Ergodic properties of some canonical systems driven by thermostats

Tatiana Yarmola

Fields Institute

April 4, 2011

[Lin and Young 2010]

- Γ ⊂ T² a bounded horizon billiard table with convex scatterers.
 - specular particle reflections $v'_{\perp} = -v_{\perp}$; $v'_{t} = v_{t}$.
- D_1, \dots, D_N convex scatterers acting as thermostats:
 - $\beta_1 = \frac{1}{T_1}, \cdots, \beta_N = \frac{1}{T_N}$
 - $V'_{\perp} = -V_{\perp};$
 - v_t' is randomly drawn from $\sqrt{rac{eta_i}{\pi}}e^{-eta_i v_t^2} dv_t$
- particles do not interact with each other

[Lin and Young 2010]

- $\Gamma \subset \mathbb{T}^2$ a bounded horizon billiard table with convex scatterers.
 - specular particle reflections $v'_{\perp} = -v_{\perp}$; $v'_{t} = v_{t}$.
- D_1, \dots, D_N convex scatterers acting as thermostats:

-
$$\beta_1 = \frac{1}{T_1}, \cdots, \beta_N = \frac{1}{T_N}$$

-
$$V'_{\perp} = -V_{\perp};$$

- v_t' is randomly drawn from $\sqrt{\frac{eta_i}{\pi}}e^{-eta_iv_t^2}dv_t$
- particles do not interact with each other

[Lin and Young 2010]

- Γ ⊂ T² a bounded horizon billiard table with convex scatterers.
 - specular particle reflections $v'_{\perp} = -v_{\perp}$; $v'_{t} = v_{t}$.
- D_1, \dots, D_N convex scatterers acting as thermostats:
 - $\beta_1 = \frac{1}{T_1}, \cdots, \beta_N = \frac{1}{T_N}$
 - $\mathbf{v}'_{\perp} = -\mathbf{v}_{\perp};$
 - v_t' is randomly drawn from $\sqrt{rac{eta_i}{\pi}} \, \mathrm{e}^{-eta_i v_t^2} \, \mathrm{d} v_t$
- particles do not interact with each other.

[Lin and Young 2010]

- $\Gamma \subset \mathbb{T}^2$ a bounded horizon billiard table with convex scatterers.
 - specular particle reflections $v'_{\perp} = -v_{\perp}$; $v'_{t} = v_{t}$.
- D_1, \dots, D_N convex scatterers acting as thermostats:
 - $-\beta_1 = \frac{1}{T_1}, \cdots, \beta_N = \frac{1}{T_N}$
 - $\mathbf{v}'_{\perp} = -\mathbf{v}_{\perp};$
 - v_t' is randomly drawn from $\sqrt{rac{eta_i}{\pi}} \, \mathrm{e}^{-eta_i v_t^2} \, \mathrm{d} v_t$
- particles do not interact with each other.

Continuous Dynamics

- No particle interactions ⇒ can work with one particle
- The Phase Space $\Omega = \{(x, v) : x \in \Gamma, v \in \mathbb{R}^2\} / \sim$
- Markov Process Φ_τ
 - deterministic billiard flow between collisions with thermostats.
 - v_t replaced by randomly drawn v_t' from $\sqrt{\frac{\beta_i}{\pi}}e^{-\beta_i v_t^2} dv_t$.

Continuous Dynamics

- No particle interactions ⇒ can work with one particle
- The Phase Space $\Omega = \{(x, v) : x \in \Gamma, v \in \mathbb{R}^2\} / \sim$
- Markov Process Φ_τ
 - deterministic billiard flow between collisions with thermostats.
 - v_t replaced by randomly drawn v_t' from $\sqrt{\frac{\beta_i}{g}}e^{-\beta_i v_t^2}dv_t$.

Continuous Dynamics

- No particle interactions ⇒ can work with one particle
- The Phase Space $\Omega = \{(x, v) : x \in \Gamma, v \in \mathbb{R}^2\} / \sim$
- Markov Process Φ_τ
 - deterministic billiard flow between collisions with thermostats.
 - v_t replaced by randomly drawn v_t' from $\sqrt{\frac{\beta_t}{\pi}} e^{-\beta_i v_t^2} dv_t$.

- Choose variables $r \in \partial \Gamma$, $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, and $v_{\perp} \in [0, \infty)$.
- Perturbation occurs only in φ variable with density $\rho_{v_{\perp}}(\varphi) = \sqrt{\frac{\beta}{\pi}} \frac{v_{\perp}}{\cos^2(\varphi)} e^{-\beta v_{\perp}^2 \tan^2(\varphi)} d\varphi$.
- Define the Markov Chain Φ on $X = \{(r, v_{\perp}) : r \in \partial \Gamma, v_{\perp} \in [0, \infty)\}$ by first drawing φ and then applying the billiard map
- Denote the transition probability kernel of Φ by $\mathcal{P},$ i.e.

$$\mathcal{P}((r, v_{\perp}), A) = P(\Phi_n \in A | \Phi_{n-1} = (r, v_{\perp}))$$

- Choose variables $r \in \partial \Gamma$, $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, and $v_{\perp} \in [0, \infty)$.
- Perturbation occurs only in φ variable with density $\rho_{\nu_{\perp}}(\varphi) = \sqrt{\frac{\beta}{\pi}} \frac{\nu_{\perp}}{\cos^2(\varphi)} e^{-\beta v_{\perp}^2 \tan^2(\varphi)} d\varphi$.
- Define the Markov Chain Φ on $X = \{(r, v_{\perp}) : r \in \partial \Gamma, v_{\perp} \in [0, \infty)\}$ by first drawing φ and then applying the billiard map
- Denote the transition probability kernel of Φ by \mathcal{P} , i.e.

$$\mathcal{P}((r, v_{\perp}), A) = P(\Phi_n \in A | \Phi_{n-1} = (r, v_{\perp}))$$

- Choose variables $r \in \partial \Gamma$, $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, and $v_{\perp} \in [0, \infty)$.
- Perturbation occurs only in φ variable with density $\rho_{\nu_{\perp}}(\varphi) = \sqrt{\frac{\beta}{\pi}} \frac{\nu_{\perp}}{\cos^2(\varphi)} e^{-\beta \nu_{\perp}^2 \tan^2(\varphi)} d\varphi$.
- Define the Markov Chain Φ on
 X = {(r, v_⊥) : r ∈ ∂Γ, v_⊥ ∈ [0,∞)} by first
 drawing φ and then applying the billiard map.
- Denote the transition probability kernel of Φ by \mathcal{P} , i.e.

$$\mathcal{P}((r, v_{\perp}), A) = P(\Phi_n \in A | \Phi_{n-1} = (r, v_{\perp}))$$

- Choose variables $r \in \partial \Gamma$, $\varphi \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, and $v_{\perp} \in [0, \infty)$.
- Perturbation occurs only in φ variable with density $\rho_{\nu_{\perp}}(\varphi) = \sqrt{\frac{\beta}{\pi}} \frac{\nu_{\perp}}{\cos^2(\varphi)} e^{-\beta \nu_{\perp}^2 \tan^2(\varphi)} d\varphi$.
- Define the Markov Chain Φ on $X = \{(r, v_{\perp}) : r \in \partial \Gamma, v_{\perp} \in [0, \infty)\}$ by first drawing φ and then applying the billiard map.
- Denote the transition probability kernel of Φ by P, i.e.

$$\mathcal{P}((r, v_{\perp}), A) = P(\Phi_n \in A | \Phi_{n-1} = (r, v_{\perp}))$$

Invariant Measures

- Existence, uniqueness, absolute continuity w.r.t. Lebesgue measure m, ergodicity, and mixing properties.
- Equilibrium measures: $\beta_1 = \cdots = \beta_N = \beta$
 - for Φ : $d\mu = 2\beta v_{\perp} e^{-\beta v_{\perp}^2} dv_{\perp} dr$
 - for $\Phi_ au$ $d
 u=rac{1}{\pi|D|}\sqrt{rac{eta}{\pi}}rac{v_\perp^2}{\cos^2(arphi)}\mathrm{e}^{-eta v_\perp^2/\cos^2(arphi)}dv_\perp dr darphi dr$

Invariant Measures

- Existence, uniqueness, absolute continuity w.r.t. Lebesgue measure m, ergodicity, and mixing properties.
- Equilibrium measures: $\beta_1 = \cdots = \beta_N = \beta$
 - for Φ: $d\mu = 2\beta v_{\perp} e^{-\beta v_{\perp}^2} dv_{\perp} dr$
 - for $\Phi_{ au}$ $d
 u = rac{1}{\pi |D|} \sqrt{rac{eta}{\pi}} rac{v_{\perp}^2}{\cos^2(arphi)} \mathrm{e}^{-eta v_{\perp}^2/\cos^2(arphi)} dv_{\perp} dr darphi dl$

Results

Theorem

There exists unique absolutely continuous (w.r.t. Leb.) and geometrically ergodic invariant measure for the Markov Chain Φ .

Corollary

There exists unique absolutely continuous invariant measure for the Markov process Φ_{τ}

Results

Theorem

There exists unique absolutely continuous (w.r.t. Leb.) and geometrically ergodic invariant measure for the Markov Chain Φ .

Corollary

There exists unique absolutely continuous invariant measure for the Markov process Φ_{τ}

Geometric Ergodicity Theorem

Lemma 1

Φ is irreducible.

Lemma 2

Φ is aperiodic

Theorem (Meyn and Tweedie Thm 15.01

If for $C = \{(r, v_\perp) : v_\perp^{\min} \le v_\perp \le v_\perp^{\max}\}$ there exist $\gamma < 1$, $b < \infty$, and a function $V \ge 1$ such that $C = \{(r, v_\perp) : V(r, v_\perp) \le R\}$ and

$$\mathcal{P}V(r, v_{\perp}) = \int_{-\pi/2}^{\pi/2} f(r', v'_{\perp}) \rho_{v_{\perp}}(\varphi) d\varphi \leq \gamma V(r, v_{\perp}) + b \mathbf{1}_{\mathbb{C}}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

then $\exists !$ a.c. and geometrically ergodic invariant measure for Φ , s.t.

$$\sup_{|f| \le V} |\mathcal{P}^n f - \nu(f)| \le RV((r, v_\perp))\rho^n, \quad \rho < 1$$

Geometric Ergodicity Theorem

Lemma 1

Φ is irreducible.

Lemma 2

Φ is aperiodic.

Theorem (Meyn and Tweedie Thm 15.01

If for $C=\{(r,v_\perp):v_\perp^{\sf min}\leq v_\perp\leq v_\perp^{\sf max}\}$ there exist $\gamma<1$, $b<\infty$, and a function $V\geq 1$ such that $C=\{(r,v_\perp):V(r,v_\perp)\leq R\}$ and

$$\mathcal{P}V(r, v_{\perp}) = \int_{-\pi/2}^{\pi/2} f(r', v'_{\perp}) \rho_{v_{\perp}}(\varphi) d\varphi \leq \gamma V(r, v_{\perp}) + b \mathbf{1}_{\mathbb{C}}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

then \exists ! a.c. and geometrically ergodic invariant measure for Φ , s.t.

$$\sup_{|f| \le V} |\mathcal{P}^n f - \nu(f)| \le RV((r, v_\perp))\rho^n, \quad \rho < 1$$

Geometric Ergodicity Theorem

Lemma 1

Φ is irreducible.

Lemma 2

Φ is aperiodic.

Theorem (Meyn and Tweedie Thm 15.01)

If for $C=\{(r,v_\perp):v_\perp^{min}\leq v_\perp\leq v_\perp^{max}\}$ there exist $\gamma<1$, $b<\infty$, and a function $V\geq 1$ such that $C=\{(r,v_\perp):V(r,v_\perp)\leq R\}$ and

$$\mathcal{P}V(r, v_{\perp}) = \int_{-\pi/2}^{\pi/2} f(r', v'_{\perp}) \rho_{v_{\perp}}(\varphi) d\varphi \leq \gamma V(r, v_{\perp}) + b \mathbf{1}_{C}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

then $\exists !$ a.c. and geometrically ergodic invariant measure for Φ , s.t.

$$\sup_{|f| \le V} |\mathcal{P}^n f - \nu(f)| \le RV((r, v_\perp))\rho^n, \quad \rho < 1$$

Lemma 1

- "Illumination Property." [Eckmann and Jaquet 2006]
- $r_1, r_2 \in \text{same thermostat} \Rightarrow \exists \text{ path } r \rightsquigarrow r'$.
- There exist M and a path from any r
 to any r' in ≤ M steps.
- Can boost v_⊥ to the desired value v₁.
- Acquire some density along the path $\Rightarrow P_{(r,v_{\perp})}(\tau_A < \infty) > 0$. \square

Lemma 1

- "Illumination Property." [Eckmann and Jaquet 2006]
- $r_1, r_2 \in \text{same thermostat} \Rightarrow \exists \text{ path } r \rightsquigarrow r'$.
- There exist M and a path from any r
 to any r' in ≤ M steps.
- Can boost v_⊥ to the desired value v'_⊥.
- Acquire some density along the path $\Rightarrow P_{(r,v_+)}(\tau_A < \infty) > 0$. \Box

Lemma 1

- "Illumination Property." [Eckmann and Jaquet 2006]
- $r_1, r_2 \in \text{same thermostat} \Rightarrow \exists \text{ path } r \rightsquigarrow r'$.
- There exist M and a path from any r
 to any r' in ≤ M steps.
- Can boost v_⊥ to the desired value v'_⊥.
- Acquire some density along the path $\Rightarrow P_{(r,v_+)}(\tau_A < \infty) > 0$. \Box

Lemma 1

- "Illumination Property." [Eckmann and Jaquet 2006]
- $r_1, r_2 \in \text{same thermostat} \Rightarrow \exists \text{ path } r \rightsquigarrow r'$.
- There exist M and a path from any r
 to any r' in ≤ M steps.
- Can boost v_{\perp} to the desired value v'_{\perp} .
- Acquire some density along the path $\Rightarrow P_{(r,v_{\perp})}(\tau_A < \infty) > 0.$

Lemma 1

- "Illumination Property." [Eckmann and Jaquet 2006]
- $r_1, r_2 \in \text{same thermostat} \Rightarrow \exists \text{ path } r \rightsquigarrow r'$.
- There exist M and a path from any r
 to any r' in ≤ M steps.
- Can boost v_{\perp} to the desired value v'_{\perp} .
- Acquire some density along the path $\Rightarrow P_{(r,v_{\perp})}(\tau_A < \infty) > 0$. \square

Lemma 1

- "Illumination Property." [Eckmann and Jaquet 2006]
- $r_1, r_2 \in \text{same thermostat} \Rightarrow \exists \text{ path } r \rightsquigarrow r'$.
- There exist M and a path from any r to any r' in ≤ M steps.
- Can boost v_⊥ to the desired value v'_⊥.
- Acquire some density along the path $\Rightarrow P_{(r,v_{\perp})}(\tau_A < \infty) > 0.$

Lemma 1

- "Illumination Property." [Eckmann and Jaquet 2006]
- $r_1, r_2 \in \text{same thermostat} \Rightarrow \exists \text{ path } r \rightsquigarrow r'$.
- There exist M and a path from any r to any r' in ≤ M steps.
- Can boost v_⊥ to the desired value v'_⊥.
- Acquire some density along the path $\Rightarrow P_{(r,v_+)}(\tau_A < \infty) > 0$. \square

• Fix $C = \{(r, v_{\perp}) : v_{\perp}^{\min} < v_{\perp} < v_{\perp}^{\max}\}$ let m denote the normalized Lebesgue measure on C.

```
Φ is aperiodic. That is \gcd\{n \geq 1 | \exists \eta: \mathcal{P}^n((r,v_\perp),\cdot) \geq \eta m \ \ \forall (r,v_\perp) \in C\} = 1
```

- There exist N and a path from any (r, v_{\perp}) to any (r', v'_{\perp}) taking precisely N steps
 - such that all angles of incidence and reflection are bounded away from $\pm \frac{\pi}{2}$
- There exists N such that for any $(r, v_{\perp}) \in C$, $\mathcal{P}^{N}((r, v_{\perp}), C) \geq \eta m(C)$.
- From (r, v_⊥) ∈ C can always jump to some (r', v'_⊥) ∈ C and then apply the above:
 P^{N+1}((r, v_⊥), C) > v'm(C)
- gcd(N, N + 1) = 1, so Φ is aperiodic.

• Fix $C = \{(r, v_{\perp}) : v_{\perp}^{\min} < v_{\perp} < v_{\perp}^{\max}\}$ let m denote the normalized Lebesgue measure on C.

Lemma 2

Φ is aperiodic. That is $\gcd\{n \ge 1 | \exists \eta : \mathcal{P}^n((r, v_\perp), \cdot) \ge \eta m \quad \forall (r, v_\perp) \in C\} = 1.$

- There exist N and a path from any (r, v_{\perp}) to any (r', v'_{\perp}) taking precisely N steps
 - such that all angles of incidence and reflection are bounded away from $\pm \frac{\pi}{2}$
- There exists N such that for any $(r, v_{\perp}) \in C$, $\mathcal{P}^{N}((r, v_{\perp}), C) \geq \eta m(C)$.
- From (r, v_⊥) ∈ C can always jump to some (r', v'_⊥) ∈ C and then apply the above:
 P^{N+1}((r, v_⊥), C) > v'm(C)
- gcd(N, N + 1) = 1, so Φ is aperiodic.

• Fix $C = \{(r, v_{\perp}) : v_{\perp}^{\min} < v_{\perp} < v_{\perp}^{\max}\}$ let m denote the normalized Lebesgue measure on C.

Lemma 2

Φ is aperiodic. That is $\gcd\{n \ge 1 | \exists \eta : \mathcal{P}^n((r, v_\perp), \cdot) \ge \eta m \quad \forall (r, v_\perp) \in C\} = 1.$

- There exist N and a path from any (r, v_{\perp}) to any (r', v'_{\perp}) taking precisely N steps
 - such that all angles of incidence and reflection are bounded away from $\pm \frac{\pi}{2}$
- There exists N such that for any $(r, v_{\perp}) \in C$, $\mathcal{P}^{N}((r, v_{\perp}), C) \geq \eta m(C)$.
- From $(r, v_{\perp}) \in C$ can always jump to some $(r', v'_{\perp}) \in C$ and then apply the above: $\mathcal{P}^{N+1}((r, v_{\perp}), C) \geq \eta' m(C)$
- gcd(N, N + 1) = 1, so Φ is aperiodic.

• Fix $C = \{(r, v_{\perp}) : v_{\perp}^{\min} < v_{\perp} < v_{\perp}^{\max}\}$ let m denote the normalized Lebesgue measure on C.

Lemma 2

Φ is aperiodic. That is $gcd\{n \ge 1 | \exists \eta : \mathcal{P}^n((r, v_\perp), \cdot) \ge \eta m \quad \forall (r, v_\perp) \in C\} = 1.$

- There exist N and a path from any (r, v_{\perp}) to any (r', v'_{\perp}) taking precisely N steps
 - such that all angles of incidence and reflection are bounded away from $\pm \frac{\pi}{2}$
- There exists N such that for any $(r, v_{\perp}) \in C$, $\mathcal{P}^{N}((r, v_{\perp}), C) \geq \eta m(C)$.
- From $(r, v_{\perp}) \in C$ can always jump to some $(r', v'_{\perp}) \in C$ and then apply the above: $\mathcal{P}^{N+1}((r, v_{\perp}), C) \geq \eta' m(C)$
- gcd(N, N + 1) = 1, so Φ is aperiodic.

• Fix $C = \{(r, v_{\perp}) : v_{\perp}^{\min} < v_{\perp} < v_{\perp}^{\max}\}$ let m denote the normalized Lebesgue measure on C.

Lemma 2

Φ is aperiodic. That is $\gcd\{n \ge 1 | \exists \eta : \mathcal{P}^n((r, v_\perp), \cdot) \ge \eta m \quad \forall (r, v_\perp) \in C\} = 1.$

- There exist N and a path from any (r, v_{\perp}) to any (r', v'_{\perp}) taking precisely N steps
 - such that all angles of incidence and reflection are bounded away from $\pm \frac{\pi}{2}$
- There exists N such that for any $(r, v_{\perp}) \in C$, $\mathcal{P}^{N}((r, v_{\perp}), C) \geq \eta m(C)$.
- From (r, v_⊥) ∈ C can always jump to some (r', v'_⊥) ∈ C and then apply the above:
 P^{N+1}((r, v_⊥), C) > η'm(C)
- gcd(N, N + 1) = 1, so Φ is aperiodic.

• Fix $C = \{(r, v_{\perp}) : v_{\perp}^{\min} < v_{\perp} < v_{\perp}^{\max}\}$ let m denote the normalized Lebesgue measure on C.

Lemma 2

Φ is aperiodic. That is $\gcd\{n \ge 1 | \exists \eta : \mathcal{P}^n((r, v_\perp), \cdot) \ge \eta m \quad \forall (r, v_\perp) \in C\} = 1.$

- There exist N and a path from any (r, v_{\perp}) to any (r', v'_{\perp}) taking precisely N steps
 - such that all angles of incidence and reflection are bounded away from $\pm \frac{\pi}{2}$
- There exists N such that for any $(r, v_{\perp}) \in C$, $\mathcal{P}^{N}((r, v_{\perp}), C) \geq \eta m(C)$.
- From (r, v_⊥) ∈ C can always jump to some (r', v'_⊥) ∈ C and then apply the above:
 P^{N+1}((r, v_⊥), C) ≥ η'm(C)
- gcd(N, N + 1) = 1, so Φ is aperiodic.

$$\mathcal{P}V(r, v_{\perp}) \leq \gamma V(r, v_{\perp}) + b\mathbf{1}_{C}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

$$\begin{array}{l} \bullet \; \mathcal{P} V(r, v_\perp) = \\ \int\limits_{-\pi/2}^{\pi/2} V(r', v'_\perp) \sqrt{\frac{\beta_i}{\pi}} \frac{v_\perp}{\cos^2(\varphi)} \mathrm{e}^{-\beta_i v_\perp^2 \tan^2(\varphi)} \, \mathrm{d}\varphi \end{array}$$

- $v'_{\perp} = \frac{\cos(\varphi')}{\cos(\varphi)} v_{\perp}$
- v_{\perp} very large: v_{t} is negligible. $\varphi \approx 0 \Rightarrow v'_{1} \approx \cos(\varphi')v_{1} \leq v_{11}$
- v_{\perp} very small: v_{t} is the main contribution. \Rightarrow $v'_{\perp} \approx \cos(\varphi')v_{t}$.
- Remark: small velocities change to normal ranges by the actions of the thermostats, while large ones require the action of geometry

$$\mathcal{P}V(r, v_{\perp}) \leq \gamma V(r, v_{\perp}) + b\mathbf{1}_{C}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

- $\mathcal{P}V(r, v_{\perp}) = \int\limits_{-\pi/2}^{\pi/2} V(r', v'_{\perp}) \sqrt{\frac{\beta_i}{\pi}} \frac{v_{\perp}}{\cos^2(\varphi)} e^{-\beta_i v_{\perp}^2 \tan^2(\varphi)} d\varphi$
- $V'_{\perp} = \frac{\cos(\varphi')}{\cos(\varphi)} V_{\perp}$
- v_{\perp} very large: v_{l} is negligible. $\varphi \approx 0 \Rightarrow v'_{1} \approx \cos(\varphi')v_{\perp} \leq v_{\perp}$
- v_{\perp} very small: v_t is the main contribution. \Rightarrow $v'_{\perp} \approx \cos(\varphi')v_t$.
- Remark: small velocities change to normal ranges by the actions of the thermostats, while large ones require the action of geometry

$$\mathcal{P}V(r, v_{\perp}) \leq \gamma V(r, v_{\perp}) + b\mathbf{1}_{C}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

- $\begin{array}{l} \bullet \; \mathcal{P} \textit{V}(\textit{r},\textit{v}_{\perp}) = \\ \int\limits_{-\pi/2}^{\pi/2} \textit{V}(\textit{r}',\textit{v}_{\perp}') \sqrt{\frac{\beta_{i}}{\pi}} \frac{\textit{v}_{\perp}}{\cos^{2}(\varphi)} e^{-\beta_{i} \textit{v}_{\perp}^{2} \tan^{2}(\varphi)} \textit{d}\varphi \end{array}$
- $V'_{\perp} = \frac{\cos(\varphi')}{\cos(\varphi)} V_{\perp}$
- v_{\perp} very large: v_t is negligible. $\varphi \approx 0 \Rightarrow v'_{\perp} \approx \cos(\varphi')v_{\perp} \leq v_{\perp}$.
- v_{\perp} very small: v_t is the main contribution. \Rightarrow $v'_{\perp} \approx \cos(\varphi')v_t$.
- Remark: small velocities change to normal ranges by the actions of the thermostats, while large ones require the action of geometry.

$$\mathcal{P}V(r, v_{\perp}) \leq \gamma V(r, v_{\perp}) + b\mathbf{1}_{C}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

- $\bullet \ \rho_{\textit{V}_{\perp}}(\varphi) = \sqrt{\tfrac{\beta_i}{\pi}} \tfrac{\textit{V}_{\perp}}{\cos^2(\varphi)} \textrm{e}^{-\beta_i \textit{V}_{\perp}^2 \tan^2(\varphi)}$
- $V'_{\perp} = \frac{\cos(\varphi')}{\cos(\varphi)} V_{\perp}$
- v_{\perp} very large: v_t is negligible. $\varphi \approx 0 \Rightarrow v'_{\perp} \approx \cos(\varphi')v_{\perp} \leq v_{\perp}$.
- v_{\perp} very small: v_t is the main contribution. \Rightarrow $v'_{\perp} \approx \cos(\varphi')v_t$.
- Remark: small velocities change to normal ranges by the actions of the thermostats, while large ones require the action of geometry.

$$\mathcal{P}V(r, v_{\perp}) \leq \gamma V(r, v_{\perp}) + b\mathbf{1}_{C}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

- $\bullet \ \rho_{\textit{V}_{\perp}}(\varphi) = \sqrt{\tfrac{\beta_i}{\pi}} \tfrac{\textit{V}_{\perp}}{\cos^2(\varphi)} \textrm{e}^{-\beta_i \textit{V}_{\perp}^2 \tan^2(\varphi)}$
- $V'_{\perp} = \frac{\cos(\varphi')}{\cos(\varphi)} V_{\perp}$
- v_{\perp} very large: v_t is negligible. $\varphi \approx 0 \Rightarrow v'_{\perp} \approx \cos(\varphi')v_{\perp} \leq v_{\perp}$.
- v_{\perp} very small: v_t is the main contribution. \Rightarrow $v'_{\parallel} \approx \cos(\varphi')v_t$.
- Remark: small velocities change to normal ranges by the actions of the thermostats, while large ones require the action of geometry.

$$\mathcal{P}V(r, v_{\perp}) \leq \gamma V(r, v_{\perp}) + b\mathbf{1}_{C}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

- $\bullet \ \rho_{\textit{V}_{\perp}}(\varphi) = \sqrt{\tfrac{\beta_i}{\pi}} \tfrac{\textit{V}_{\perp}}{\cos^2(\varphi)} \textrm{e}^{-\beta_i \textit{V}_{\perp}^2 \tan^2(\varphi)}$
- $V'_{\perp} = \frac{\cos(\varphi')}{\cos(\varphi)} V_{\perp}$
- v_{\perp} very large: v_t is negligible. $\varphi \approx 0 \Rightarrow v'_{\perp} \approx \cos(\varphi')v_{\perp} \leq v_{\perp}$.
- v_{\perp} very small: v_t is the main contribution. \Rightarrow $v'_{\parallel} \approx \cos(\varphi')v_t$.
- Remark: small velocities change to normal ranges by the actions of the thermostats, while large ones require the action of geometry.

$$\mathcal{P} \textit{V}(\textit{v}_{\perp}) \leq \gamma \textit{V}(\textit{v}_{\perp}) + \textit{b1}_{\textit{C}}(\textit{v}_{\perp}), \quad \forall \textit{v}_{\perp} \in [0, \infty)$$

- With such a potential do not get γ uniformly less than 1 (as $v_{\perp} \to \infty$)

Lemma

$$\mathcal{P}V(v_{\perp}) \leq \gamma V(v_{\perp}) + b\mathbf{1}_{C}(v_{\perp}), \quad \forall v_{\perp} \in [0, \infty)$$

$$\quad \bullet \quad V(v_\perp) \sim \left\{ \begin{array}{ll} v_\perp^a, & v_\perp > v_\perp^{\text{max}}; \\ v_\perp^{-b}, & v_\perp < v_\perp^{\text{min}}. \end{array} \right.$$

• With such a potential do not get γ uniformly less than 1 (as $v_{\perp} \to \infty$)

$$\mathcal{P}V(v_{\perp}) \leq \gamma V(v_{\perp}) + b\mathbf{1}_{C}(v_{\perp}), \quad \forall v_{\perp} \in [0, \infty)$$

- $\bullet \ \ V(v_\perp) \sim \left\{ \begin{array}{ll} v_\perp^a, & v_\perp > v_\perp^{\text{max}}; \\ v_\perp^{-b}, & v_\perp < v_\perp^{\text{min}}. \end{array} \right.$
- With such a potential do not get γ uniformly less than 1 (as $v_{\perp} \to \infty$)

$$\mathcal{P} V(v_{\perp}) \leq \gamma V(v_{\perp}) + b \mathbf{1}_{C}(v_{\perp}), \quad \forall v_{\perp} \in [0, \infty)$$

- $\qquad \qquad \bullet \quad V(v_\perp) \sim \left\{ \begin{array}{ll} v_\perp^a, & v_\perp > v_\perp^{\text{max}}; \\ v_\perp^{-b}, & v_\perp < v_\perp^{\text{min}}. \end{array} \right.$
- With such a potential do not get γ uniformly less than 1 (as $v_{\perp} \to \infty$)

Potential V: correction

Lemma

$$\mathcal{P}V(r, v_{\perp}) \leq \gamma V(r, v_{\perp}) + b\mathbf{1}_{C}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

• For small enough r_0 , large enough b and $v_{\perp}^c \gg v_{\perp}^{\text{max}}$, let

$$egin{aligned} v(r,v_\perp) &= \ g_{v_\perp}(r)v_\perp^2, & v_\perp > v_\perp^{ ext{max}} \ g_{v_\perp}(r)v_\perp^{-3/4}, & v_\perp < v^{ ext{min}} \end{pmatrix} \perp. \end{aligned}$$

$$g_{v_{\perp}}(r) = \begin{cases} \frac{v_{\perp}}{b}, & r \in (r_k - \frac{b}{v_{\perp}}, r_k + \frac{b}{v_{\perp}}); \\ \frac{1}{|x|}, & ; r \in (r_k - r_0, r_k + r_0) \setminus (r_k - \frac{b}{v_{\perp}}, r_k + \frac{b}{v_{\perp}}) \\ 1, & otherwise. \end{cases}$$

Potential V: correction

Lemma

$$\mathcal{P}V(r, v_{\perp}) \leq \gamma V(r, v_{\perp}) + b\mathbf{1}_{\mathbb{C}}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

• For small enough r_0 , large enough b and $v_{\perp}^c \gg v_{\perp}^{\text{max}}$, let

$$egin{aligned} V(r, v_\perp) = \ & \left\{ egin{aligned} g_{v_\perp}(r) v_\perp^2, & v_\perp > v_\perp^{\sf max} \ g_{v_\perp}(r) v_\perp^{-3/4}, & v_\perp < v^{\sf min} \end{array}
ight\} \perp. \end{aligned}$$

$$g_{\nu_{\perp}}(r) = \begin{cases} \frac{\nu_{\perp}}{b}, & r \in (r_k - \frac{b}{\nu_{\perp}}, r_k + \frac{b}{\nu_{\perp}}); \\ \frac{1}{|x|}, & ; r \in (r_k - r_0, r_k + r_0) \setminus (r_k - \frac{b}{\nu_{\perp}}, r_k + \frac{b}{\nu_{\perp}}) \\ 1, & otherwise. \end{cases}$$

Potential V: correction

Lemma

$$\mathcal{P}V(r, v_{\perp}) \leq \gamma V(r, v_{\perp}) + b\mathbf{1}_{C}(r, v_{\perp}), \quad \forall (r, v_{\perp}) \in X$$

• For small enough r_0 , large enough b and $v_{\perp}^c \gg v_{\perp}^{\max}$, let $V(r, v_{\perp}) =$

$$\left\{egin{array}{ll} g_{
u_{\perp}}(r) v_{\perp}^2, & v_{\perp} > v_{\perp}^{\mathsf{max}} \ g_{
u_{\perp}}(r) v_{\perp}^{-3/4}, & v_{\perp} < v^{\mathsf{min}} \end{array}
ight\} \perp.$$

$$g_{\nu_{\perp}}(r) = \begin{cases} \frac{\nu_{\perp}}{b}, & r \in (r_k - \frac{b}{\nu_{\perp}}, r_k + \frac{b}{\nu_{\perp}}); \\ \frac{1}{|x|}, & ; r \in (r_k - r_0, r_k + r_0) \setminus (r_k - \frac{b}{\nu_{\perp}}, r_k + \frac{b}{\nu_{\perp}}) \\ 1, & otherwise. \end{cases}$$

- M. Hairer and J. Mattingly: Yet another look at Harris' ergodic theorem for Markov chains. Preprint, 2008
- S. P. Meyn and R. L. Tweedie: Markov chains and stochastic stability.
 Communications and Control Engineering Series. Springer-Verlag London, Ltd., London, 1993.
- K.K. Lin and L.-S. Young: Nonequillibrium Steady States for Certain Hamiltonian Models. J. Stat. Phys. 139, no. 4, 630Ű657 (2010)