabla} \widetilde{\varphi}$ vanishes to order $n / 2-1$.

This had been previously proved by Gover for $r=1$, different proof. Immediately conclude $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) \subset G_{2}$.

Associated Poincaré Metrics

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2}

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\tilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$.

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$.

Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$.
Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$. Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.

Then $g_{+}=\left.\widetilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$. Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.

Then $g_{+}=\left.\widetilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and curvature +1 .

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$. Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.

Then $g_{+}=\left.\widetilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and curvature +1 .
Likewise $g_{-}=\left.\widetilde{g}\right|_{T_{\mathcal{H}}}$ has signature $(p+1, q)$ and curvature -1 .

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$. Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.

Then $g_{+}=\left.\widetilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and curvature +1 .
Likewise $g_{-}=\left.\widetilde{g}\right|_{T_{\mathcal{H}}}$ has signature $(p+1, q)$ and curvature -1 .

Analogous construction for general ($M,[g]$):

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$.
Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.
Then $g_{+}=\left.\widetilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and curvature +1 .
Likewise $g_{-}=\left.\widetilde{g}\right|_{T_{\mathcal{H}}}$ has signature $(p+1, q)$ and curvature -1 .

Analogous construction for general ($M,[g]$):
Let $T=\left.\frac{d}{d s} \delta_{s}\right|_{s=1}$

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$. Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.

Then $g_{+}=\left.\widetilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and curvature +1 .
Likewise $g_{-}=\left.\widetilde{g}\right|_{T_{\mathcal{H}}}$ has signature $(p+1, q)$ and curvature -1 .

Analogous construction for general ($M,[g]$):
Let $T=\left.\frac{d}{d s} \delta_{s}\right|_{s=1} \quad$ Infinitesimal dilation

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$. Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.

Then $g_{+}=\left.\widetilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and curvature +1 . Likewise $g_{-}=\left.\widetilde{g}\right|_{T_{\mathcal{H}}}$ has signature $(p+1, q)$ and curvature -1 .

Analogous construction for general ($M,[g]$):
Let $T=\left.\frac{d}{d s} \delta_{s}\right|_{s=1} \quad$ Infinitesimal dilation
Set $\mathcal{H}_{+}=\{\widetilde{g}(T, T)=1\}$

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$.
Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.
Then $g_{+}=\left.\widetilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and curvature +1 . Likewise $g_{-}=\left.\widetilde{g}\right|_{T_{\mathcal{H}}}$ has signature $(p+1, q)$ and curvature -1 .

Analogous construction for general ($M,[g]$):
Let $T=\left.\frac{d}{d s} \delta_{s}\right|_{s=1} \quad$ Infinitesimal dilation
Set $\mathcal{H}_{+}=\{\widetilde{g}(T, T)=1\}$ and $\mathcal{H}_{-}=\{\widetilde{g}(T, T)=-1\}$.

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$.
Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.
Then $g_{+}=\left.\widetilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and curvature +1 . Likewise $g_{-}=\left.\widetilde{g}\right|_{T_{\mathcal{H}}}$ has signature $(p+1, q)$ and curvature -1 .

Analogous construction for general ($M,[g]$):
Let $T=\left.\frac{d}{d s} \delta_{s}\right|_{s=1} \quad$ Infinitesimal dilation
Set $\mathcal{H}_{+}=\{\widetilde{g}(T, T)=1\}$ and $\mathcal{H}_{-}=\{\widetilde{g}(T, T)=-1\}$.
Then $g_{+}=\left.\tilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and $\operatorname{Ric}\left(g_{+}\right)=n g_{+}$.

Associated Poincaré Metrics

Recall: ambient metric for $M=S^{p} \times S^{q}, g=g_{S^{p}}-g_{S^{q}}$ is $\widetilde{g}=|d x|^{2}-|d y|^{2}$ on \mathbb{R}^{n+2} and $S^{p} \times S^{q}=\mathcal{N} / \mathbb{R}_{+}$.
Let $\mathcal{H}_{+}=\left\{|x|^{2}-|y|^{2}=1\right\}$ and $\mathcal{H}_{-}=\left\{|x|^{2}-|y|^{2}=-1\right\}$.
Then $g_{+}=\left.\widetilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and curvature +1 . Likewise $g_{-}=\left.\widetilde{g}\right|_{T_{\mathcal{H}}}$ has signature $(p+1, q)$ and curvature -1 .

Analogous construction for general ($M,[g]$):
Let $T=\left.\frac{d}{d s} \delta_{s}\right|_{s=1} \quad$ Infinitesimal dilation
Set $\mathcal{H}_{+}=\{\widetilde{g}(T, T)=1\}$ and $\mathcal{H}_{-}=\{\widetilde{g}(T, T)=-1\}$.
Then $g_{+}=\left.\tilde{g}\right|_{T \mathcal{H}_{+}}$has signature $(p, q+1)$ and $\operatorname{Ric}\left(g_{+}\right)=n g_{+}$.
And $g_{-}=\left.\widetilde{g}\right|_{T \mathcal{H}_{-}}$has signature $(p+1, q)$ and $\operatorname{Ric}\left(g_{-}\right)=-n g_{-}$.

Associated Poincaré Metrics

g_{+}and g_{-}are asymptotically hyperbolic with $(M,[g])$ as conformal infinity.

Associated Poincaré Metrics

g_{+}and g_{-}are asymptotically hyperbolic with ($M,[g]$) as conformal infinity. $g_{ \pm}$are defined on $M \times(0, \epsilon)$

Associated Poincaré Metrics

g_{+}and g_{-}are asymptotically hyperbolic with ($M,[g]$) as conformal infinity. $g_{ \pm}$are defined on $M \times(0, \epsilon)$ and

$$
\left.\left(r^{2} g_{ \pm}\right)\right|_{T M}=g .
$$

Associated Poincaré Metrics

g_{+}and g_{-}are asymptotically hyperbolic with ($M,[g]$) as conformal infinity. $g_{ \pm}$are defined on $M \times(0, \epsilon)$ and

$$
\left.\left(r^{2} g_{ \pm}\right)\right|_{T M}=g
$$

Moreover, \widetilde{g} is a cone metric over $g_{ \pm}$:

Associated Poincaré Metrics

g_{+}and g_{-}are asymptotically hyperbolic with ($M,[g]$) as conformal infinity. $g_{ \pm}$are defined on $M \times(0, \epsilon)$ and

$$
\left.\left(r^{2} g_{ \pm}\right)\right|_{T M}=g
$$

Moreover, \widetilde{g} is a cone metric over $g_{ \pm}$:

$$
\tilde{g}=s^{2} g_{+}+d s^{2} \quad \text { on } \quad\{\widetilde{g}(T, T)>0\}
$$

Associated Poincaré Metrics

g_{+}and g_{-}are asymptotically hyperbolic with ($M,[g]$) as conformal infinity. $g_{ \pm}$are defined on $M \times(0, \epsilon)$ and

$$
\left.\left(r^{2} g_{ \pm}\right)\right|_{T M}=g
$$

Moreover, \widetilde{g} is a cone metric over $g_{ \pm}$:

$$
\begin{aligned}
& \widetilde{g}=s^{2} g_{+}+d s^{2} \quad \text { on } \quad\{\widetilde{g}(T, T)>0\} \\
& \widetilde{g}=s^{2} g_{-}-d s^{2} \quad \text { on } \quad\{\widetilde{g}(T, T)<0\}
\end{aligned}
$$

Associated Poincaré Metrics

g_{+}and g_{-}are asymptotically hyperbolic with ($\left.M,[g]\right)$ as conformal infinity. $g_{ \pm}$are defined on $M \times(0, \epsilon)$ and

$$
\left.\left(r^{2} g_{ \pm}\right)\right|_{T M}=g
$$

Moreover, \widetilde{g} is a cone metric over $g_{ \pm}$:

$$
\begin{aligned}
& \widetilde{g}=s^{2} g_{+}+d s^{2} \quad \text { on } \quad\{\widetilde{g}(T, T)>0\} \\
& \widetilde{g}=s^{2} g_{-}-d s^{2} \quad \text { on } \quad\{\widetilde{g}(T, T)<0\}
\end{aligned}
$$

Constructing \widetilde{g} is equivalent to constructing $g_{ \pm}$.

Associated Poincaré Metrics

Suppose now that $[g]$ arises from $\mathcal{D} \subset T M^{5}$.

Associated Poincaré Metrics

Suppose now that $[g]$ arises from $\mathcal{D} \subset T M^{5}$.
So g_{+}has signature $(2,4)$ and $\operatorname{Ric}\left(g_{+}\right)=5 g_{+}$.

Associated Poincaré Metrics

Suppose now that $[g]$ arises from $\mathcal{D} \subset T M^{5}$.
So g_{+}has signature $(2,4)$ and $\operatorname{Ric}\left(g_{+}\right)=5 g_{+}$.
Proposition. g_{+}is nearly-Kähler of constant type 1 .

Associated Poincaré Metrics

Suppose now that $[g]$ arises from $\mathcal{D} \subset T M^{5}$.
So g_{+}has signature $(2,4)$ and $\operatorname{Ric}\left(g_{+}\right)=5 g_{+}$.
Proposition. g_{+}is nearly-Kähler of constant type 1.

Definition. A metric is nearly Kähler if there exists an orthogonal almost complex structure J such that $\left(\nabla_{X} J\right)(X)=0$ for all X.

Associated Poincaré Metrics

Suppose now that $[g]$ arises from $\mathcal{D} \subset T M^{5}$.
So g_{+}has signature $(2,4)$ and $\operatorname{Ric}\left(g_{+}\right)=5 g_{+}$.
Proposition. g_{+}is nearly-Kähler of constant type 1 .
Definition. A metric is nearly Kähler if there exists an orthogonal almost complex structure J such that $\left(\nabla_{X} J\right)(X)=0$ for all X.

Definition. g is nearly Kähler of constant type 1 if

$$
\left|\left(\nabla_{X} J\right)(Y)\right|^{2}=|X|^{2}|Y|^{2}-\langle X, Y\rangle^{2}-\langle J X, Y\rangle^{2} .
$$

Associated Poincaré Metrics

Suppose now that $[g]$ arises from $\mathcal{D} \subset T M^{5}$.
So g_{+}has signature $(2,4)$ and $\operatorname{Ric}\left(g_{+}\right)=5 g_{+}$.
Proposition. g_{+}is nearly-Kähler of constant type 1 .
Definition. A metric is nearly Kähler if there exists an orthogonal almost complex structure J such that $\left(\nabla_{X} J\right)(X)=0$ for all X.

Definition. g is nearly Kähler of constant type 1 if

$$
\left|\left(\nabla_{X} J\right)(Y)\right|^{2}=|X|^{2}|Y|^{2}-\langle X, Y\rangle^{2}-\langle J X, Y\rangle^{2} .
$$

Similarly, g_{-}is a signature $(3,3)$ metric with $\operatorname{Ric}\left(g_{-}\right)=-5 g_{-}$ which is "nearly-para-Kähler of constant type 1 ".

Associated Poincaré Metrics

Suppose now that $[g]$ arises from $\mathcal{D} \subset T M^{5}$.
So g_{+}has signature $(2,4)$ and $\operatorname{Ric}\left(g_{+}\right)=5 g_{+}$.
Proposition. g_{+}is nearly-Kähler of constant type 1 .
Definition. A metric is nearly Kähler if there exists an orthogonal almost complex structure J such that $\left(\nabla_{X} J\right)(X)=0$ for all X.

Definition. g is nearly Kähler of constant type 1 if

$$
\left|\left(\nabla_{X} J\right)(Y)\right|^{2}=|X|^{2}|Y|^{2}-\langle X, Y\rangle^{2}-\langle J X, Y\rangle^{2} .
$$

Similarly, g_{-}is a signature $(3,3)$ metric with $\operatorname{Ric}\left(g_{-}\right)=-5 g_{-}$ which is "nearly-para-Kähler of constant type 1 ".
So we obtain new examples of metrics of these types parametrized by $\mathcal{D} \subset T M^{5}$.

