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Dynamics of Bose-Einstein condensation? 2

A 3-dimensional Bose fluid exhibits Bose-Einstein condensation at
low temperatures.

Rigorous results in the Gross-Pitaevskii (mean-field) limit:

The limit is a factorized state, determined by the condensate
wave-function [Lieb, Seiringer, Yngvason]
⇒ 100% condensation, i.e., zero temperature

Time-evolution of a spatially inhomogeneous condensate
wave-function determined by the Gross-Pitaevskii equation
[Erdős, Schlein, Yau]

No rigorous results for states with finite temperature (partial
condensation).
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Warmup: dNLS 3

Discrete nonlinear Schrödinger equation

i
d

dt
ψt(x) =

∑
y∈Zd

α(x − y)ψt(y) + λ|ψt(x)|2ψt(x)

ψt : Zd → C, t ∈ R, d ≥ 1

λ > 0

Harmonic couplings determined by α : Zd → R.

α sufficiently regular: finite range and sufficiently dispersive
(for instance, nearest neighbor with d ≥ 4)
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Kinetic conjecture for homogeneous initial data 4

Assume that the initial state is translation invariant

Then there always exists w̃t(x), x ∈ Zd such that

E[ψt(x
′)∗ψt(x)] = w̃t(x

′ − x)

Kinetic conjecture: Wτ := limλ→0Fw̃τλ−2 solves a
homogeneous nonlinear Boltzmann-Peierls equation

∂τWτ (k) = CNL[Wτ (·)] ,

CNL[h](k0) = 4π

∫
(Td )3

dk1dk2dk3 δ(k0 + k1 − k2 − k3)

× δ(ω0 + ω1 − ω2 − ω3) [h1h2h3 + h0h2h3 − h0h1h2 − h0h1h3] ,

hj = h(kj), ωj = (Fα)(kj)
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Moments to cumulants formula (cluster expansion) 5

Translation invariance important, leads to:

Cumulant expansion of initial time moments

For any index set I ,

E
[∏
i∈I

ψ̂0(ki , σi )
]

=
∑

S∈π(I )

∏
A∈S

[
δ
(∑
i∈A

ki

)
C|A|(kA, σA)

]
,

where the sum runs over all partitions S of the index set I .

Here truncated correlation (cumulant) functions are

Cn(k , σ) :=
∑

x∈(Zd )n

1(x1 = 0)e−i2π
∑n

i=1 xi ·kiE
[ n∏
i=1

ψ0(xi , σi )
]trunc

.
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`1-clustering of the initial state

For sufficiently small λ and for all n ≥ 4 the fully truncated
correlation functions (cumulants) should satisfy

sup
Λ,σ∈{±1}n

∑
x∈Λn

1(x1 = 0)
∣∣∣E[ n∏

i=1

ψ0(xi , σi )
]trunc∣∣∣ ≤ λcn0n!

For n = 2 should have∑
‖x‖∞≤L/2

∣∣∣E[ψ0(0)∗ψ0(x)]− E[ψ0(0)∗ψ0(x)]λ=0
L=∞

∣∣∣ ≤ λ2c2
0

For a large class of dNLS equilibrium states proven by
Abdesselam, Procacci, and Scoppola

Estimates imply that ‖Cn‖∞ <∞
⇒ cumulant expansion encodes all singularities in ki
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Weakly interacting bosons 7

Consider a system of bosons “hopping” on a lattice x ∈ Zd , d = 3,
and with weak “onsite” pair-interaction:

Lattice convenient to avoid technicalities in the definitions

The time-evolution lives in a Fock space, but conserves
particle number.

We consider N-particle Hamiltonians HN := H free
N + λVN ,

H free
N =

∑N
j=1

1
2 ∆j , where ∆j is a discrete Laplacian acting on

the j :th particle
VN is a multiplication operator by the pair-interaction
potential (x1, . . . , xN) 7→ 1

2

∑
i 6=j 1(xi − xj = 0)

Assume that the initial state is

1 translation invariant

2 `1-clustering : it has truncated correlation functions which
decay summably
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. . . follow a “nonlinear wave equation” 8

Let a(x) denote the annihilation operator at x ∈ Zd , and
a(x , t) denote the corresponding time-evolved operator.

Then

∂ta(x , t) = −i
∑
y

∆(x − y)a(y , t)− iλa(x , t)∗a(x , t)a(x , t)

For a→ ψ equal to dNLS with α = ∆

One important observable is reduced 1-particle density matrix ,

ρ1(x , y ; t) = 〈a(y , t)∗a(x , t)〉

By translation invariance, there is a function w such that

ρ1(x , y ; t) = w(x − y , t)
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Kinetic conjecture 9

Thus ( â(k) :=
∑

x e−i2πx ·ka(x), k ∈ [0, 1]d )

〈â(k, t)∗â(k ′, t)〉 = δ(k − k ′)ŵ(k , t)

〈â(k ′, t)â(k, t)∗〉 = δ(k − k ′)(1 + ŵ(k , t))

By perturbation expansion, one then expects that there exists
a kinetic scaling limit

f (k , τ) = lim
λ→0+

ŵ(k, τλ−2)

at least for not too large kinetic times τ > 0.

Moreover, the limit function should satisfy a nonlinear
Boltzmann equation, ∂t f (k , t) = C[f (·, t)](k)
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Continuum, kinetic scaling limit, no condensate 10

In the corresponding continuum setup we get. . .

Nonlinear bosonic Boltzmann-Nordheim equation

∂t f (v0, t) = C4[f (·, t)](v0), v0 ∈ R3, t > 0

C4[h](v0) = 4π

∫
(R3)3

dv1dv2dv3 δ(v0 + v1 − v2 − v3)

×δ(ω0 + ω1 − ω2 − ω3)
[
h̃0h̃1h2h3 − h0h1h̃2h̃3

]
,

hj = h(vj), h̃j = 1 + hj , ωj = E kin
j =

1

2
v2
j

Identical to the previous dNLS collision kernel, except here

1 Different dispersion relation: ω(k) = 1
2k

2, with k ∈ R3

2 Extra second order term: h2h3 − h0h1.
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Homogeneous and isotropic distribution 11

Assume that f is also isotropic in velocity .

Define f = f (x , t), x = ω(v) = 1
2v

2. Then,

∂t f (x , t) = C4[f (·, t)](x) ,

C4[h](x0) =
1
√
x0

∫
R2

+

dx2dx3 1(x1 ≥ 0) min
j=0,1,2,3

√
xj

×
[
h̃0h̃1h2h3 − h0h1h̃2h̃3

]
x1=x2+x3−x0

Asymptotics of solutions? Condensation?
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Numerical results by Semikoz and Tkachev 12

Shows blow-up f (0, t) ∝ (t − t0)−2.6 in finite time.
(dashed line depicts initial distribution)
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Steady states 13

By differentiation of the integrand,

∂ts[f (·, t)] = σ[f (·, t)] ,

s[h] =

∫ ∞
0

dy
√
y
[
h̃(y) ln h̃(y)− h(y) ln h(y)

]
, (entropy)

σ[h] =

∫
R3

+

dx0dx2dx3 1(x1 ≥ 0) min
j=0,1,2,3

(
√
xj) (A− B) ln

A

B
,

A = h̃0h̃1h2h3, B = h0h1h̃2h̃3, (entropy production)

Since σ[f ] ≥ 0, the steady states need to satisfy σ[f ] = 0.
⇒ There are β > 0 and µ ≤ 0 such that f = fβ,µ,

fβ,µ(x) =
1

eβ(x−µ) − 1
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Conservation laws 14

For regular f , one similarly finds that particle number and energy
are conserved: ρ[f (t)], e[f (t)] are constant with

ρ[f ] =

∫ ∞
0

dy
√
y f (y) , e[f ] =

∫ ∞
0

dy
√
y f (y)y

Definition

Given f0 = f (·, 0), let ē = e[f0], and ρ̄ = ρ[f0].

1 Either ∃! β, µ such that ē = e[fβ,µ], and ρ̄ = ρ[fβ,µ],

2 or ∃! β such that ē = e[fβ,0], and n̄ := ρ̄− ρc > 0,
where ρc = ρ[fβ,0].

⇒ (?) steady state is f (x)
√
xdx = fβ,0(x)

√
xdx + n̄ δ(x)dx?
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The importance of being earnestly defined 15

If f (x , 0) has a singularity, what is the proper mathematical
definition of the evolution equation

∂t f (x , t) = C4[f (·, t)](x)?

1 Pointwise? If f0(x) ' x−7/6 for x ' 0, then there is a unique
(finite time) solution for which f (x , t) ' b(t)x−7/6.
[Escobedo, Mischler, Velázquez]

However, this solution does not preserve total mass.

2 Measure valued? There is a family of positive measures
(µt(dx))t which solve the equation weakly, and for which
energy and mass are conserved. [Lu]

Nonconstructive (via subsequences of solutions to a
regularized problem); uniqueness?
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Definition via physical ansatz 16

Semikoz and Tkachev (1997) used the following ansatz for
numerical simulations:

f (x , t)
√
xdx = f reg(x , t)

√
xdx + n(t) δ(x)dx

yielding

∂t f
reg(x , t) = C4[f reg

t ](x) + n(t)C3[f reg
t ](x),

d

dt
n(t) = −n(t)ρ[C3[f reg

t ]],

C3[h](x) =
2√
x

∫ x

0
dy
[
h̃(x)h(x − y)h(y)− h(x)h̃(x − y)h̃(y)

]
− 4√

x

∫ ∞
x

dy [x ↔ y ]
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Effect of singularities in ft 17

The following observations were made later by Spohn (2010):

If f (x , t) ' a(t)x−1 for x ' 0, then the condensate equation
should read

d

dt
n(t) = −n(t)

(
2ρ[
√
xf reg

t ]− c0a(t)2
)
.

⇒ The previous measure-valued thermal states are stationary.

If f (x , t) ' b(t)x−7/6 for x ' 0, then

ρ[C4[f reg
t ]] = −c1b(t)3 .

⇒ Loss of mass, in spite of formal conservation law.
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Final problem

How can condensate be generated? (n(t) = 0 ⇒ ṅ(t) = 0)

Possible scenario:

1 Start with supercritical but regular initial data f (x , 0).

2 The solution to

∂t f (x , t) = C4[f (·, t)](x)

develops a singularity x−p, p > 1, at x = 0 in finite time

3 After blowup: solution has x−1 singularity and a “seed” for
condensate

4 Then f (t), n(t) follow the coupled equations with n(t) > 0

Details of seeding poorly understood.
Not clear that condensation can be described by B-N eqn.
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Evolution equations for f reg 19

Possible solution:
Replace the equation for ṅ by the mass conservation law,

n(t) = n(0) + ρ[f reg
0 ]− ρ[f reg

t ] = n̄ − ρ[f reg
t − fβ,0] .

Evolution equation for the noncondensate energy density

∂t f
reg(x , t) = C4[f reg

t ](x) + (n̄ − ρ[f reg
t − fβ,0])C3[f reg

t ](x)

Closed nonlinear evolution equation for f reg

As a first step, we show that small perturbations from
equilibrium have unique solutions converging to an equilibrium
distribution as t →∞
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Linearization 20

Write f reg = fβ,0 + R(x)ψ(t, x), R(x) ∝ x−1, and linearize:

∂tψt = −Lψt + Q[ψt ],

L = L4 + n̄L3

fβ,0(x) has 1/x singularity for x → 0 ⇒
nonintegrable singularity 1/|x − y | for the integral kernel of L:

Liψ(x) =

∫ ∞
0

dy Ki (x , y)(ψ(x)− ψ(y)) , i = 3, 4,

K3 = x−
1
2 |x − y |−1 × (exp-decay for y > x),

and K4 less singular (∼ |x − y |−1/2).
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Smoothing 21

Problem: nonlinear term not bounded in L2 nor in Sobolev spaces.

need smoothing by semigroup e−tL

L is close to a operator with logarithmic symbol
∼ log(1 + |ξ|), ξ = Fourier-variable

e−tL smooths slowly, as ∼ |ξ|−t

This is just what we need to “restore” the nonlinear term

Technical headache: singularity at origin (and at infinity)
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Norms 22

To control all singularities, we work in Banach spaces
X (for ψ) and X ′ (for ∂tψ), with Hölder type norms, 1

2 < α < 1:

‖ψ‖ = sup
x
|ψ(x)|+ ‖ψ‖′ , ‖ψ‖′ ' sup

x ,y

|ψ(x)− ψ(y)|
|x − y |α

1√
x + y

,

‖ψ‖ln = sup
x
|ψ(x) ln x−1|+ ‖ψ‖′ln ,

‖ψ‖′ln ' sup
x ,y

|ψ(x)− ψ(y)|
|x − y |α ln |x − y |−1

Nonlinearity Q maps X → X ′ but∫ t
0 ds e−(t−s)LQ[ψs ] is a bounded map X → X

e−tL has a “spectral” gap in X :

L : X → X ′, ‖e−tLψ0‖ ≤ Ce−δt‖ψ0‖ for some δ > 0
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Main novelty: analysis of the linear semigroup 23

Why can do sup-norms?

‖ψ‖ ≤ ‖ψ‖L2 + ‖ψ‖′, ‖ψ‖ln ≤ ‖ψ‖L2 + ‖ψ‖′ln
The singularity at x = 0 enhances smoothing:

With ψt = e−tLψ0, ∆ = |x − y |, Φ1(x , y) = (x + y)−1/2,

α(x , y , t) = α + 1−α
2

(
1 + [tΦ1(x , y)]−1

)−1
, it holds

|ψt(x)− ψt(y)|
≤ ln ∆−1 ∆α(x ,y ,t)(1 + t2Φ1(x , y)2)−1‖ψ0‖ln

Gap in X proven via similar upper bound + gap in L2.

Jani Lukkarinen Kinetic equations for BEC



Intro Bosons Definition? Technicalities Comments Linearization Smoothing Norms Novelty Details Result

How are the upper bounds derived? 24

Move x = 0 to u = −∞: change variables to u = ln(ex − 1)

Then x−1/2 → e−u/2

Let Γuv (t) denote the appropriate weight, and control

Fuv (t) :=
ψt(u)− ψt(v)

Γuv (t)
, |u − v | ≤ ε

which satisfies (with an explicit time-independent Kuw )

∂tFuv = Fuv ∂t ln Γ−1
uv

−Γ−1
uv

∫
dw [Kuw (ψt(u)− ψt(w))− Kvw (ψt(v)− ψt(w))]
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Main observation: can generate a “potential term” by

Γ−1
uv [A(ψt(u)− ψt(w))− B(ψt(v)− ψt(w))]

= Fuv
2AB

A + B
+

A− B

Γuv

A

A + B
(ψt(u)− ψt(w))− (u ↔ v)

The potential is singular on the diagonal u ' v

Split the remaining integral over w into three parts

1 Region dominated directly by the singular potential
2 An integral containing

∫
dw ψt(w) · · · , use Schwarz ineq.

3 For the rest, “telescope”: ψt(u)− ψt(w) =
∑

n Fwn,wn+1

For |u − v | ≤ ε0 � 1 the singular potential dominates
⇒ Banach fixed point theorem shows that Fuv (t) is bounded
⇒ proves that ψt ∈ X
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Main mathematical result 26

Theorem

Let n̄ > 0 and suppose the initial data f reg(x , 0) is such that ‖ψ0‖
is sufficiently small. Then there is a (unique) solution f reg(x , t)
which conserves total energy and mass and which converges
exponentially fast to equilibrium: f reg → fβ,0, n(t)→ n̄ as t →∞.

Moreover, the equations derived by Spohn are satisfied and the
corresponding family of measures provides a weak solution to the
original Boltzmann equation, as considered by Lu.
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Microscopic justification of the evolution equation?

∂t f
reg = C4[f reg] + n(t)C3[f reg]

Assume that there is a density n0 of particles in a state which
has a “constant wavefunction”

⇒ Then would expect an additional term in ρ1:

〈a(y , 0)∗a(x , 0)〉 = n0 + w(x − y , 0)

This leads to an initial state with

〈a(k , 0)∗a(k ′, 0)〉 = δ(k ′ − k) [n0δ(k) + ŵ(k , 0)]

Can we still do the perturbation argument?
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