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Let (M, g) be a connected pseudo-Riemannian manifold of
signature (p, q), p + q = n.

Can define Hol(M, g) ⊂ SOe(p, q) (Restricted holonomy group)

Hol(M, g) is all the linear transformations obtained by parallel
translation around contractible loops.

Hol(M, g) measures the structure preserved by parallel translation.

Most (M, g) have holonomy SOe(p, q).

Hol(M, g) = {e} if and only if g is flat.

Example: Hol(M, g) ⊂ U(n/2) if and only if g is Kähler.
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Question. Which subgroups of SOe(p, q) can arise as Hol(M, g)?

Say that G ⊂ SOe(p, q) is irreducible if its action on R
n has no

nontrivial invariant subspaces.

In 1953 Berger derived list of irreducible subgroups for each p, q, n.

Every irreducible subgroup of SOe(p, q) which arises as Hol(M, g)
for some non-symmetric (M, g) is on the list.

Question becomes: Does every group on Berger’s list arise as a
holonomy group?

For many, but not all, groups on the list, examples were known of
(M, g) with that holonomy.
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Other than SOe(p, q), every group on Berger’s list occurs for n
even, with two exceptions.

Both exceptions occur for n = 7.

They are the two real forms of G2:

G c
2 ⊂ SO(7) and G s

2 ⊂ SO(3, 4).

The existence question for these groups remained open until 1987.

Theorem. (R. Bryant, 1987) There exist metrics of holonomy
equal to G c

2 and G s
2 .

More such metrics are known now, but they are not easy to come
by. New examples are of interest.

Manifolds of holonomy G c
2 arise in M-theory as an analogue of

Calabi-Yau manifolds.
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R
7∗. Define 〈·, ·〉ϕ by

(X ϕ) ∧ (Y ϕ) ∧ ϕ = 〈X ,Y 〉ϕ e∗1 ∧ . . . ∧ e∗7

Definition. ϕ is nondegenerate if 〈X ,Y 〉ϕ is nondegenerate.

Theorem. ϕ nondegenerate =⇒
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Say ϕ is compact type if (7, 0) (ϕc), ϕ split type if (3, 4) (ϕs).

Fact. ϕc and ϕs are unique up to GL(7,R).

Definition. G c
2 = {A ∈ GL(7,R) : A∗ϕc = ϕc} ⊂ SO(7)

G s
2 = {A ∈ GL(7,R) : A∗ϕs = ϕs} ⊂ SO(3, 4).

From now on, G2 = G s
2 .
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Let D ⊂ TM5 , dimDx = 2. X , Y local frame. Set Z = [X ,Y ].

Definition. D is generic if X , Y , Z , [X ,Z ], [Y ,Z ] are everywhere
linearly independent.

E. Cartan (1910) solved the equivalence problem for such D.
Constructed a principal bundle and Cartan connection.

The model is G2/P ∼= S2 × S3, P ⊂ G2 parabolic subgroup.

So G2 acts on S2 × S3 preserving the model D ⊂ T (S2 × S3).

The model D ⊂ T (S2 × S3) can be defined algebraically using the
algebraic structure of the imaginary split octonians,

or as a nonholonomic constraint in a classical mechanical system.
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Consider 2 balls in R
3 of radii r1, r2 rolling on one another without

slipping or spinning.

Identify configurations equivalent under Euclidean motions.
The configuration space is then C = S2 × SO(3).

The no-slip, no-spin constraint defines a distribution D ⊂ TC.
If r1 = r2, then D is integrable. Otherwise D is generic.

The group of local diffeomorphisms of S2 × SO(3) preserving D
contains SO(3)× SO(3) with equality if (r1/r2)

±1 6=
√
3.

But if r1/r2 =
√
3, this local symmetry group is G2.

Lift D via the double cover S2 × S3 → S2 × SO(3).

This gives the model D ⊂ T (S2 × S3).
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How does G2 act on S2 × S3? By conformal transformations!

Consider Rp+q+2 = {(x , y) : x ∈ R
p+1, y ∈ R

q+1} with quadratic
form |x |2 − |y |2 and null cone N = {|x |2 = |y |2}.
Then N/R+ = {|x |2 = |y |2 = 1} = Sp × Sq.

SO(p + 1, q + 1) acts linearly on R
p+q+2 preserving N ; this

induces an action on Sp × Sq.

This action preserves the (p, q) metric gSp − gSq up to scale and
realizes SO(p + 1, q + 1) as the conformal group of Sp × Sq.

Now recall G2 ⊂ SO(3, 4) = conformal group of S2 × S3.

This conformal action of G2 is the action preserving D.

So any diffeomorphism preserving D also preserves the (2, 3)
conformal structure on S2 × S3! True locally too.
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Theorem. (Nurowski, 2005) Any D ⊂ TM5 generic. There is a
conformal class [g ] on M of signature (2, 3) associated to D.

Follows immediately from the existence of the Cartan connection.

For any D, can choose local coordinates (x , y , z , p, q) on M so that

D = span{∂q, ∂x + p∂y + q∂p + F∂z}

where F = F (x , y , z , p, q) and Fqq is nonvanishing.

F = q2 for the model.

Nurowski gives a formula for g in terms of F and its derivatives of
orders ≤ 4.

Approximately 70 terms. Very nasty.
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Obtain G̃ = R
p+q+2,

G = N = null cone of |x |2 − |y |2

The ambient metric is the flat metric g̃ = |dx |2 − |dy |2.

General case:

Let G = {(x , gx) : x ∈ M, g ∈ [g ]} ⊂ S2T ∗M. Metric bundle.

Dilations δs : G → G δs(x , gx) = (x , s2gx)

Set G̃ = G × (−1, 1). Inclusion: ι : G → G̃, ι(z) = (z , 0).
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Ambient Metric

The ambient metric g̃ is a metric on G̃ of signature (p + 1, q + 1).
Required to satisfy:

δ∗s g̃ = s2g̃ Homogeneous

Initial condition on G determined by the conformal structure

Ric(g̃) = 0 to infinite order on G.

Theorem (C. Fefferman-G., 1985) If n is odd, there exists such g̃ ,
unique to infinite order up to diffeomorphism.

If (M, g) is real-analytic, then series for g̃ converges.

If n is even, there is a formal obstruction at order n/2.
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Put these together:

D ⊂ TM5 Nurowski→ (M, [g ])
Ambientmetric→ (G̃7, g̃)

Produces a metric g̃ of signature (3, 4) from D.

Nurowski (2007). Consider D ⊂ TR
5 given by

F = q2 +
6∑

k=0

akp
k + bz , ak , b ∈ R

Then can write g̃ explicitly. Expansion terminates at order 2.

Theorem. (Leistner-Nurowski, 2009) F as above.

For all ak , b, have Hol(G̃, g̃) ⊂ G2

If one of a3, a4, a5, a6 6= 0, then Hol(G̃, g̃) = G2.
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Leistner-Nurowski Holonomy Result

Gives a completely explicit 8-parameter family of metrics of
holonomy G2.

To show a metric in dimension 7 has holonomy ⊂ G2, need to
construct a parallel 3-form ϕ compatible with the metric.

For model D on S2 × S3 = G2/P , have

g̃ = flat metric of signature (3, 4) on R
7.

Take ϕ = the three form on R
7 defining G2.

Leistner-Nurowski write down ϕ for their F ’s explicitly.

But what about g̃ for other D?
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General Generic Distributions D

Work with Travis Willse.

Theorem. Let D ⊂ TM5 be generic and real-analytic.

Hol(G̃, g̃) ⊂ G2 always.

Hol(G̃, g̃) = G2 for an explicit open dense set of D.

So we obtain an infinite-dimensional space of metrics g̃ of
holonomy G2, parametrized by an almost arbitrary generic 2-plane
field D.

In the remaining time:

1. Formulate conditions for Hol(G̃, g̃) = G2.

2. Outline the proof that Hol(G̃, g̃) ⊂ G2.

3. Describe associated Poincaré-Einstein metrics.
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.
Let Wijkl = Weyl tensor, Cjkl = Cotton tensor of Nurowski’s g .

Define Lp : TpM × R → ⊗3T ∗
pM by

L(v , λ) = Wijklv
i + Cjklλ.

Impose: Lp is injective. Nondegeneracy condition on (W ,C ).

Let A ∈ Γ(S4D∗) be Cartan’s fundamental curvature invariant for
generic distributions D ⊂ TM5. A is a binary quartic.

Say that A is 3-nondegenerate at p if the only vector X ∈ Dp such
that A(X ,Y ,Y ,Y ) = 0 for all Y ∈ Dp is X = 0.

Theorem. Given (M,D) real analytic. If there are p, q ∈ M so
that Lp is injective and Aq is 3-nondegenerate, then g̃ has
holonomy = G2.
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Conditions for Hol(G̃, g̃) = G2

In particular, have Hol(G̃, g̃) = G2 if there is p ∈ M so that Lp is
injective and Ap is 3-nondegenerate.

Each condition is an algebraic condition on the 7-jet of F at p.

So if the 7-jet of F avoids a particular algebraic set at a single
point, then Hol(G̃, g̃) = G2.

This is a weak condition, explicitly checkable.
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Theorem. Hol(G̃, g̃) ⊂ G2.

Proof. Construct parallel ϕ. There are 2 steps:

1. Construct ϕ|G . Should be homogeneous of degree 3.

2. Extend ϕ|G to G̃ to be parallel.

Step 1. Construct ϕ|G

This reduces to a problem just involving conformal geometry of
(M, [g ])–no ambient considerations.

Reinterpret ϕ|G in terms of the tractor bundle of (M, [g ]).
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T is an associated bundle to the Cartan principal structure bundle.

Can alternately realize T as homogeneous sections of T G̃|G :
Recall metric bundle G, with π : G → M. If p ∈ M,

Tp =
{
U ∈ Γ(T G̃

∣∣
π−1(p)

) : (δs)∗U = sU, s > 0
}
.

The tractor metric and connection are induced from g̃ and ∇̃.

Conclusion. ϕ|G can be viewed as a section of Λ3T ∗: a tractor
3-form.
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If ∇̃ϕ = 0, in particular must have ∇̃X

(
ϕ|G

)
= 0 for X ∈ TG.

Equivalent to saying that ϕ|G is a parallel tractor 3-form associated
to (M, [g ]).

Existence of a parallel tractor 3-form follows from the Cartan
connection and the fact that G2 fixes a 3-form on R

7.

So this solves Step 1: construct ϕ|G such that ∇̃X

(
ϕ|G

)
= 0 for

X ∈ TG.

Remark. Other direction is true as well:

Theorem. (Hammerl-Sagerschnig, 2009) Nurowski’s conformal
structures (M, [g ]) associated to generic D are characterized by
the existence of a compatible parallel tractor 3-form.

This is a conformal holonomy characterization.
(Conformal holonomy = holonomy of tractor connection.)
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Parallel Extension Theorem

Step 2. Extend ϕ|G to G̃ to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.

Holds for general conformal structures in any signature and
dimension and for parallel tractors having arbitrary symmetry.

Let T = tractor bundle. Tractor-tensor means a section of ⊗rT ∗.

Theorem. Let (M, [g ]) be a conformal manifold, with ambient
metric g̃ . Suppose ϕ is a parallel tractor-tensor of rank r ∈ N.

If n is odd, then ϕ has an ambient extension ϕ̃ such that ∇̃ϕ̃
vanishes to infinite order along G.
If n is even, then ϕ has an ambient extension such that ∇̃ϕ̃
vanishes to order n/2− 1.

This had been previously proved by Gover for r = 1, different proof.

Immediately conclude Hol(G̃, g̃) ⊂ G2.
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−

has signature (p + 1, q) and Ric(g−) = −ng−.
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g+ and g− are asymptotically hyperbolic with (M, [g ]) as
conformal infinity. g± are defined on M × (0, ǫ) and

(r2g±)|TM = g .

Moreover, g̃ is a cone metric over g±:

g̃ = s2g+ + ds2 on {g̃(T ,T ) > 0}

g̃ = s2g− − ds2 on {g̃(T ,T ) < 0}

Constructing g̃ is equivalent to constructing g±.
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Suppose now that [g ] arises from D ⊂ TM5.

So g+ has signature (2, 4) and Ric(g+) = 5g+.

Proposition. g+ is nearly-Kähler of constant type 1.

Definition. A metric is nearly Kähler if there exists an orthogonal
almost complex structure J such that (∇X J)(X ) = 0 for all X .

Definition. g is nearly Kähler of constant type 1 if

|(∇X J)(Y )|2 = |X |2|Y |2 − 〈X ,Y 〉2 − 〈JX ,Y 〉2.

Similarly, g− is a signature (3, 3) metric with Ric(g−) = −5g−
which is “nearly-para-Kähler of constant type 1”.



Associated Poincaré Metrics
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Definition. A metric is nearly Kähler if there exists an orthogonal
almost complex structure J such that (∇X J)(X ) = 0 for all X .

Definition. g is nearly Kähler of constant type 1 if

|(∇X J)(Y )|2 = |X |2|Y |2 − 〈X ,Y 〉2 − 〈JX ,Y 〉2.

Similarly, g− is a signature (3, 3) metric with Ric(g−) = −5g−
which is “nearly-para-Kähler of constant type 1”.

So we obtain new examples of metrics of these types parametrized
by D ⊂ TM5.


