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The System

Γ ⊂ T
2 - a bounded horizon billiard table with

convex scatterers.
- specular particle reflections

v ′
⊥ = −v⊥; v ′

t = vt .

D1, · · · ,DN convex scatterers acting as
thermostats:

- β1 = 1
T1
, · · · , βN = 1

TN

- v ′
⊥ = −v⊥;

- v ′
t is randomly drawn from

√

βi
π e−βiv

2
t dvt

- particles do not interact with each other
[Lin and Young 2010]
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Continuous Dynamics

No particle interactions ⇒ can work with one
particle

The Phase Space
Ω = {(x , v) : x ∈ Γ, v ∈ R

2}/ ∼

Markov Process Φτ

- deterministic billiard flow between collisions
with thermostats.

- vt replaced by randomly drawn v ′
t from

√

βi
π e−βiv

2
t dvt .
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Discrete Dynamics

Choose variables r ∈ ∂Γ, ϕ ∈ [−π
2 ,

π
2 ], and

v⊥ ∈ [0,∞).

Perturbation occurs only in ϕ variable with

density ρv⊥(ϕ) =
√

β
π

v⊥
cos2(ϕ)

e−βv2
⊥

tan2(ϕ)dϕ.

Define the Markov Chain Φ on
X = {(r , v⊥) : r ∈ ∂Γ, v⊥ ∈ [0,∞)} by first
drawing ϕ and then applying the billiard map.

Denote the transition probability kernel of Φ
by P, i.e.
P((r , v⊥),A) = P(Φn ∈ A|Φn−1 = (r , v⊥))
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Invariant Measures

Existence, uniqueness, absolute continuity w.r.t. Lebesgue
measure m, ergodicity, and mixing properties.
Equilibrium measures: β1 = · · · = βN = β

- for Φ: dµ = 2βv⊥e−βv2
⊥dv⊥dr

- for Φτ dν = 1
π|D|

√

β
π

v2
⊥

cos2(ϕ)
e−βv2

⊥
/ cos2(ϕ)dv⊥drdϕdl

Tatiana Yarmola (Fields Institute) Ergodic properties of some canonical systems driven by thermostatsApril 4, 2011 7 / 19



Invariant Measures

Existence, uniqueness, absolute continuity w.r.t. Lebesgue
measure m, ergodicity, and mixing properties.
Equilibrium measures: β1 = · · · = βN = β

- for Φ: dµ = 2βv⊥e−βv2
⊥dv⊥dr

- for Φτ dν = 1
π|D|

√

β
π

v2
⊥

cos2(ϕ)
e−βv2

⊥
/ cos2(ϕ)dv⊥drdϕdl

Tatiana Yarmola (Fields Institute) Ergodic properties of some canonical systems driven by thermostatsApril 4, 2011 7 / 19



Results

Theorem
There exists unique absolutely continuous (w.r.t. Leb.) and
geometrically ergodic invariant measure for the Markov Chain Φ.

Corollary
There exists unique absolutely continuous invariant measure for the
Markov process Φτ
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Geometric Ergodicity Theorem
Lemma 1
Φ is irreducible.

Lemma 2
Φ is aperiodic.

Theorem (Meyn and Tweedie Thm 15.01)

If for C = {(r , v⊥) : vmin
⊥ ≤ v⊥ ≤ vmax

⊥ } there exist γ < 1, b < ∞, and a
function V ≥ 1 such that C = {(r , v⊥) : V (r , v⊥) ≤ R} and

PV (r , v⊥) =

π/2
∫

−π/2

f (r ′, v ′
⊥)ρv⊥(ϕ)dϕ ≤ γV (r , v⊥) + b1C(r , v⊥), ∀(r , v⊥) ∈ X

then ∃! a.c. and geometrically ergodic invariant measure for Φ, s.t.

sup
|f |≤V

|Pnf − ν(f )| ≤ RV ((r , v⊥))ρn, ρ < 1
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Irreducibility

Lemma 1
Φ is irreducible in a sense that for any A ⊂ X with Leb(A) > 0,
P(r ,v⊥)(τA < ∞) > 0 ∀(r , v⊥) ∈ X, where τA is the first return time to A.

"Illumination Property." [Eckmann and

Jaquet 2006]

r1, r2 ∈ same thermostat ⇒ ∃ path
r  r ′.

There exist M and a path from any r
to any r ′ in ≤ M steps.

Can boost v⊥ to the desired value v ′
⊥.

Acquire some density along the path
⇒ P(r ,v⊥)(τA < ∞) > 0. �
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Aperiodicity
Fix C = {(r , v⊥) : vmin

⊥ < v⊥ < vmax
⊥ }

let m denote the normalized Lebesgue measure on C.

Lemma 2
Φ is aperiodic. That is
gcd{n ≥ 1|∃η : Pn((r , v⊥), ·) ≥ ηm ∀(r , v⊥) ∈ C} = 1.

There exist N and a path from any (r , v⊥) to any (r ′, v ′
⊥) taking

precisely N steps
- such that all angles of incidence and reflection are bounded away

from ±π
2

There exists N such that for any (r , v⊥) ∈ C,
PN((r , v⊥),C) ≥ ηm(C).
From (r , v⊥) ∈ C can always jump to some (r ′, v ′

⊥) ∈ C and then
apply the above:
PN+1((r , v⊥),C) ≥ η′m(C)

gcd(N,N + 1) = 1, so Φ is aperiodic.
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Potential V: heuristics
Lemma
PV (r , v⊥) ≤ γV (r , v⊥) + b1C(r , v⊥), ∀(r , v⊥) ∈ X

PV (r , v⊥) =
π/2
∫

−π/2
V (r ′, v ′

⊥)
√

βi
π

v⊥
cos2(ϕ)

e−βiv2
⊥

tan2(ϕ)dϕ

v ′
⊥ = cos(ϕ′)

cos(ϕ) v⊥

v⊥ very large: vt is negligible.
ϕ ≈ 0 ⇒ v ′

⊥ ≈ cos(ϕ′)v⊥ ≤ v⊥.

v⊥ very small: vt is the main contribution. ⇒
v ′
⊥ ≈ cos(ϕ′)vt .

Remark: small velocities change to normal
ranges by the actions of the thermostats,
while large ones require the action of
geometry.
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PV (r , v⊥) =
π/2
∫

−π/2
V (r ′, v ′

⊥)
√

βi
π

v⊥
cos2(ϕ)

e−βiv2
⊥

tan2(ϕ)dϕ

v ′
⊥ = cos(ϕ′)

cos(ϕ) v⊥

v⊥ very large: vt is negligible.
ϕ ≈ 0 ⇒ v ′

⊥ ≈ cos(ϕ′)v⊥ ≤ v⊥.

v⊥ very small: vt is the main contribution. ⇒
v ′
⊥ ≈ cos(ϕ′)vt .

Remark: small velocities change to normal
ranges by the actions of the thermostats,
while large ones require the action of
geometry.
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Potential V: try dependence on v⊥ only

Lemma
PV (v⊥) ≤ γV (v⊥) + b1C(v⊥), ∀v⊥ ∈ [0,∞)

V (v⊥) ∼
{

va
⊥, v⊥ > vmax

⊥ ;

v−b
⊥ , v⊥ < vmin

⊥ .

With such a potential do not get γ uniformly
less than 1 (as v⊥ → ∞)
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Potential V: correction

Lemma
PV (r , v⊥) ≤ γV (r , v⊥) + b1C(r , v⊥), ∀(r , v⊥) ∈ X

For small enough r0, large enough b
and vc

⊥ � vmax
⊥ , let

V (r , v⊥) =
{

gv⊥(r)v
2
⊥, v⊥ > vmax

⊥

gv⊥(r)v
−3/4
⊥ , v⊥ < vmin) ⊥ .

gv⊥(r) =











v⊥
b , r ∈ (rk − b

v⊥
, rk + b

v⊥
);

1
|x| , ; r ∈ (rk − r0, rk + r0) \ (rk − b

v⊥
, rk + b

v⊥
)

1, otherwise.
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