Conformal Geometry and Metrics of Holonomy Split G_2

Robin Graham University of Washington

Connections in Geometry and Physics Fields Institute May 14, 2011

Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q), p + q = n.

Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q), p + q = n.

Can define $\operatorname{Hol}(M,g)\subset SO_{\operatorname{e}}(p,q)$ (Restricted holonomy group)

Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q), p + q = n.

Can define $\operatorname{Hol}(M,g)\subset SO_{\operatorname{e}}(p,q)$ (Restricted holonomy group)

Hol(M,g) is all the linear transformations obtained by parallel translation around contractible loops.

Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q), p + q = n.

Can define $\operatorname{Hol}(M,g)\subset SO_e(p,q)$ (Restricted holonomy group)

Hol(M,g) is all the linear transformations obtained by parallel translation around contractible loops.

Hol(M, g) measures the structure preserved by parallel translation.

Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q), p + q = n.

Can define $\operatorname{Hol}(M,g)\subset SO_e(p,q)$ (Restricted holonomy group)

Hol(M,g) is all the linear transformations obtained by parallel translation around contractible loops.

Hol(M,g) measures the structure preserved by parallel translation.

Most (M,g) have holonomy $SO_e(p,q)$.

Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q), p + q = n.

Can define $\operatorname{Hol}(M,g)\subset SO_e(p,q)$ (Restricted holonomy group)

Hol(M,g) is all the linear transformations obtained by parallel translation around contractible loops.

Hol(M,g) measures the structure preserved by parallel translation.

Most (M,g) have holonomy $SO_e(p,q)$.

 $Hol(M, g) = \{e\}$ if and only if g is flat.

Let (M, g) be a connected pseudo-Riemannian manifold of signature (p, q), p + q = n.

Can define $\operatorname{Hol}(M,g)\subset SO_e(p,q)$ (Restricted holonomy group)

Hol(M,g) is all the linear transformations obtained by parallel translation around contractible loops.

Hol(M,g) measures the structure preserved by parallel translation.

Most (M, g) have holonomy $SO_e(p, q)$.

 $Hol(M, g) = \{e\}$ if and only if g is flat.

Example: Hol $(M, g) \subset U(n/2)$ if and only if g is Kähler.

Question. Which subgroups of $SO_e(p,q)$ can arise as Hol(M,g)?

Question. Which subgroups of $SO_e(p,q)$ can arise as Hol(M,g)?

Say that $G \subset SO_e(p,q)$ is irreducible if its action on \mathbb{R}^n has no nontrivial invariant subspaces.

Question. Which subgroups of $SO_e(p,q)$ can arise as Hol(M,g)?

Say that $G \subset SO_e(p,q)$ is irreducible if its action on \mathbb{R}^n has no nontrivial invariant subspaces.

In 1953 Berger derived list of irreducible subgroups for each p, q, n.

Question. Which subgroups of $SO_e(p,q)$ can arise as Hol(M,g)?

Say that $G \subset SO_e(p,q)$ is irreducible if its action on \mathbb{R}^n has no nontrivial invariant subspaces.

In 1953 Berger derived list of irreducible subgroups for each p, q, n.

Every irreducible subgroup of $SO_e(p,q)$ which arises as Hol(M,g) for some non-symmetric (M,g) is on the list.

Question. Which subgroups of $SO_e(p,q)$ can arise as Hol(M,g)?

Say that $G \subset SO_e(p,q)$ is irreducible if its action on \mathbb{R}^n has no nontrivial invariant subspaces.

In 1953 Berger derived list of irreducible subgroups for each p, q, n.

Every irreducible subgroup of $SO_e(p,q)$ which arises as Hol(M,g) for some non-symmetric (M,g) is on the list.

Question becomes: Does every group on Berger's list arise as a holonomy group?

Question. Which subgroups of $SO_e(p,q)$ can arise as Hol(M,g)?

Say that $G \subset SO_e(p,q)$ is irreducible if its action on \mathbb{R}^n has no nontrivial invariant subspaces.

In 1953 Berger derived list of irreducible subgroups for each p, q, n.

Every irreducible subgroup of $SO_e(p,q)$ which arises as Hol(M,g) for some non-symmetric (M,g) is on the list.

Question becomes: Does every group on Berger's list arise as a holonomy group?

For many, but not all, groups on the list, examples were known of (M,g) with that holonomy.

Other than $SO_e(p,q)$, every group on Berger's list occurs for n even, with two exceptions.

Other than $SO_e(p,q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for n = 7.

Other than $SO_e(p,q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for n = 7.

They are the two real forms of G_2 :

$$G_2^c \subset SO(7)$$
 and $G_2^s \subset SO(3,4)$.

Other than $SO_e(p,q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for n = 7.

They are the two real forms of G_2 :

$$G_2^c \subset SO(7)$$
 and $G_2^s \subset SO(3,4)$.

The existence question for these groups remained open until 1987.

Other than $SO_e(p,q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for n = 7.

They are the two real forms of G_2 :

$$G_2^c \subset SO(7)$$
 and $G_2^s \subset SO(3,4)$.

The existence question for these groups remained open until 1987.

Theorem. (R. Bryant, 1987) There exist metrics of holonomy equal to G_2^c and G_2^s .

Other than $SO_e(p,q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for n = 7.

They are the two real forms of G_2 :

$$G_2^c \subset SO(7)$$
 and $G_2^s \subset SO(3,4)$.

The existence question for these groups remained open until 1987.

Theorem. (R. Bryant, 1987) There exist metrics of holonomy equal to G_2^c and G_2^s .

More such metrics are known now, but they are not easy to come by. New examples are of interest.

Other than $SO_e(p,q)$, every group on Berger's list occurs for n even, with two exceptions.

Both exceptions occur for n = 7.

They are the two real forms of G_2 :

$$G_2^c \subset SO(7)$$
 and $G_2^s \subset SO(3,4)$.

The existence question for these groups remained open until 1987.

Theorem. (R. Bryant, 1987) There exist metrics of holonomy equal to G_2^c and G_2^s .

More such metrics are known now, but they are not easy to come by. New examples are of interest.

Manifolds of holonomy G_2^c arise in M-theory as an analogue of Calabi-Yau manifolds.

Let $\varphi \in \Lambda^3 \mathbb{R}^{7*}$.

Let
$$\varphi \in \Lambda^3 \mathbb{R}^{7*}$$
. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by
$$(X \, \lrcorner \, \varphi) \wedge (Y \, \lrcorner \, \varphi) \wedge \varphi = \langle X, \, Y \rangle_{\varphi} \, e_1^* \wedge \ldots \wedge e_7^*$$

Let
$$\varphi \in \Lambda^3 \mathbb{R}^{7*}$$
. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \, \lrcorner \, \varphi) \wedge (Y \, \lrcorner \, \varphi) \wedge \varphi = \langle X, Y \rangle_{\varphi} \, e_1^* \wedge \ldots \wedge e_7^*$$

Let
$$\varphi \in \Lambda^3 \mathbb{R}^{7*}$$
. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \, \lrcorner \, \varphi) \wedge (Y \, \lrcorner \, \varphi) \wedge \varphi = \langle X, Y \rangle_{\varphi} \, e_1^* \wedge \ldots \wedge e_7^*$$

Theorem.
$$\varphi$$
 nondegenerate \Longrightarrow $\pm \langle \cdot, \cdot \rangle_{\varphi}$ has signature (7,0) or (3,4).

Let
$$\varphi \in \Lambda^3 \mathbb{R}^{7*}.$$
 Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \,\lrcorner\, \varphi) \,\land\, (Y \,\lrcorner\, \varphi) \,\land\, \varphi = \langle X,\, Y \rangle_\varphi \; e_1^* \,\land\ldots \,\land\, e_7^*$$

Theorem. φ nondegenerate \Longrightarrow $\pm\langle\cdot,\cdot\rangle_{\varphi}$ has signature (7,0) or (3,4).

Say φ is compact type if (7,0)

Let $\varphi \in \Lambda^3 \mathbb{R}^{7*}$. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \,\lrcorner\, \varphi) \wedge (Y \,\lrcorner\, \varphi) \wedge \varphi = \langle X, Y \rangle_{\varphi} e_1^* \wedge \ldots \wedge e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_{\varphi}$ is nondegenerate.

Theorem. φ nondegenerate \Longrightarrow $\pm\langle\cdot,\cdot\rangle_{\varphi}$ has signature (7,0) or (3,4).

Say φ is compact type if (7,0) (φ^c) ,

Let
$$\varphi \in \Lambda^3 \mathbb{R}^{7*}$$
. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \, \lrcorner \, \varphi) \wedge (Y \, \lrcorner \, \varphi) \wedge \varphi = \langle X, Y \rangle_{\varphi} \, e_1^* \wedge \ldots \wedge e_7^*$$

Theorem. φ nondegenerate \Longrightarrow $\pm\langle\cdot,\cdot\rangle_{\varphi}$ has signature (7,0) or (3,4).

Say φ is compact type if (7,0) (φ^c), φ split type if (3,4)

Let $\varphi \in \Lambda^3 \mathbb{R}^{7*}$. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \, \lrcorner \, \varphi) \wedge (Y \, \lrcorner \, \varphi) \wedge \varphi = \langle X, Y \rangle_{\varphi} e_1^* \wedge \ldots \wedge e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_{\varphi}$ is nondegenerate.

Theorem. φ nondegenerate \Longrightarrow $\pm\langle\cdot,\cdot\rangle_{\varphi}$ has signature (7,0) or (3,4).

Say φ is compact type if (7,0) (φ^c), φ split type if (3,4) (φ^s).

Let
$$\varphi \in \Lambda^3 \mathbb{R}^{7*}$$
. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \sqcup \varphi) \land (Y \sqcup \varphi) \land \varphi = \langle X, Y \rangle_{\varphi} e_1^* \land \ldots \land e_7^*$$

Theorem. φ nondegenerate \Longrightarrow $\pm\langle\cdot,\cdot\rangle_{\varphi}$ has signature (7,0) or (3,4).

Say φ is compact type if (7,0) (φ^c), φ split type if (3,4) (φ^s).

Fact. φ^c and φ^s are unique up to $GL(7,\mathbb{R})$.

Let $\varphi \in \Lambda^3 \mathbb{R}^{7*}$. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \sqcup \varphi) \land (Y \sqcup \varphi) \land \varphi = \langle X, Y \rangle_{\varphi} e_1^* \land \ldots \land e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_{\varphi}$ is nondegenerate.

Theorem. φ nondegenerate \Longrightarrow $\pm \langle \cdot, \cdot \rangle_{\varphi}$ has signature (7,0) or (3,4).

Say φ is compact type if (7,0) (φ^c), φ split type if (3,4) (φ^s).

Fact. φ^c and φ^s are unique up to $GL(7,\mathbb{R})$.

Definition. $G_2^c = \{A \in GL(7,\mathbb{R}) : A^*\varphi^c = \varphi^c\} \subset SO(7)$ $G_2^s = \{A \in GL(7,\mathbb{R}) : A^*\varphi^s = \varphi^s\} \subset SO(3,4).$

Let $\varphi \in \Lambda^3 \mathbb{R}^{7*}$. Define $\langle \cdot, \cdot \rangle_{\varphi}$ by

$$(X \sqcup \varphi) \land (Y \sqcup \varphi) \land \varphi = \langle X, Y \rangle_{\varphi} e_1^* \land \ldots \land e_7^*$$

Definition. φ is nondegenerate if $\langle X, Y \rangle_{\varphi}$ is nondegenerate.

Theorem. φ nondegenerate \Longrightarrow $\pm\langle\cdot,\cdot\rangle_{\varphi}$ has signature (7,0) or (3,4).

Say φ is compact type if (7,0) (φ^c), φ split type if (3,4) (φ^s).

Fact. φ^c and φ^s are unique up to $GL(7,\mathbb{R})$.

Definition. $G_2^c = \{A \in GL(7,\mathbb{R}) : A^*\varphi^c = \varphi^c\} \subset SO(7)$ $G_2^s = \{A \in GL(7,\mathbb{R}) : A^*\varphi^s = \varphi^s\} \subset SO(3,4).$

From now on, $G_2 = G_2^s$.

2-plane Fields in Dimension 5

2-plane Fields in Dimension 5

Let $\mathcal{D} \subset TM^5$, dim $\mathcal{D}_x = 2$.

Let $\mathcal{D} \subset TM^5$, dim $\mathcal{D}_x = 2$. X, Y local frame.

Let $\mathcal{D} \subset TM^5$, dim $\mathcal{D}_x = 2$. X, Y local frame. Set Z = [X, Y].

Let $\mathcal{D} \subset TM^5$, dim $\mathcal{D}_x = 2$. X, Y local frame. Set Z = [X, Y].

Definition. \mathcal{D} is generic if X, Y, Z, [X, Z], [Y, Z] are everywhere linearly independent.

Let $\mathcal{D} \subset TM^5$, dim $\mathcal{D}_x = 2$. X, Y local frame. Set Z = [X, Y].

Definition. \mathcal{D} is generic if X, Y, Z, [X, Z], [Y, Z] are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D} . Constructed a principal bundle and Cartan connection.

Let $\mathcal{D} \subset TM^5$, dim $\mathcal{D}_x = 2$. X, Y local frame. Set Z = [X, Y].

Definition. \mathcal{D} is generic if X, Y, Z, [X, Z], [Y, Z] are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D} . Constructed a principal bundle and Cartan connection.

The model is $G_2/P \cong S^2 \times S^3$, $P \subset G_2$ parabolic subgroup.

Let $\mathcal{D} \subset TM^5$, dim $\mathcal{D}_x = 2$. X, Y local frame. Set Z = [X, Y].

Definition. \mathcal{D} is generic if X, Y, Z, [X, Z], [Y, Z] are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D} . Constructed a principal bundle and Cartan connection.

The model is $G_2/P \cong S^2 \times S^3$, $P \subset G_2$ parabolic subgroup.

So G_2 acts on $S^2 \times S^3$ preserving the model $\mathcal{D} \subset \mathcal{T}(S^2 \times S^3)$.

Let $\mathcal{D} \subset TM^5$, dim $\mathcal{D}_x = 2$. X, Y local frame. Set Z = [X, Y].

Definition. \mathcal{D} is generic if X, Y, Z, [X, Z], [Y, Z] are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D} . Constructed a principal bundle and Cartan connection.

The model is $G_2/P \cong S^2 \times S^3$, $P \subset G_2$ parabolic subgroup.

So G_2 acts on $S^2 \times S^3$ preserving the model $\mathcal{D} \subset \mathcal{T}(S^2 \times S^3)$.

The model $\mathcal{D} \subset \mathcal{T}(S^2 \times S^3)$ can be defined algebraically using the algebraic structure of the imaginary split octonians,

Let $\mathcal{D} \subset TM^5$, dim $\mathcal{D}_x = 2$. X, Y local frame. Set Z = [X, Y].

Definition. \mathcal{D} is generic if X, Y, Z, [X, Z], [Y, Z] are everywhere linearly independent.

E. Cartan (1910) solved the equivalence problem for such \mathcal{D} . Constructed a principal bundle and Cartan connection.

The model is $G_2/P \cong S^2 \times S^3$, $P \subset G_2$ parabolic subgroup.

So G_2 acts on $S^2 \times S^3$ preserving the model $\mathcal{D} \subset \mathcal{T}(S^2 \times S^3)$.

The model $\mathcal{D} \subset \mathcal{T}(S^2 \times S^3)$ can be defined algebraically using the algebraic structure of the imaginary split octonians,

or as a nonholonomic constraint in a classical mechanical system.

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions.

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C} = S^2 \times SO(3)$.

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $C = S^2 \times SO(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T\mathcal{C}$.

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $C = S^2 \times SO(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T\mathcal{C}$.

If $r_1 = r_2$, then \mathcal{D} is integrable.

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $C = S^2 \times SO(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T\mathcal{C}$.

If $r_1 = r_2$, then $\mathcal D$ is integrable. Otherwise $\mathcal D$ is generic.

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^2\times SO(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T\mathcal{C}$.

If $r_1 = r_2$, then $\mathcal D$ is integrable. Otherwise $\mathcal D$ is generic.

The group of local diffeomorphisms of $S^2 \times SO(3)$ preserving $\mathcal D$ contains $SO(3) \times SO(3)$

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^2\times SO(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T\mathcal{C}$.

If $r_1 = r_2$, then $\mathcal D$ is integrable. Otherwise $\mathcal D$ is generic.

The group of local diffeomorphisms of $S^2 \times SO(3)$ preserving \mathcal{D} contains $SO(3) \times SO(3)$ with equality if $(r_1/r_2)^{\pm 1} \neq \sqrt{3}$.

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^2\times SO(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T\mathcal{C}$.

If $r_1 = r_2$, then $\mathcal D$ is integrable. Otherwise $\mathcal D$ is generic.

The group of local diffeomorphisms of $S^2 \times SO(3)$ preserving \mathcal{D} contains $SO(3) \times SO(3)$ with equality if $(r_1/r_2)^{\pm 1} \neq \sqrt{3}$.

But if $r_1/r_2 = \sqrt{3}$, this local symmetry group is G_2 .

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $\mathcal{C}=S^2\times SO(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T\mathcal{C}$.

If $r_1=r_2$, then $\mathcal D$ is integrable. Otherwise $\mathcal D$ is generic.

The group of local diffeomorphisms of $S^2 \times SO(3)$ preserving \mathcal{D} contains $SO(3) \times SO(3)$ with equality if $(r_1/r_2)^{\pm 1} \neq \sqrt{3}$.

But if $r_1/r_2 = \sqrt{3}$, this local symmetry group is G_2 .

Lift $\mathcal D$ via the double cover $S^2 \times S^3 \to S^2 \times SO(3)$.

Consider 2 balls in \mathbb{R}^3 of radii r_1 , r_2 rolling on one another without slipping or spinning.

Identify configurations equivalent under Euclidean motions. The configuration space is then $C = S^2 \times SO(3)$.

The no-slip, no-spin constraint defines a distribution $\mathcal{D} \subset T\mathcal{C}.$

If $r_1 = r_2$, then $\mathcal D$ is integrable. Otherwise $\mathcal D$ is generic.

The group of local diffeomorphisms of $S^2 \times SO(3)$ preserving \mathcal{D} contains $SO(3) \times SO(3)$ with equality if $(r_1/r_2)^{\pm 1} \neq \sqrt{3}$.

But if $r_1/r_2 = \sqrt{3}$, this local symmetry group is G_2 .

Lift \mathcal{D} via the double cover $S^2 \times S^3 \rightarrow S^2 \times SO(3)$.

This gives the model $\mathcal{D} \subset \mathcal{T}(S^2 \times S^3)$.

How does G_2 act on $S^2 \times S^3$?

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider
$$\mathbb{R}^{p+q+2} = \{(x, y) : x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\}$$

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2}=\{(x,y):x\in\mathbb{R}^{p+1},y\in\mathbb{R}^{q+1}\}$ with quadratic form $|x|^2-|y|^2$

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2} = \{(x,y) : x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\}$ with quadratic form $|x|^2 - |y|^2$ and null cone $\mathcal{N} = \{|x|^2 = |y|^2\}$.

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2}=\{(x,y):x\in\mathbb{R}^{p+1},y\in\mathbb{R}^{q+1}\}$ with quadratic form $|x|^2-|y|^2$ and null cone $\mathcal{N}=\{|x|^2=|y|^2\}$.

Then
$$\mathcal{N}/\mathbb{R}_+ = \{|x|^2 = |y|^2 = 1\} = S^p \times S^q$$
.

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2} = \{(x,y) : x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\}$ with quadratic form $|x|^2 - |y|^2$ and null cone $\mathcal{N} = \{|x|^2 = |y|^2\}$.

Then
$$\mathcal{N}/\mathbb{R}_+ = \{|x|^2 = |y|^2 = 1\} = S^p \times S^q$$
.

SO(p+1,q+1) acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N} ;

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2}=\{(x,y):x\in\mathbb{R}^{p+1},y\in\mathbb{R}^{q+1}\}$ with quadratic form $|x|^2-|y|^2$ and null cone $\mathcal{N}=\{|x|^2=|y|^2\}$.

Then
$$\mathcal{N}/\mathbb{R}_+ = \{|x|^2 = |y|^2 = 1\} = S^p \times S^q$$
.

SO(p+1,q+1) acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N} ; this induces an action on $S^p \times S^q$.

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2}=\{(x,y):x\in\mathbb{R}^{p+1},y\in\mathbb{R}^{q+1}\}$ with quadratic form $|x|^2-|y|^2$ and null cone $\mathcal{N}=\{|x|^2=|y|^2\}$.

Then
$$\mathcal{N}/\mathbb{R}_+ = \{|x|^2 = |y|^2 = 1\} = S^p \times S^q$$
.

SO(p+1,q+1) acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N} ; this induces an action on $S^p \times S^q$.

This action preserves the (p,q) metric $g_{S^p} - g_{S^q}$ up to scale and realizes SO(p+1,q+1) as the conformal group of $S^p \times S^q$.

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2}=\{(x,y):x\in\mathbb{R}^{p+1},y\in\mathbb{R}^{q+1}\}$ with quadratic form $|x|^2-|y|^2$ and null cone $\mathcal{N}=\{|x|^2=|y|^2\}$.

Then
$$\mathcal{N}/\mathbb{R}_+ = \{|x|^2 = |y|^2 = 1\} = S^p \times S^q$$
.

SO(p+1,q+1) acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N} ; this induces an action on $S^p \times S^q$.

This action preserves the (p,q) metric $g_{S^p} - g_{S^q}$ up to scale and realizes SO(p+1,q+1) as the conformal group of $S^p \times S^q$.

Now recall $G_2 \subset SO(3,4)$

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2}=\{(x,y):x\in\mathbb{R}^{p+1},y\in\mathbb{R}^{q+1}\}$ with quadratic form $|x|^2-|y|^2$ and null cone $\mathcal{N}=\{|x|^2=|y|^2\}$.

Then
$$\mathcal{N}/\mathbb{R}_+ = \{|x|^2 = |y|^2 = 1\} = S^p \times S^q$$
.

SO(p+1,q+1) acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N} ; this induces an action on $S^p \times S^q$.

This action preserves the (p,q) metric $g_{S^p} - g_{S^q}$ up to scale and realizes SO(p+1,q+1) as the conformal group of $S^p \times S^q$.

Now recall $G_2 \subset SO(3,4) = \text{conformal group of } S^2 \times S^3$.

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2}=\{(x,y):x\in\mathbb{R}^{p+1},y\in\mathbb{R}^{q+1}\}$ with quadratic form $|x|^2-|y|^2$ and null cone $\mathcal{N}=\{|x|^2=|y|^2\}$.

Then
$$\mathcal{N}/\mathbb{R}_+ = \{|x|^2 = |y|^2 = 1\} = S^p \times S^q$$
.

SO(p+1,q+1) acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N} ; this induces an action on $S^p \times S^q$.

This action preserves the (p,q) metric $g_{S^p} - g_{S^q}$ up to scale and realizes SO(p+1,q+1) as the conformal group of $S^p \times S^q$.

Now recall $G_2 \subset SO(3,4) = \text{conformal group of } S^2 \times S^3$.

This conformal action of G_2 is the action preserving \mathcal{D} .

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2} = \{(x,y) : x \in \mathbb{R}^{p+1}, y \in \mathbb{R}^{q+1}\}$ with quadratic form $|x|^2 - |y|^2$ and null cone $\mathcal{N} = \{|x|^2 = |y|^2\}$.

Then $\mathcal{N}/\mathbb{R}_+ = \{|x|^2 = |y|^2 = 1\} = S^p \times S^q$.

SO(p+1,q+1) acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N} ; this induces an action on $S^p \times S^q$.

This action preserves the (p,q) metric $g_{S^p} - g_{S^q}$ up to scale and realizes SO(p+1,q+1) as the conformal group of $S^p \times S^q$.

Now recall $G_2 \subset SO(3,4) = \text{conformal group of } S^2 \times S^3$.

This conformal action of G_2 is the action preserving \mathcal{D} .

So any diffeomorphism preserving \mathcal{D} also preserves the (2,3) conformal structure on $S^2 \times S^3$!

How does G_2 act on $S^2 \times S^3$? By conformal transformations!

Consider $\mathbb{R}^{p+q+2}=\{(x,y):x\in\mathbb{R}^{p+1},y\in\mathbb{R}^{q+1}\}$ with quadratic form $|x|^2-|y|^2$ and null cone $\mathcal{N}=\{|x|^2=|y|^2\}$.

Then $\mathcal{N}/\mathbb{R}_+ = \{|x|^2 = |y|^2 = 1\} = S^p \times S^q$.

SO(p+1,q+1) acts linearly on \mathbb{R}^{p+q+2} preserving \mathcal{N} ; this induces an action on $S^p \times S^q$.

This action preserves the (p,q) metric $g_{S^p} - g_{S^q}$ up to scale and realizes SO(p+1,q+1) as the conformal group of $S^p \times S^q$.

Now recall $G_2 \subset SO(3,4) = \text{conformal group of } S^2 \times S^3$.

This conformal action of G_2 is the action preserving \mathcal{D} .

So any diffeomorphism preserving \mathcal{D} also preserves the (2,3) conformal structure on $S^2 \times S^3$! True locally too.

Nurowski's Conformal Structures

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset TM^5$ generic. There is a conformal class [g] on M of signature (2,3) associated to \mathcal{D} .

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset TM^5$ generic. There is a conformal class [g] on M of signature (2,3) associated to \mathcal{D} .

Follows immediately from the existence of the Cartan connection.

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset TM^5$ generic. There is a conformal class [g] on M of signature (2,3) associated to \mathcal{D} .

Follows immediately from the existence of the Cartan connection.

For any \mathcal{D} , can choose local coordinates (x, y, z, p, q) on M so that

$$\mathcal{D} = \mathsf{span}\{\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z\}$$

where F = F(x, y, z, p, q) and F_{qq} is nonvanishing.

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset TM^5$ generic. There is a conformal class [g] on M of signature (2,3) associated to \mathcal{D} .

Follows immediately from the existence of the Cartan connection.

For any \mathcal{D} , can choose local coordinates (x, y, z, p, q) on M so that

$$\mathcal{D} = \mathsf{span}\{\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z\}$$

where F = F(x, y, z, p, q) and F_{qq} is nonvanishing.

 $F = q^2$ for the model.

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset TM^5$ generic. There is a conformal class [g] on M of signature (2,3) associated to \mathcal{D} .

Follows immediately from the existence of the Cartan connection.

For any \mathcal{D} , can choose local coordinates (x, y, z, p, q) on M so that

$$\mathcal{D} = \mathsf{span}\{\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z\}$$

where F = F(x, y, z, p, q) and F_{qq} is nonvanishing.

 $F = q^2$ for the model.

Nurowski gives a formula for g in terms of F and its derivatives of orders ≤ 4 .

Theorem. (Nurowski, 2005) Any $\mathcal{D} \subset TM^5$ generic. There is a conformal class [g] on M of signature (2,3) associated to \mathcal{D} .

Follows immediately from the existence of the Cartan connection.

For any \mathcal{D} , can choose local coordinates (x, y, z, p, q) on M so that

$$\mathcal{D} = \mathsf{span}\{\partial_q, \partial_x + p\partial_y + q\partial_p + F\partial_z\}$$

where F = F(x, y, z, p, q) and F_{qq} is nonvanishing.

 $F = q^2$ for the model.

Nurowski gives a formula for g in terms of F and its derivatives of orders ≤ 4 .

Approximately 70 terms. Very nasty.

Given conformal manifold (M, [g]) of signature (p, q), p + q = n.

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2

Given conformal manifold (M,[g]) of signature (p,q), p+q=n. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$

Given conformal manifold (M, [g]) of signature (p, q), p + q = n. Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n + 2 with an embedded

hypersurface $\mathcal{G} \subset \widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Conformally flat case: for $M=S^p \times S^q$, $g=g_{S^p}-g_{S^q}$,

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Conformally flat case: for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$,

Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Conformally flat case: for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$,

Obtain
$$\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$$
,

$$\mathcal{G} = \mathcal{N} = \text{null cone of } |x|^2 - |y|^2$$

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Conformally flat case: for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$,

Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,

$$\mathcal{G} = \mathcal{N} = \text{null cone of } |x|^2 - |y|^2$$

The ambient metric is the flat metric $\tilde{g} = |dx|^2 - |dy|^2$.

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Conformally flat case: for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$,

Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,

$$G = \mathcal{N} = \text{null cone of } |x|^2 - |y|^2$$

The ambient metric is the flat metric $\tilde{g} = |dx|^2 - |dy|^2$.

General case:

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Conformally flat case: for $M=S^p \times S^q$, $g=g_{S^p}-g_{S^q}$,

Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,

$$\mathcal{G} = \mathcal{N} = \text{null cone of } |x|^2 - |y|^2$$

The ambient metric is the flat metric $\tilde{g} = |dx|^2 - |dy|^2$.

General case:

Let $\mathcal{G} = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^*M$. Metric bundle.

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Conformally flat case: for $M=S^p \times S^q$, $g=g_{S^p}-g_{S^q}$,

Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,

$$\mathcal{G} = \mathcal{N} = \text{null cone of } |x|^2 - |y|^2$$

The ambient metric is the flat metric $\tilde{g} = |dx|^2 - |dy|^2$.

General case:

Let
$$\mathcal{G} = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^*M$$
. Metric bundle.

Dilations $\delta_s:\mathcal{G} o\mathcal{G}$

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Conformally flat case: for $M=S^p \times S^q$, $g=g_{S^p}-g_{S^q}$,

Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,

$$\mathcal{G} = \mathcal{N} = \text{null cone of } |x|^2 - |y|^2$$

The ambient metric is the flat metric $\tilde{g} = |dx|^2 - |dy|^2$.

General case:

Let
$$\mathcal{G} = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^*M$$
. Metric bundle.

Dilations
$$\delta_s: \mathcal{G} \to \mathcal{G}$$
 $\delta_s(x, g_x) = (x, s^2 g_x)$

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Conformally flat case: for $M=S^p \times S^q$, $g=g_{S^p}-g_{S^q}$,

Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,

$$\mathcal{G} = \mathcal{N} = \text{null cone of } |x|^2 - |y|^2$$

The ambient metric is the flat metric $\tilde{g} = |dx|^2 - |dy|^2$.

General case:

Let
$$\mathcal{G} = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^*M$$
. Metric bundle.

Dilations
$$\delta_s:\mathcal{G} \to \mathcal{G}$$
 $\delta_s(x,g_x)=(x,s^2g_x)$

Set
$$\widetilde{\mathcal{G}} = \mathcal{G} \times (-1,1)$$
.

Given conformal manifold (M,[g]) of signature (p,q), p+q=n.

Obtain a manifold $\widetilde{\mathcal{G}}$ of dimension n+2 with an embedded hypersurface $\mathcal{G}\subset\widetilde{\mathcal{G}}$ and a formal expansion along \mathcal{G} for a metric \widetilde{g} on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1).

Conformally flat case: for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$,

Obtain $\widetilde{\mathcal{G}}=\mathbb{R}^{p+q+2}$,

$$\mathcal{G} = \mathcal{N} = \text{null cone of } |x|^2 - |y|^2$$

The ambient metric is the flat metric $\tilde{g} = |dx|^2 - |dy|^2$.

General case:

Let $\mathcal{G} = \{(x, g_x) : x \in M, g \in [g]\} \subset S^2 T^*M$. Metric bundle.

Dilations
$$\delta_s:\mathcal{G} o\mathcal{G}$$
 $\delta_s(x,g_x)=(x,s^2g_x)$

$$\mathsf{Set}\ \widetilde{\mathcal{G}} = \mathcal{G} \times (-1,1). \qquad \mathsf{Inclusion:} \qquad \iota: \mathcal{G} \underset{\mathsf{d}}{\rightarrow} \widetilde{\mathcal{G}}_{\mathsf{log}} \ \iota(z) = (z,0)_{\mathsf{d}} \ \underset{\mathsf{d}}{\rightarrow} \mathsf{log} \ \mathsf{log}$$

$$ullet$$
 $\delta_s^*\widetilde{g}=s^2\widetilde{g}$ Homogeneous

- $\delta_s^* \widetilde{g} = s^2 \widetilde{g}$ Homogeneous
- \bullet Initial condition on ${\cal G}$ determined by the conformal structure

- $\delta_s^* \widetilde{g} = s^2 \widetilde{g}$ Homogeneous
- \bullet Initial condition on ${\cal G}$ determined by the conformal structure
- $Ric(\tilde{g}) = 0$ to infinite order on G.

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1). Required to satisfy:

- ullet $\delta_s^*\widetilde{g}=s^2\widetilde{g}$ Homogeneous
- ullet Initial condition on ${\mathcal G}$ determined by the conformal structure
- $Ric(\widetilde{g}) = 0$ to infinite order on G.

Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \widetilde{g} , unique to infinite order up to diffeomorphism.

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1). Required to satisfy:

- $\delta_s^* \widetilde{g} = s^2 \widetilde{g}$ Homogeneous
- ullet Initial condition on ${\mathcal G}$ determined by the conformal structure
- $Ric(\widetilde{g}) = 0$ to infinite order on \mathcal{G} .

Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \widetilde{g} , unique to infinite order up to diffeomorphism.

If (M, g) is real-analytic, then series for \widetilde{g} converges.

The ambient metric \widetilde{g} is a metric on $\widetilde{\mathcal{G}}$ of signature (p+1,q+1). Required to satisfy:

- $\delta_s^* \widetilde{g} = s^2 \widetilde{g}$ Homogeneous
- ullet Initial condition on ${\cal G}$ determined by the conformal structure
- $Ric(\widetilde{g}) = 0$ to infinite order on \mathcal{G} .

Theorem (C. Fefferman-G., 1985) If n is odd, there exists such \widetilde{g} , unique to infinite order up to diffeomorphism.

If (M, g) is real-analytic, then series for \widetilde{g} converges.

If n is even, there is a formal obstruction at order n/2.

Put these together:

$$\mathcal{D} \subset \mathit{TM}^5 \stackrel{\mathit{Nurowski}}{\to} (\mathit{M},[\mathit{g}]) \stackrel{\mathit{Ambientmetric}}{\to} (\widetilde{\mathcal{G}}^7,\widetilde{\mathit{g}})$$

Put these together:

$$\mathcal{D} \subset TM^5 \stackrel{Nurowski}{\rightarrow} (M,[g]) \stackrel{Ambientmetric}{\rightarrow} (\widetilde{\mathcal{G}}^7,\widetilde{g})$$

Produces a metric \widetilde{g} of signature (3,4) from \mathcal{D} .

Put these together:

$$\mathcal{D} \subset \mathit{TM}^5 \stackrel{\mathit{Nurowski}}{\to} (\mathit{M},[\mathit{g}]) \stackrel{\mathit{Ambientmetric}}{\to} (\widetilde{\mathcal{G}}^7,\widetilde{\mathit{g}})$$

Produces a metric \widetilde{g} of signature (3,4) from \mathcal{D} .

Nurowski (2007). Consider $\mathcal{D}\subset T\mathbb{R}^5$ given by

$$F=q^2+\sum_{k=0}^6a_kp^k+bz, \qquad a_k,b\in\mathbb{R}$$

Put these together:

$$\mathcal{D} \subset TM^5 \stackrel{Nurowski}{\rightarrow} (M,[g]) \stackrel{Ambientmetric}{\rightarrow} (\widetilde{\mathcal{G}}^7,\widetilde{g})$$

Produces a metric \widetilde{g} of signature (3,4) from \mathcal{D} .

Nurowski (2007). Consider $\mathcal{D} \subset T\mathbb{R}^5$ given by

$$F=q^2+\sum_{k=0}^6 a_k p^k+bz, \qquad a_k,b\in\mathbb{R}$$

Then can write \widetilde{g} explicitly.

Put these together:

$$\mathcal{D} \subset \mathit{TM}^5 \quad \overset{\mathit{Nurowski}}{\to} \quad (\mathit{M},[\mathit{g}]) \quad \overset{\mathit{Ambientmetric}}{\to} \quad (\widetilde{\mathcal{G}}^7,\widetilde{\mathit{g}})$$

Produces a metric \widetilde{g} of signature (3,4) from \mathcal{D} .

Nurowski (2007). Consider $\mathcal{D} \subset T\mathbb{R}^5$ given by

$$F=q^2+\sum_{k=0}^6 a_k p^k+bz, \qquad a_k,b\in\mathbb{R}$$

Then can write \widetilde{g} explicitly. Expansion terminates at order 2.

Put these together:

$$\mathcal{D} \subset \mathit{TM}^5 \stackrel{\mathit{Nurowski}}{\to} (\mathit{M},[\mathit{g}]) \stackrel{\mathit{Ambientmetric}}{\to} (\widetilde{\mathcal{G}}^7,\widetilde{\mathit{g}})$$

Produces a metric \widetilde{g} of signature (3,4) from \mathcal{D} .

Nurowski (2007). Consider $\mathcal{D} \subset T\mathbb{R}^5$ given by

$$F=q^2+\sum_{k=0}^6 a_k p^k+bz, \qquad a_k,b\in\mathbb{R}$$

Then can write \widetilde{g} explicitly. Expansion terminates at order 2.

Theorem. (Leistner-Nurowski, 2009) F as above.

ullet For all a_k , b, have $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$

Put these together:

$$\mathcal{D} \subset \mathit{TM}^5 \stackrel{\mathit{Nurowski}}{\to} (\mathit{M},[\mathit{g}]) \stackrel{\mathit{Ambientmetric}}{\to} (\widetilde{\mathcal{G}}^7,\widetilde{\mathit{g}})$$

Produces a metric \widetilde{g} of signature (3,4) from \mathcal{D} .

Nurowski (2007). Consider $\mathcal{D} \subset T\mathbb{R}^5$ given by

$$F=q^2+\sum_{k=0}^6 a_k p^k+bz, \qquad a_k,b\in\mathbb{R}$$

Then can write \widetilde{g} explicitly. Expansion terminates at order 2.

Theorem. (Leistner-Nurowski, 2009) *F* as above.

- ullet For all a_k , b, have $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$
- If one of a_3 , a_4 , a_5 , $a_6 \neq 0$, then $\mathsf{Hol}(\widetilde{\mathcal{G}},\widetilde{\mathsf{g}}) = \mathcal{G}_2$.

Gives a completely explicit 8-parameter family of metrics of holonomy G_2 .

Gives a completely explicit 8-parameter family of metrics of holonomy G_2 .

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ compatible with the metric.

Gives a completely explicit 8-parameter family of metrics of holonomy G_2 .

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ compatible with the metric.

For model \mathcal{D} on $S^2 \times S^3 = G_2/P$, have

Gives a completely explicit 8-parameter family of metrics of holonomy G_2 .

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ compatible with the metric.

For model \mathcal{D} on $S^2 \times S^3 = \mathcal{G}_2/P$, have

 $\widetilde{g} = \text{flat metric of signature (3,4) on } \mathbb{R}^7.$

Gives a completely explicit 8-parameter family of metrics of holonomy G_2 .

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ compatible with the metric.

For model ${\mathcal D}$ on $S^2 imes S^3 = {\it G}_2/P$, have

 $\widetilde{g} = \text{flat metric of signature (3,4) on } \mathbb{R}^7.$

Take $\varphi =$ the three form on \mathbb{R}^7 defining G_2 .

Gives a completely explicit 8-parameter family of metrics of holonomy G_2 .

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ compatible with the metric.

For model ${\mathcal D}$ on $S^2 imes S^3 = {\it G}_2/P$, have

 $\widetilde{g} = \text{flat metric of signature (3,4) on } \mathbb{R}^7.$

Take φ = the three form on \mathbb{R}^7 defining G_2 .

Leistner-Nurowski write down φ for their F's explicitly.

Gives a completely explicit 8-parameter family of metrics of holonomy G_2 .

To show a metric in dimension 7 has holonomy $\subset G_2$, need to construct a parallel 3-form φ compatible with the metric.

For model \mathcal{D} on $S^2 \times S^3 = \mathcal{G}_2/P$, have

 $\widetilde{g} = \text{flat metric of signature } (3,4) \text{ on } \mathbb{R}^7.$

Take φ = the three form on \mathbb{R}^7 defining G_2 .

Leistner-Nurowski write down φ for their F's explicitly.

But what about \widetilde{g} for other \mathcal{D} ?

Work with Travis Willse.

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

• $\operatorname{\mathsf{Hol}}(\widetilde{\mathcal{G}},\widetilde{\mathsf{g}})\subset \mathsf{G}_2$ always.

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\operatorname{\mathsf{Hol}}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$ for an explicit open dense set of \mathcal{D} .

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\operatorname{\mathsf{Hol}}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$ for an explicit open dense set of \mathcal{D} .

So we obtain an infinite-dimensional space of metrics \tilde{g} of holonomy G_2 , parametrized by an almost arbitrary generic 2-plane field \mathcal{D} .

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\operatorname{\mathsf{Hol}}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$ for an explicit open dense set of \mathcal{D} .

So we obtain an infinite-dimensional space of metrics \tilde{g} of holonomy G_2 , parametrized by an almost arbitrary generic 2-plane field \mathcal{D} .

In the remaining time:

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\operatorname{\mathsf{Hol}}(\widetilde{\mathcal{G}},\widetilde{\mathsf{g}})\subset \mathsf{G}_2$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$ for an explicit open dense set of \mathcal{D} .

So we obtain an infinite-dimensional space of metrics \tilde{g} of holonomy G_2 , parametrized by an almost arbitrary generic 2-plane field \mathcal{D} .

In the remaining time:

1. Formulate conditions for $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})=\mathit{G}_{2}.$

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\operatorname{\mathsf{Hol}}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$ for an explicit open dense set of \mathcal{D} .

So we obtain an infinite-dimensional space of metrics \tilde{g} of holonomy G_2 , parametrized by an almost arbitrary generic 2-plane field \mathcal{D} .

In the remaining time:

- 1. Formulate conditions for $Hol(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$.
- 2. Outline the proof that $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$.

Work with Travis Willse.

Theorem. Let $\mathcal{D} \subset TM^5$ be generic and real-analytic.

- $\operatorname{\mathsf{Hol}}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$ always.
- $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$ for an explicit open dense set of \mathcal{D} .

So we obtain an infinite-dimensional space of metrics \widetilde{g} of holonomy G_2 , parametrized by an almost arbitrary generic 2-plane field \mathcal{D} .

In the remaining time:

- 1. Formulate conditions for $Hol(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$.
- 2. Outline the proof that $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$.
- 3. Describe associated Poincaré-Einstein metrics.

.

Let $W_{ijkl} =$ Weyl tensor, $C_{jkl} =$ Cotton tensor of Nurowski's g.

Let $W_{ijkl} =$ Weyl tensor, $C_{jkl} =$ Cotton tensor of Nurowski's g.

Define $L_p: T_pM imes \mathbb{R} o \otimes^3 T_p^*M$ by

$$L(v,\lambda)=W_{ijkl}v^{i}+C_{jkl}\lambda.$$

Let $W_{ijkl} = \text{Weyl tensor}$, $C_{jkl} = \text{Cotton tensor}$ of Nurowski's g.

Define $L_p: T_pM \times \mathbb{R} \to \otimes^3 T_p^*M$ by

$$L(v,\lambda)=W_{ijkl}v^{i}+C_{jkl}\lambda.$$

Impose: L_p is injective.

Let W_{ijkl} = Weyl tensor, C_{jkl} = Cotton tensor of Nurowski's g.

Define $L_p: T_pM imes \mathbb{R} o \otimes^3 T_p^*M$ by

$$L(v,\lambda)=W_{ijkl}v^{i}+C_{jkl}\lambda.$$

Impose: L_p is injective. Nondegeneracy condition on (W, C).

Let W_{ijkl} = Weyl tensor, C_{jkl} = Cotton tensor of Nurowski's g.

Define $L_p: T_pM \times \mathbb{R} \to \otimes^3 T_p^*M$ by

$$L(v,\lambda)=W_{ijkl}v^{i}+C_{jkl}\lambda.$$

Impose: L_p is injective. Nondegeneracy condition on (W, C).

Let $A \in \Gamma(S^4\mathcal{D}^*)$ be Cartan's fundamental curvature invariant for generic distributions $\mathcal{D} \subset TM^5$.

Let W_{ijkl} = Weyl tensor, C_{jkl} = Cotton tensor of Nurowski's g.

Define $L_p: T_pM \times \mathbb{R} \to \otimes^3 T_p^*M$ by

$$L(v,\lambda)=W_{ijkl}v^{i}+C_{jkl}\lambda.$$

Impose: L_p is injective. Nondegeneracy condition on (W, C).

Let $\mathcal{A} \in \Gamma(S^4\mathcal{D}^*)$ be Cartan's fundamental curvature invariant for generic distributions $\mathcal{D} \subset TM^5$. \mathcal{A} is a binary quartic.

Let W_{ijkl} = Weyl tensor, C_{jkl} = Cotton tensor of Nurowski's g.

Define $L_p: T_pM \times \mathbb{R} \to \otimes^3 T_p^*M$ by

$$L(v,\lambda)=W_{ijkl}v^i+C_{jkl}\lambda.$$

Impose: L_p is injective. Nondegeneracy condition on (W, C).

Let $\mathcal{A} \in \Gamma(S^4\mathcal{D}^*)$ be Cartan's fundamental curvature invariant for generic distributions $\mathcal{D} \subset TM^5$. \mathcal{A} is a binary quartic.

Say that \mathcal{A} is 3-nondegenerate at p if the only vector $X \in \mathcal{D}_p$ such that $\mathcal{A}(X,Y,Y,Y)=0$ for all $Y \in \mathcal{D}_p$ is X=0.

Conditions for $Hol(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$

Let W_{ijkl} = Weyl tensor, C_{jkl} = Cotton tensor of Nurowski's g.

Define $L_p: T_pM \times \mathbb{R} \to \otimes^3 T_p^*M$ by

$$L(v,\lambda)=W_{ijkl}v^i+C_{jkl}\lambda.$$

Impose: L_p is injective. Nondegeneracy condition on (W, C).

Let $\mathcal{A} \in \Gamma(S^4\mathcal{D}^*)$ be Cartan's fundamental curvature invariant for generic distributions $\mathcal{D} \subset TM^5$. \mathcal{A} is a binary quartic.

Say that \mathcal{A} is 3-nondegenerate at p if the only vector $X \in \mathcal{D}_p$ such that $\mathcal{A}(X,Y,Y,Y)=0$ for all $Y \in \mathcal{D}_p$ is X=0.

Theorem. Given (M, \mathcal{D}) real analytic. If there are $p, q \in M$ so that L_p is injective and A_q is 3-nondegenerate, then \widetilde{g} has holonomy $= G_2$.

In particular, have $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})=G_2$ if there is $p\in M$ so that L_p is injective and \mathcal{A}_p is 3-nondegenerate.

In particular, have $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})=G_2$ if there is $p\in M$ so that L_p is injective and \mathcal{A}_p is 3-nondegenerate.

Each condition is an algebraic condition on the 7-jet of F at p.

In particular, have $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})=G_2$ if there is $p\in M$ so that L_p is injective and \mathcal{A}_p is 3-nondegenerate.

Each condition is an algebraic condition on the 7-jet of F at p.

So if the 7-jet of F avoids a particular algebraic set at a single point, then $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$.

In particular, have $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$ if there is $p \in M$ so that L_p is injective and \mathcal{A}_p is 3-nondegenerate.

Each condition is an algebraic condition on the 7-jet of F at p.

So if the 7-jet of F avoids a particular algebraic set at a single point, then $\operatorname{Hol}(\widetilde{\mathcal{G}}, \widetilde{g}) = G_2$.

This is a weak condition, explicitly checkable.

Proof that $\mathsf{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathit{G}_2$

Proof that $\mathsf{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathit{G}_2$

Let $\mathcal{D} \subset TM^5$,

Proof that $\mathsf{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathit{G}_2$

Let $\mathcal{D} \subset TM^5$, [g] = Nurowski's,

Proof that $\mathsf{Hol}(\widetilde{\mathcal{G}},\widetilde{\mathsf{g}})\subset \mathsf{G}_2$

Let $\mathcal{D} \subset TM^5$, [g] = Nurowski's, $\widetilde{g} = \text{ambient metric}$.

Proof that $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$

Let $\mathcal{D} \subset TM^5$, [g] = Nurowski's, $\widetilde{g} = \text{ambient metric}$.

Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathcal{G}_2.$

Proof that $\operatorname{\mathsf{Hol}}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$

Let $\mathcal{D} \subset TM^5$, [g] = Nurowski's, $\widetilde{g} = \text{ambient metric}$.

Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathcal{G}_2$.

Proof. Construct parallel φ .

Let $\mathcal{D} \subset TM^5$, [g] = Nurowski's, $\widetilde{g} = \text{ambient metric}$.

Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathcal{G}_2.$

Proof. Construct parallel φ . There are 2 steps:

Let $\mathcal{D} \subset TM^5$, [g] = Nurowski's, $\widetilde{g} = \text{ambient metric}$.

Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathcal{G}_2.$

Proof. Construct parallel φ . There are 2 steps:

1. Construct $\varphi|_{\mathcal{G}}$. Should be homogeneous of degree 3.

Let $\mathcal{D} \subset TM^5$, [g] = Nurowski's, $\widetilde{g} = \text{ambient metric}$.

Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathcal{G}_2.$

Proof. Construct parallel φ . There are 2 steps:

- 1. Construct $\varphi|_{\mathcal{G}}$. Should be homogeneous of degree 3.
- 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel.

Proof that $\operatorname{\mathsf{Hol}}(\widetilde{\mathcal{G}},\overline{\widetilde{\mathsf{g}}})\subset\overline{\mathsf{G}_2}$

Let $\mathcal{D} \subset TM^5$, [g] = Nurowski's, $\widetilde{g} = \text{ambient metric}$.

Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathcal{G}_2.$

Proof. Construct parallel φ . There are 2 steps:

- 1. Construct $\varphi|_{\mathcal{G}}$. Should be homogeneous of degree 3.
- 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel.

Step 1. Construct $\varphi|_{\mathcal{G}}$

Let $\mathcal{D} \subset TM^5$, [g] = Nurowski's, $\widetilde{g} = \text{ambient metric}$.

Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2.$

Proof. Construct parallel φ . There are 2 steps:

- 1. Construct $\varphi|_{\mathcal{G}}$. Should be homogeneous of degree 3.
- 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel.

Step 1. Construct $\varphi|_{\mathcal{G}}$

This reduces to a problem just involving conformal geometry of (M, [g])—no ambient considerations.

Proof that $\mathsf{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset G_2$

Let $\mathcal{D} \subset TM^5$, [g] = Nurowski's, $\widetilde{g} = \text{ambient metric}$.

Theorem. $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathcal{G}_2.$

Proof. Construct parallel φ . There are 2 steps:

- 1. Construct $\varphi|_{\mathcal{G}}$. Should be homogeneous of degree 3.
- 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel.

Step 1. Construct $\varphi|_{\mathcal{G}}$

This reduces to a problem just involving conformal geometry of (M, [g])—no ambient considerations.

Reinterpret $\varphi|_{\mathcal{G}}$ in terms of the tractor bundle of (M,[g]).

(M, [g]) conformal manifold.

(M,[g]) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

(M,[g]) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank n+2 vector bundle $\mathcal{T} \to M$ with fiber metric of signature (p+1,q+1) and connection ∇ .

(M,[g]) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank n+2 vector bundle $\mathcal{T} \to M$ with fiber metric of signature (p+1,q+1) and connection ∇ .

 ${\mathcal T}$ is an associated bundle to the Cartan principal structure bundle.

(M,[g]) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank n+2 vector bundle $\mathcal{T} \to M$ with fiber metric of signature (p+1,q+1) and connection ∇ .

 $\ensuremath{\mathcal{T}}$ is an associated bundle to the Cartan principal structure bundle.

Can alternately realize $\mathcal T$ as homogeneous sections of $T\widetilde{\mathcal G}|_{\mathcal G}$:

(M,[g]) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank n+2 vector bundle $\mathcal{T} \to M$ with fiber metric of signature (p+1,q+1) and connection ∇ .

 $\ensuremath{\mathcal{T}}$ is an associated bundle to the Cartan principal structure bundle.

Can alternately realize $\mathcal T$ as homogeneous sections of $T\mathcal G|_{\mathcal G}$: Recall metric bundle $\mathcal G$, with $\pi:\mathcal G\to M$.

(M,[g]) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank n+2 vector bundle $\mathcal{T} \to M$ with fiber metric of signature (p+1,q+1) and connection ∇ .

 $\ensuremath{\mathcal{T}}$ is an associated bundle to the Cartan principal structure bundle.

Can alternately realize $\mathcal T$ as homogeneous sections of $T\widetilde{\mathcal G}|_{\mathcal G}$: Recall metric bundle $\mathcal G$, with $\pi:\mathcal G\to M$. If $p\in M$,

(M,[g]) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank n+2 vector bundle $\mathcal{T} \to M$ with fiber metric of signature (p+1,q+1) and connection ∇ .

 $\ensuremath{\mathcal{T}}$ is an associated bundle to the Cartan principal structure bundle.

Can alternately realize $\mathcal T$ as homogeneous sections of $T\widetilde{\mathcal G}|_{\mathcal G}$: Recall metric bundle $\mathcal G$, with $\pi:\mathcal G\to M$. If $p\in M$,

$$\mathcal{T}_{p} = \left\{ U \in \Gamma(T\widetilde{\mathcal{G}} \big|_{\pi^{-1}(p)}) : (\delta_{s})_{*}U = sU, \ s > 0 \right\}.$$

(M,[g]) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank n+2 vector bundle $\mathcal{T} \to M$ with fiber metric of signature (p+1,q+1) and connection ∇ .

 ${\cal T}$ is an associated bundle to the Cartan principal structure bundle.

Can alternately realize \mathcal{T} as homogeneous sections of $T\widetilde{\mathcal{G}}|_{\mathcal{G}}$: Recall metric bundle \mathcal{G} , with $\pi:\mathcal{G}\to M$. If $p\in M$,

$$\mathcal{T}_p = \left\{ U \in \Gamma(T\widetilde{\mathcal{G}} \big|_{\pi^{-1}(p)}) : (\delta_s)_* U = sU, \ s > 0 \right\}.$$

The tractor metric and connection are induced from \widetilde{g} and $\widetilde{\nabla}$.

(M,[g]) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank n+2 vector bundle $\mathcal{T} \to M$ with fiber metric of signature (p+1,q+1) and connection ∇ .

 ${\cal T}$ is an associated bundle to the Cartan principal structure bundle.

Can alternately realize \mathcal{T} as homogeneous sections of $T\widetilde{\mathcal{G}}|_{\mathcal{G}}$: Recall metric bundle \mathcal{G} , with $\pi:\mathcal{G}\to M$. If $p\in M$,

$$\mathcal{T}_p = \left\{ U \in \Gamma(T\widetilde{\mathcal{G}} \big|_{\pi^{-1}(p)}) : (\delta_s)_* U = sU, \ s > 0 \right\}.$$

The tractor metric and connection are induced from \widetilde{g} and $\widetilde{\nabla}.$

Conclusion. $\varphi|_{\mathcal{G}}$ can be viewed as a section of $\Lambda^3\mathcal{T}^*$:

(M,[g]) conformal manifold. The tractor connection is the conformal analogue of the Levi-Civita connection:

There is a rank n+2 vector bundle $\mathcal{T} \to M$ with fiber metric of signature (p+1,q+1) and connection ∇ .

 $\ensuremath{\mathcal{T}}$ is an associated bundle to the Cartan principal structure bundle.

Can alternately realize $\mathcal T$ as homogeneous sections of $T\widetilde{\mathcal G}|_{\mathcal G}$: Recall metric bundle $\mathcal G$, with $\pi:\mathcal G\to M$. If $p\in M$,

$$\mathcal{T}_{p} = \left\{ U \in \Gamma(T\widetilde{\mathcal{G}} \big|_{\pi^{-1}(p)}) : (\delta_{s})_{*}U = sU, \ s > 0 \right\}.$$

The tractor metric and connection are induced from \widetilde{g} and $\widetilde{\nabla}$.

Conclusion. $\varphi|_{\mathcal{G}}$ can be viewed as a section of $\Lambda^3\mathcal{T}^*$: a tractor 3-form.

If $\widetilde{\nabla} \varphi = 0$, in particular must have $\widetilde{\nabla}_X \big(\varphi|_{\mathcal{G}} \big) = 0$ for $X \in \mathcal{TG}$.

If $\widetilde{\nabla}\varphi=0$, in particular must have $\widetilde{\nabla}_X\big(\varphi|_{\mathcal{G}}\big)=0$ for $X\in\mathcal{TG}$.

Equivalent to saying that $\varphi|_{\mathcal{G}}$ is a parallel tractor 3-form associated to (M,[g]).

If $\widetilde{\nabla}\varphi=0$, in particular must have $\widetilde{\nabla}_X\big(\varphi|_{\mathcal{G}}\big)=0$ for $X\in\mathcal{TG}$.

Equivalent to saying that $\varphi|_{\mathcal{G}}$ is a parallel tractor 3-form associated to (M,[g]).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_2 fixes a 3-form on \mathbb{R}^7 .

If $\widetilde{\nabla}\varphi=0$, in particular must have $\widetilde{\nabla}_X\big(\varphi|_{\mathcal{G}}\big)=0$ for $X\in\mathcal{TG}$.

Equivalent to saying that $\varphi|_{\mathcal{G}}$ is a parallel tractor 3-form associated to (M, [g]).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_2 fixes a 3-form on \mathbb{R}^7 .

So this solves Step 1: construct $\varphi|_{\mathcal{G}}$ such that $\overset{\sim}{\nabla}_X (\varphi|_{\mathcal{G}}) = 0$ for $X \in \mathcal{TG}$.

If $\widetilde{\nabla}\varphi=0$, in particular must have $\widetilde{\nabla}_X\big(\varphi|_{\mathcal{G}}\big)=0$ for $X\in\mathcal{TG}$.

Equivalent to saying that $\varphi|_{\mathcal{G}}$ is a parallel tractor 3-form associated to (M, [g]).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_2 fixes a 3-form on \mathbb{R}^7 .

So this solves Step 1: construct $\varphi|_{\mathcal{G}}$ such that $\widetilde{\nabla}_X (\varphi|_{\mathcal{G}}) = 0$ for $X \in T\mathcal{G}$.

Remark. Other direction is true as well:

If $\widetilde{\nabla}\varphi=0$, in particular must have $\widetilde{\nabla}_X\big(\varphi|_{\mathcal{G}}\big)=0$ for $X\in\mathcal{TG}$.

Equivalent to saying that $\varphi|_{\mathcal{G}}$ is a parallel tractor 3-form associated to (M,[g]).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_2 fixes a 3-form on \mathbb{R}^7 .

So this solves Step 1: construct $\varphi|_{\mathcal{G}}$ such that $\overset{\sim}{\nabla}_X (\varphi|_{\mathcal{G}}) = 0$ for $X \in \mathcal{TG}$.

Remark. Other direction is true as well:

Theorem. (Hammerl-Sagerschnig, 2009) Nurowski's conformal structures (M, [g]) associated to generic \mathcal{D} are characterized by the existence of a compatible parallel tractor 3-form.

If $\widetilde{\nabla}\varphi=0$, in particular must have $\widetilde{\nabla}_X\big(\varphi|_{\mathcal{G}}\big)=0$ for $X\in\mathcal{TG}$.

Equivalent to saying that $\varphi|_{\mathcal{G}}$ is a parallel tractor 3-form associated to (M,[g]).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_2 fixes a 3-form on \mathbb{R}^7 .

So this solves Step 1: construct $\varphi|_{\mathcal{G}}$ such that $\overset{\sim}{\nabla}_X (\varphi|_{\mathcal{G}}) = 0$ for $X \in \mathcal{TG}$.

Remark. Other direction is true as well:

Theorem. (Hammerl-Sagerschnig, 2009) Nurowski's conformal structures (M, [g]) associated to generic \mathcal{D} are characterized by the existence of a compatible parallel tractor 3-form.

This is a conformal holonomy characterization.

If $\widetilde{\nabla}\varphi=0$, in particular must have $\widetilde{\nabla}_X\big(\varphi|_{\mathcal{G}}\big)=0$ for $X\in\mathcal{TG}$.

Equivalent to saying that $\varphi|_{\mathcal{G}}$ is a parallel tractor 3-form associated to (M, [g]).

Existence of a parallel tractor 3-form follows from the Cartan connection and the fact that G_2 fixes a 3-form on \mathbb{R}^7 .

So this solves Step 1: construct $\varphi|_{\mathcal{G}}$ such that $\widetilde{\nabla}_X (\varphi|_{\mathcal{G}}) = 0$ for $X \in T\mathcal{G}$.

Remark. Other direction is true as well:

Theorem. (Hammerl-Sagerschnig, 2009) Nurowski's conformal structures (M, [g]) associated to generic \mathcal{D} are characterized by the existence of a compatible parallel tractor 3-form.

This is a conformal holonomy characterization. (Conformal holonomy = holonomy of tractor connection.)

Step 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

Step 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.

Step 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.

Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Step 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.

Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let $\mathcal{T}=$ tractor bundle.

Step 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.

Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let T = tractor bundle. Tractor-tensor means a section of $\otimes^r T^*$.

Step 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.

Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let $\mathcal{T}=$ tractor bundle. Tractor-tensor means a section of $\otimes^r \mathcal{T}^*$.

Theorem. Let (M, [g]) be a conformal manifold, with ambient metric \widetilde{g} . Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

Step 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.

Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let T = tractor bundle. Tractor-tensor means a section of $\otimes^r T^*$.

Theorem. Let (M, [g]) be a conformal manifold, with ambient metric \tilde{g} . Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

• If n is odd, then φ has an ambient extension $\widetilde{\varphi}$ such that $\widetilde{\nabla}\widetilde{\varphi}$ vanishes to infinite order along \mathcal{G} .

Parallel Extension Theorem

Step 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.

Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let T = tractor bundle. Tractor-tensor means a section of $\otimes^r T^*$.

Theorem. Let (M, [g]) be a conformal manifold, with ambient metric \tilde{g} . Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\widetilde{\varphi}$ such that $\widetilde{\nabla}\widetilde{\varphi}$ vanishes to infinite order along \mathcal{G} .
- If n is even, then φ has an ambient extension such that $\widetilde{\nabla}\widetilde{\varphi}$ vanishes to order n/2-1.

Parallel Extension Theorem

Step 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.

Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let T = tractor bundle. Tractor-tensor means a section of $\otimes^r T^*$.

Theorem. Let (M, [g]) be a conformal manifold, with ambient metric \tilde{g} . Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\widetilde{\varphi}$ such that $\widetilde{\nabla}\widetilde{\varphi}$ vanishes to infinite order along \mathcal{G} .
- If n is even, then φ has an ambient extension such that $\widetilde{\nabla}\widetilde{\varphi}$ vanishes to order n/2-1.

This had been previously proved by Gover for r = 1, different proof.

Parallel Extension Theorem

Step 2. Extend $\varphi|_{\mathcal{G}}$ to $\widetilde{\mathcal{G}}$ to be parallel

We prove an ambient extension theorem for parallel tractor-tensors.

Holds for general conformal structures in any signature and dimension and for parallel tractors having arbitrary symmetry.

Let T = tractor bundle. Tractor-tensor means a section of $\otimes^r T^*$.

Theorem. Let (M, [g]) be a conformal manifold, with ambient metric \widetilde{g} . Suppose φ is a parallel tractor-tensor of rank $r \in \mathbb{N}$.

- If n is odd, then φ has an ambient extension $\widetilde{\varphi}$ such that $\widetilde{\nabla}\widetilde{\varphi}$ vanishes to infinite order along \mathcal{G} .
- If n is even, then φ has an ambient extension such that $\widetilde{\nabla}\widetilde{\varphi}$ vanishes to order n/2-1.

This had been previously proved by Gover for r = 1, different proof.

Immediately conclude $\operatorname{Hol}(\widetilde{\mathcal{G}},\widetilde{g})\subset \mathit{G}_{2}.$

Recall: ambient metric for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$ is $\widetilde{g} = |dx|^2 - |dy|^2$ on \mathbb{R}^{n+2}

Recall: ambient metric for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$ is $\widetilde{g} = |dx|^2 - |dy|^2$ on \mathbb{R}^{n+2} and $S^p \times S^q = \mathcal{N}/\mathbb{R}_+$.

Recall: ambient metric for
$$M=S^p\times S^q$$
, $g=g_{S^p}-g_{S^q}$ is $\widetilde{g}=|dx|^2-|dy|^2$ on \mathbb{R}^{n+2} and $S^p\times S^q=\mathcal{N}/\mathbb{R}_+$.
Let $\mathcal{H}_+=\{|x|^2-|y|^2=1\}$

Recall: ambient metric for $M=S^p\times S^q$, $g=g_{S^p}-g_{S^q}$ is $\widetilde{g}=|dx|^2-|dy|^2$ on \mathbb{R}^{n+2} and $S^p\times S^q=\mathcal{N}/\mathbb{R}_+$.

Let
$$\mathcal{H}_+ = \{|x|^2 - |y|^2 = 1\}$$
 and $\mathcal{H}_- = \{|x|^2 - |y|^2 = -1\}$.

Recall: ambient metric for
$$M=S^p\times S^q$$
, $g=g_{S^p}-g_{S^q}$ is $\widetilde{g}=|dx|^2-|dy|^2$ on \mathbb{R}^{n+2} and $S^p\times S^q=\mathcal{N}/\mathbb{R}_+.$ Let $\mathcal{H}_+=\{|x|^2-|y|^2=1\}$ and $\mathcal{H}_-=\{|x|^2-|y|^2=-1\}.$ Then $g_+=\widetilde{g}|_{\mathcal{TH}_+}$ has signature $(p,q+1)$

Recall: ambient metric for $M=S^p\times S^q$, $g=g_{S^p}-g_{S^q}$ is $\widetilde{g}=|dx|^2-|dy|^2$ on \mathbb{R}^{n+2} and $S^p\times S^q=\mathcal{N}/\mathbb{R}_+$.

Let
$$\mathcal{H}_+ = \{|x|^2 - |y|^2 = 1\}$$
 and $\mathcal{H}_- = \{|x|^2 - |y|^2 = -1\}.$

Then $g_+ = \widetilde{g}|_{\mathcal{TH}_+}$ has signature (p,q+1) and curvature +1.

Recall: ambient metric for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$ is $\widetilde{g} = |dx|^2 - |dy|^2$ on \mathbb{R}^{n+2} and $S^p \times S^q = \mathcal{N}/\mathbb{R}_+$.

Let
$$\mathcal{H}_+ = \{|x|^2 - |y|^2 = 1\}$$
 and $\mathcal{H}_- = \{|x|^2 - |y|^2 = -1\}.$

Then $g_+ = \widetilde{g}|_{\mathcal{TH}_+}$ has signature (p, q+1) and curvature +1.

Likewise $g_-=\widetilde{g}|_{\mathcal{TH}_-}$ has signature (p+1,q) and curvature -1.

Recall: ambient metric for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$ is $\widetilde{g} = |dx|^2 - |dy|^2$ on \mathbb{R}^{n+2} and $S^p \times S^q = \mathcal{N}/\mathbb{R}_+$.

Let
$$\mathcal{H}_+ = \{|x|^2 - |y|^2 = 1\}$$
 and $\mathcal{H}_- = \{|x|^2 - |y|^2 = -1\}.$

Then $g_+ = \widetilde{g}|_{T\mathcal{H}_+}$ has signature (p,q+1) and curvature +1.

Likewise $g_-=\widetilde{g}|_{\mathcal{TH}_-}$ has signature (p+1,q) and curvature -1.

Recall: ambient metric for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$ is $\widetilde{g} = |dx|^2 - |dy|^2$ on \mathbb{R}^{n+2} and $S^p \times S^q = \mathcal{N}/\mathbb{R}_+$.

Let
$$\mathcal{H}_+ = \{|x|^2 - |y|^2 = 1\}$$
 and $\mathcal{H}_- = \{|x|^2 - |y|^2 = -1\}.$

Then $g_+ = \widetilde{g}|_{\mathcal{TH}_+}$ has signature (p, q+1) and curvature +1.

Likewise $g_-=\widetilde{g}|_{\mathcal{TH}_-}$ has signature (p+1,q) and curvature -1.

Let
$$\mathcal{T} = rac{d}{ds} \delta_s |_{s=1}$$

Recall: ambient metric for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$ is $\widetilde{g} = |dx|^2 - |dy|^2$ on \mathbb{R}^{n+2} and $S^p \times S^q = \mathcal{N}/\mathbb{R}_+$.

Let
$$\mathcal{H}_+ = \{|x|^2 - |y|^2 = 1\}$$
 and $\mathcal{H}_- = \{|x|^2 - |y|^2 = -1\}.$

Then $g_+ = \widetilde{g}|_{\mathcal{TH}_+}$ has signature (p, q+1) and curvature +1.

Likewise $g_-=\widetilde{g}|_{\mathcal{TH}_-}$ has signature (p+1,q) and curvature -1.

Let
$$T = \frac{d}{ds} \delta_s |_{s=1}$$
 Infinitesimal dilation

Recall: ambient metric for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$ is $\widetilde{g} = |dx|^2 - |dy|^2$ on \mathbb{R}^{n+2} and $S^p \times S^q = \mathcal{N}/\mathbb{R}_+$.

Let
$$\mathcal{H}_+ = \{|x|^2 - |y|^2 = 1\}$$
 and $\mathcal{H}_- = \{|x|^2 - |y|^2 = -1\}.$

Then $g_+ = \widetilde{g}|_{\mathcal{TH}_+}$ has signature (p, q+1) and curvature +1.

Likewise $g_-=\widetilde{g}|_{\mathcal{TH}_-}$ has signature (p+1,q) and curvature -1.

Let
$$T = \frac{d}{ds} \delta_s|_{s=1}$$
 Infinitesimal dilation

Set
$$\mathcal{H}_+ = \{\widetilde{g}(T, T) = 1\}$$

Recall: ambient metric for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$ is $\widetilde{g} = |dx|^2 - |dy|^2$ on \mathbb{R}^{n+2} and $S^p \times S^q = \mathcal{N}/\mathbb{R}_+$.

Let
$$\mathcal{H}_+ = \{|x|^2 - |y|^2 = 1\}$$
 and $\mathcal{H}_- = \{|x|^2 - |y|^2 = -1\}.$

Then $g_+ = \widetilde{g}|_{\mathcal{TH}_+}$ has signature (p, q+1) and curvature +1.

Likewise $g_-=\widetilde{g}|_{\mathcal{TH}_-}$ has signature (p+1,q) and curvature -1.

Let
$$T = \frac{d}{ds} \delta_s|_{s=1}$$
 Infinitesimal dilation

Set
$$\mathcal{H}_+ = \{\widetilde{g}(T,T) = 1\}$$
 and $\mathcal{H}_- = \{\widetilde{g}(T,T) = -1\}$.

Recall: ambient metric for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$ is $\widetilde{g} = |dx|^2 - |dy|^2$ on \mathbb{R}^{n+2} and $S^p \times S^q = \mathcal{N}/\mathbb{R}_+$.

Let
$$\mathcal{H}_+ = \{|x|^2 - |y|^2 = 1\}$$
 and $\mathcal{H}_- = \{|x|^2 - |y|^2 = -1\}.$

Then $g_+ = \widetilde{g}|_{\mathcal{TH}_+}$ has signature (p, q+1) and curvature +1.

Likewise $g_-=\widetilde{g}|_{\mathcal{TH}_-}$ has signature (p+1,q) and curvature -1.

Let
$$T = \frac{d}{ds} \delta_s|_{s=1}$$
 Infinitesimal dilation

Set
$$\mathcal{H}_+=\{\widetilde{g}(T,T)=1\}$$
 and $\mathcal{H}_-=\{\widetilde{g}(T,T)=-1\}.$

Then
$$g_+ = \widetilde{g}|_{\mathcal{TH}_+}$$
 has signature $(p,q+1)$ and $\mathrm{Ric}(g_+) = ng_+$.

Recall: ambient metric for $M = S^p \times S^q$, $g = g_{S^p} - g_{S^q}$ is $\widetilde{g} = |dx|^2 - |dy|^2$ on \mathbb{R}^{n+2} and $S^p \times S^q = \mathcal{N}/\mathbb{R}_+$.

Let
$$\mathcal{H}_+ = \{|x|^2 - |y|^2 = 1\}$$
 and $\mathcal{H}_- = \{|x|^2 - |y|^2 = -1\}.$

Then $g_+ = \widetilde{g}|_{\mathcal{TH}_+}$ has signature (p,q+1) and curvature +1.

Likewise $g_-=\widetilde{g}|_{\mathcal{TH}_-}$ has signature (p+1,q) and curvature -1.

Analogous construction for general (M, [g]):

Let $T = \frac{d}{ds} \delta_s|_{s=1}$ Infinitesimal dilation

Set
$$\mathcal{H}_+ = \{\widetilde{g}(T,T) = 1\}$$
 and $\mathcal{H}_- = \{\widetilde{g}(T,T) = -1\}$.

Then
$$g_+ = \widetilde{g}|_{\mathcal{TH}_+}$$
 has signature $(p, q+1)$ and $\mathrm{Ric}(g_+) = ng_+$.

And $g_- = \widetilde{g}|_{\mathcal{TH}_-}$ has signature (p+1,q) and $\mathrm{Ric}(g_-) = -ng_-$.

 g_+ and g_- are asymptotically hyperbolic with (M,[g]) as conformal infinity.

 g_+ and g_- are asymptotically hyperbolic with (M,[g]) as conformal infinity. g_\pm are defined on $M \times (0,\epsilon)$

 g_+ and g_- are asymptotically hyperbolic with (M,[g]) as conformal infinity. g_\pm are defined on $M \times (0,\epsilon)$ and

$$(r^2g_\pm)|_{TM}=g.$$

 g_+ and g_- are asymptotically hyperbolic with (M,[g]) as conformal infinity. g_\pm are defined on $M \times (0,\epsilon)$ and

$$(r^2g_\pm)|_{TM}=g.$$

Moreover, \widetilde{g} is a cone metric over g_{\pm} :

 g_+ and g_- are asymptotically hyperbolic with (M,[g]) as conformal infinity. g_\pm are defined on $M \times (0,\epsilon)$ and

$$(r^2g_\pm)|_{TM}=g.$$

Moreover, \widetilde{g} is a cone metric over g_{\pm} :

$$\widetilde{g} = s^2 g_+ + ds^2$$
 on $\{\widetilde{g}(T,T) > 0\}$

 g_+ and g_- are asymptotically hyperbolic with (M,[g]) as conformal infinity. g_\pm are defined on $M \times (0,\epsilon)$ and

$$(r^2g_\pm)|_{TM}=g.$$

Moreover, \widetilde{g} is a cone metric over g_{\pm} :

$$\widetilde{g} = s^2 g_+ + ds^2$$
 on $\{\widetilde{g}(T,T) > 0\}$

$$\widetilde{g} = s^2 g_- - ds^2$$
 on $\{\widetilde{g}(T, T) < 0\}$

 g_+ and g_- are asymptotically hyperbolic with (M,[g]) as conformal infinity. g_\pm are defined on $M \times (0,\epsilon)$ and

$$(r^2g_\pm)|_{TM}=g.$$

Moreover, \widetilde{g} is a cone metric over g_{\pm} :

$$\widetilde{g} = s^2 g_+ + ds^2$$
 on $\{\widetilde{g}(T, T) > 0\}$

$$\widetilde{g} = s^2 g_- - ds^2$$
 on $\{\widetilde{g}(T, T) < 0\}$

Constructing \widetilde{g} is equivalent to constructing g_{\pm} .

Suppose now that [g] arises from $\mathcal{D} \subset TM^5$.

Suppose now that [g] arises from $\mathcal{D} \subset TM^5$.

So g_+ has signature (2,4) and $Ric(g_+) = 5g_+$.

Suppose now that [g] arises from $\mathcal{D} \subset TM^5$.

So g_+ has signature (2,4) and $Ric(g_+) = 5g_+$.

Proposition. g_+ is nearly-Kähler of constant type 1.

Suppose now that [g] arises from $\mathcal{D} \subset TM^5$.

So g_+ has signature (2,4) and $Ric(g_+) = 5g_+$.

Proposition. g_+ is nearly-Kähler of constant type 1.

Definition. A metric is nearly Kähler if there exists an orthogonal almost complex structure J such that $(\nabla_X J)(X) = 0$ for all X.

Suppose now that [g] arises from $\mathcal{D} \subset TM^5$.

So g_+ has signature (2,4) and $Ric(g_+) = 5g_+$.

Proposition. g_+ is nearly-Kähler of constant type 1.

Definition. A metric is nearly Kähler if there exists an orthogonal almost complex structure J such that $(\nabla_X J)(X) = 0$ for all X.

Definition. g is nearly Kähler of constant type 1 if

$$|(\nabla_X J)(Y)|^2 = |X|^2 |Y|^2 - \langle X, Y \rangle^2 - \langle JX, Y \rangle^2.$$

Suppose now that [g] arises from $\mathcal{D} \subset TM^5$.

So g_+ has signature (2,4) and $Ric(g_+) = 5g_+$.

Proposition. g_+ is nearly-Kähler of constant type 1.

Definition. A metric is nearly Kähler if there exists an orthogonal almost complex structure J such that $(\nabla_X J)(X) = 0$ for all X.

Definition. g is nearly Kähler of constant type 1 if

$$|(\nabla_X J)(Y)|^2 = |X|^2 |Y|^2 - \langle X, Y \rangle^2 - \langle JX, Y \rangle^2.$$

Similarly, g_- is a signature (3,3) metric with $Ric(g_-) = -5g_-$ which is "nearly-para-Kähler of constant type 1".

Suppose now that [g] arises from $\mathcal{D} \subset TM^5$.

So g_+ has signature (2,4) and $Ric(g_+) = 5g_+$.

Proposition. g_+ is nearly-Kähler of constant type 1.

Definition. A metric is nearly Kähler if there exists an orthogonal almost complex structure J such that $(\nabla_X J)(X) = 0$ for all X.

Definition. g is nearly Kähler of constant type 1 if

$$|(\nabla_X J)(Y)|^2 = |X|^2 |Y|^2 - \langle X, Y \rangle^2 - \langle JX, Y \rangle^2.$$

Similarly, g_- is a signature (3,3) metric with $Ric(g_-) = -5g_-$ which is "nearly-para-Kähler of constant type 1".

So we obtain new examples of metrics of these types parametrized by $\mathcal{D}\subset TM^5$.