Kinetic Description of a Homogeneous Bose Fluid with Condensate

Jani Lukkarinen

work in collaboration with

Jogia Bandyopadhyay and Antti Kupiainen

Department of Mathematics and Statistics

Dynamics of Bose-Einstein condensation?

A 3-dimensional Bose fluid exhibits Bose-Einstein condensation at low temperatures.

- Rigorous results in the Gross-Pitaevskii (mean-field) limit:
 - The limit is a factorized state, determined by the *condensate* wave-function [Lieb, Seiringer, Yngvason]
 ⇒ 100% condensation, i.e., zero temperature
 - Time-evolution of a spatially inhomogeneous condensate wave-function determined by the Gross-Pitaevskii equation [Erdős, Schlein, Yau]
- No rigorous results for states with finite temperature (partial condensation).

Warmup: dNLS

Discrete nonlinear Schrödinger equation

$$i\frac{\mathsf{d}}{\mathsf{d}t}\psi_t(x) = \sum_{y\in\mathbb{Z}^d} \alpha(x-y)\psi_t(y) + \lambda|\psi_t(x)|^2\psi_t(x)$$

•
$$\psi_t: \mathbb{Z}^d \to \mathbb{C}, \quad t \in \mathbb{R}, \quad d \ge 1$$

- λ > 0
- Harmonic couplings determined by $\alpha : \mathbb{Z}^d \to \mathbb{R}$.
- α sufficiently regular: finite range and sufficiently dispersive (for instance, nearest neighbor with $d \ge 4$)

Intro Bosons Definition? Technicalities Comments Dynamics dNLS Cumulants

Kinetic conjecture for homogeneous initial data

- Assume that the initial state is translation invariant.
- Then there always exists $\tilde{w}_t(x)$, $x \in \mathbb{Z}^d$ such that

$$\mathbb{E}[\psi_t(x')^*\psi_t(x)] = \tilde{w}_t(x'-x)$$

• Kinetic conjecture: $W_{\tau} := \lim_{\lambda \to 0} \mathcal{F} \tilde{W}_{\tau \lambda^{-2}}$ solves a homogeneous nonlinear Boltzmann-Peierls equation

$$\begin{aligned} \partial_{\tau} W_{\tau}(k) &= \mathcal{C}_{\mathsf{NL}}[W_{\tau}(\cdot)], \\ \mathcal{C}_{\mathsf{NL}}[h](k_0) &= 4\pi \int_{(\mathbb{T}^d)^3} dk_1 dk_2 dk_3 \, \delta(k_0 + k_1 - k_2 - k_3) \\ &\times \delta(\omega_0 + \omega_1 - \omega_2 - \omega_3) \left[h_1 h_2 h_3 + h_0 h_2 h_3 - h_0 h_1 h_2 - h_0 h_1 h_3 \right], \\ h_j &= h(k_j), \quad \omega_j &= (\mathcal{F}\alpha)(k_j) \end{aligned}$$

Moments to cumulants formula (cluster expansion)

Translation invariance important, leads to:

Cumulant expansion of initial time moments

For any index set I,

$$\mathbb{E}\Big[\prod_{i\in I}\widehat{\psi}_0(k_i,\sigma_i)\Big] = \sum_{S\in\pi(I)}\prod_{A\in S}\Big[\delta\Big(\sum_{i\in A}k_i\Big)C_{|A|}(k_A,\sigma_A)\Big]\,,$$

where the sum runs over all partitions S of the index set I.

Here truncated correlation (cumulant) functions are

$$C_n(k,\sigma) := \sum_{x \in (\mathbb{Z}^d)^n} \mathbb{1}(x_1 = 0) \mathrm{e}^{-\mathrm{i}2\pi \sum_{i=1}^n x_i \cdot k_i} \mathbb{E}\Big[\prod_{i=1}^n \psi_0(x_i,\sigma_i)\Big]^{\mathrm{trunc}}$$

Intro Bosons Definition? Technicalities Comments Dynamics dNLS Cumulants

ℓ_1 -clustering of the initial state

■ For sufficiently small λ and for all n ≥ 4 the fully truncated correlation functions (*cumulants*) should satisfy

$$\sup_{\Lambda,\sigma\in\{\pm 1\}^n}\sum_{x\in\Lambda^n}\mathbb{1}(x_1=0)\Big|\mathbb{E}\Big[\prod_{i=1}^n\psi_0(x_i,\sigma_i)\Big]^{\mathsf{trunc}}\Big|\leq\lambda c_0^n n!$$

• For n = 2 should have

 $\sum_{\|x\|_{\infty} \leq L/2} \left| \mathbb{E}[\psi_0(0)^* \psi_0(x)] - \mathbb{E}[\psi_0(0)^* \psi_0(x)]_{L=\infty}^{\lambda=0} \right| \leq \frac{\lambda}{2} c_0^2$

- For a large class of dNLS equilibrium states proven by Abdesselam, Procacci, and Scoppola
- Estimates imply that ||C_n||_∞ < ∞
 ⇒ cumulant expansion encodes all singularities in k_i

Weakly interacting bosons

Consider a system of bosons "hopping" on a lattice $x \in \mathbb{Z}^d$, d = 3, and with weak "onsite" pair-interaction:

- Lattice convenient to avoid technicalities in the definitions
- The time-evolution lives in a Fock space, but conserves particle number.
- We consider *N*-particle Hamiltonians $H_N := H_N^{\text{free}} + \lambda V_N$,
 - $H_N^{\text{free}} = \sum_{j=1}^N \frac{1}{2} \Delta_j$, where Δ_j is a discrete Laplacian acting on the *j*:th particle
 - V_N is a multiplication operator by the pair-interaction potential $(x_1, \ldots, x_N) \mapsto \frac{1}{2} \sum_{i \neq j} \mathbb{1}(x_i x_j = 0)$

Assume that the *initial state* is

- 1 translation invariant
- 2 l₁-clustering: it has truncated correlation functions which decay summably

Intro Bosons Definition? Technicalities Comments

... follow a "nonlinear wave equation"

• Let a(x) denote the *annihilation operator* at $x \in \mathbb{Z}^d$, and a(x, t) denote the corresponding time-evolved operator.

Then

$$\partial_t a(x,t) = -i \sum_y \Delta(x-y) a(y,t) - i\lambda a(x,t)^* a(x,t) a(x,t)$$

 \blacksquare For $a \rightarrow \psi$ equal to dNLS with $\alpha = \Delta$

• One important observable is *reduced* 1-*particle density matrix*,

$$\rho_1(x,y;t) = \langle a(y,t)^* a(x,t) \rangle$$

By translation invariance, there is a function w such that

$$\rho_1(x,y;t) = w(x-y,t)$$

Kinetic conjecture

• Thus (
$$\hat{a}(k) := \sum_{x} e^{-i2\pi x \cdot k} a(x), \ k \in [0,1]^d$$
)
 $\langle \hat{a}(k,t)^* \hat{a}(k',t) \rangle = \delta(k-k') \hat{w}(k,t)$

$$\langle \hat{a}(k',t)\hat{a}(k,t)^*
angle=\delta(k-k')(1+\hat{w}(k,t))$$

By perturbation expansion, one then expects that there exists a kinetic scaling limit

$$f(k,\tau) = \lim_{\lambda \to 0^+} \hat{w}(k,\tau\lambda^{-2})$$

at least for not too large kinetic times $\tau > 0$.

Moreover, the limit function should satisfy a nonlinear Boltzmann equation, $\partial_t f(k, t) = \mathcal{C}[f(\cdot, t)](k)$

10

Continuum, kinetic scaling limit, no condensate

In the corresponding *continuum setup* we get...

Nonlinear bosonic Boltzmann-Nordheim equation

$$\partial_t f(v_0, t) = \mathcal{C}_4[f(\cdot, t)](v_0), \quad v_0 \in \mathbb{R}^3, \ t > 0$$

$$\begin{aligned} \mathcal{C}_4[h](v_0) &= 4\pi \int_{(\mathbb{R}^3)^3} dv_1 dv_2 dv_3 \,\delta(v_0 + v_1 - v_2 - v_3) \\ &\times \delta(\omega_0 + \omega_1 - \omega_2 - \omega_3) \left[\tilde{h}_0 \tilde{h}_1 h_2 h_3 - h_0 h_1 \tilde{h}_2 \tilde{h}_3 \right], \\ h_j &= h(v_j), \quad \tilde{h}_j = 1 + h_j, \quad \omega_j = E_j^{kin} = \frac{1}{2} v_j^2 \end{aligned}$$

Identical to the previous dNLS collision kernel, except here
 Different dispersion relation: ω(k) = ½k², with k ∈ ℝ³
 Extra second order term: h₂h₃ - h₀h₁.

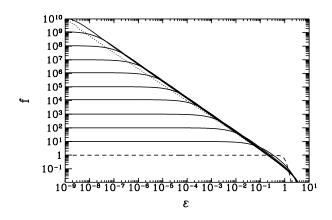
Homogeneous and isotropic distribution

Assume that *f* is also *isotropic in velocity*.

Define
$$f = f(x, t), x = \omega(v) = \frac{1}{2}v^2$$
. Then,
 $\partial_t f(x, t) = C_4[f(\cdot, t)](x),$
 $C_4[h](x_0) = \frac{1}{\sqrt{x_0}} \int_{\mathbb{R}^2_+} dx_2 dx_3 \, \mathbb{1}(x_1 \ge 0) \min_{j=0,1,2,3} \sqrt{x_j}$
 $\times \left[\tilde{h}_0 \tilde{h}_1 h_2 h_3 - h_0 h_1 \tilde{h}_2 \tilde{h}_3 \right]_{x_1 = x_2 + x_3 - x_0}$

Asymptotics of solutions? Condensation?

Numerical results by Semikoz and Tkachev



Shows blow-up $f(0, t) \propto (t - t_0)^{-2.6}$ in finite time. (dashed line depicts initial distribution)

Steady states

13

By differentiation of the integrand,

 $\partial_t s[f(\cdot, t)] = \sigma[f(\cdot, t)],$ $s[h] = \int_0^\infty dy \sqrt{y} \left[\tilde{h}(y) \ln \tilde{h}(y) - h(y) \ln h(y) \right], \text{ (entropy)}$ $\sigma[h] = \int_{\mathbb{R}^3_+} dx_0 dx_2 dx_3 \mathbb{1}(x_1 \ge 0) \min_{j=0,1,2,3}(\sqrt{x_j}) (A - B) \ln \frac{A}{B},$

 $A = \tilde{h}_0 \tilde{h}_1 h_2 h_3, \quad B = h_0 h_1 \tilde{h}_2 \tilde{h}_3, \quad (entropy \ production)$

Since $\sigma[f] \ge 0$, the steady states need to satisfy $\sigma[f] = 0$. \Rightarrow There are $\beta > 0$ and $\mu \le 0$ such that $f = f_{\beta,\mu}$,

$$f_{eta,\mu}(x)=rac{1}{{
m e}^{eta(x-\mu)}-1}$$

Conservation laws

For regular f, one similarly finds that particle number and energy are conserved: $\rho[f(t)], e[f(t)]$ are constant with

$$\rho[f] = \int_0^\infty dy \sqrt{y} f(y), \quad e[f] = \int_0^\infty dy \sqrt{y} f(y) y$$

Definition

Given
$$f_0 = f(\cdot, 0)$$
, let $\bar{e} = e[f_0]$, and $\bar{\rho} = \rho[f_0]$.

- **1** *Either* $\exists ! \beta, \mu$ such that $\bar{e} = e[f_{\beta,\mu}]$, and $\bar{\rho} = \rho[f_{\beta,\mu}]$,
- 2 or $\exists ! \beta$ such that $\bar{e} = e[f_{\beta,0}]$, and $\bar{n} := \bar{\rho} \rho_c > 0$, where $\rho_c = \rho[f_{\beta,0}]$.

 \Rightarrow (?) steady state is $f(x)\sqrt{x}dx = f_{\beta,0}(x)\sqrt{x}dx + \bar{n}\,\delta(x)dx$?

Intro Bosons Definition? Technicalities Comments Ansatz Singular data Condensate? Ours

The importance of being earnestly defined

If f(x,0) has a singularity, what is the proper mathematical definition of the evolution equation

 $\partial_t f(x,t) = \mathcal{C}_4[f(\cdot,t)](x)?$

1 Pointwise? If $f_0(x) \simeq x^{-7/6}$ for $x \simeq 0$, then there is a unique (finite time) solution for which $f(x, t) \simeq b(t)x^{-7/6}$. [Escobedo, Mischler, Velázquez]

However, this solution does not preserve total mass.

2 Measure valued? There is a family of positive measures $(\mu_t(dx))_t$ which solve the equation weakly, and for which energy and mass are conserved. [Lu]

Nonconstructive (via subsequences of solutions to a regularized problem); uniqueness?

Definition via physical ansatz

Semikoz and Tkachev (1997) used the following ansatz for numerical simulations:

$$f(x,t)\sqrt{x}dx = f^{\text{reg}}(x,t)\sqrt{x}dx + n(t)\delta(x)dx$$

yielding

$$\partial_t f^{\text{reg}}(x,t) = C_4[f_t^{\text{reg}}](x) + n(t)C_3[f_t^{\text{reg}}](x),$$
$$\frac{d}{dt}n(t) = -n(t)\rho[C_3[f_t^{\text{reg}}]],$$

$$C_{3}[h](x) = \frac{2}{\sqrt{x}} \int_{0}^{x} dy \left[\tilde{h}(x)h(x-y)h(y) - h(x)\tilde{h}(x-y)\tilde{h}(y)\right]$$
$$-\frac{4}{\sqrt{x}} \int_{x}^{\infty} dy \left[x \leftrightarrow y\right]$$

Effect of singularities in f_t

The following observations were made later by Spohn (2010):

If f(x, t) ≃ a(t)x⁻¹ for x ≃ 0, then the condensate equation should read

$$\frac{\mathsf{d}}{\mathsf{d}t}n(t) = -n(t)\left(2\rho[\sqrt{x}f_t^{\mathsf{reg}}] - c_0a(t)^2\right).$$

⇒ The previous measure-valued thermal states are stationary. ■ If $f(x, t) \simeq b(t)x^{-7/6}$ for $x \simeq 0$, then

$$\rho[\mathcal{C}_4[f_t^{\mathrm{reg}}]] = -c_1 b(t)^3.$$

 \Rightarrow Loss of mass, in spite of formal conservation law.

Final problem

How can condensate be generated?

$$(n(t) = 0 \Rightarrow \dot{n}(t) = 0)$$

Possible scenario:

- **1** Start with supercritical but regular initial data f(x, 0).
- 2 The solution to

$$\partial_t f(x,t) = \mathcal{C}_4[f(\cdot,t)](x)$$

develops a singularity x^{-p} , p > 1, at x = 0 in finite time

- 3 After blowup: solution has x^{-1} singularity and a "seed" for condensate
- **4** Then f(t), n(t) follow the coupled equations with n(t) > 0

Details of seeding poorly understood.

Not clear that condensation can be described by B-N eqn.

Evolution equations for f^{reg}

Possible solution: Replace the equation for \dot{n} by the mass conservation law,

$$n(t) = n(0) + \rho[f_0^{\text{reg}}] - \rho[f_t^{\text{reg}}] = \bar{n} - \rho[f_t^{\text{reg}} - f_{\beta,0}].$$

Evolution equation for the noncondensate energy density

$$\partial_t f^{\mathsf{reg}}(x,t) = \mathcal{C}_4[f_t^{\mathsf{reg}}](x) + (\bar{n} - \rho[f_t^{\mathsf{reg}} - f_{\beta,0}])\mathcal{C}_3[f_t^{\mathsf{reg}}](x)$$

- Closed nonlinear evolution equation for f^{reg}
- As a first step, we show that *small perturbations* from equilibrium have *unique solutions* converging to an equilibrium distribution as $t \to \infty$

L inearization

• Write $f^{\text{reg}} = f_{\beta,0} + R(x)\psi(t,x)$, $R(x) \propto x^{-1}$, and linearize:

$$\partial_t \psi_t = -L\psi_t + Q[\psi_t],$$
$$L = L_4 + \bar{n}L_3$$

• $f_{\beta,0}(x)$ has 1/x singularity for $x \to 0$ \Rightarrow nonintegrable singularity 1/|x - y| for the integral kernel of *L*:

$$\begin{split} L_{i}\psi(x) &= \int_{0}^{\infty} dy \, K_{i}(x,y)(\psi(x) - \psi(y)) \,, \quad i = 3, \, 4, \\ K_{3} &= x^{-\frac{1}{2}}|x - y|^{-1} \, \times \, \, (\text{exp-decay for } y > x), \end{split}$$

and K_4 less singular ($\sim |x - y|^{-1/2}$).

21

Problem: nonlinear term *not bounded* in L^2 nor in Sobolev spaces.

- need *smoothing* by semigroup e^{-tL}
- L is close to a operator with *logarithmic* symbol $\sim \log(1 + |\xi|), \xi =$ Fourier-variable
- e^{-tL} smooths slowly, as $\sim |\xi|^{-t}$
- This is just what we need to "restore" the nonlinear term

Technical headache: singularity at origin (and at infinity)

Norms

To control all singularities, we work in *Banach spaces* X (for ψ) and X' (for $\partial_t \psi$), with *Hölder type* norms, $\frac{1}{2} < \alpha < 1$:

$$\begin{split} \|\psi\| &= \sup_{x} |\psi(x)| + \|\psi\|', \quad \|\psi\|' \simeq \sup_{x,y} \frac{|\psi(x) - \psi(y)|}{|x - y|^{\alpha}} \frac{1}{\sqrt{x + y}}, \\ \|\psi\|_{\ln} &= \sup_{x} |\psi(x) \ln x^{-1}| + \|\psi\|'_{\ln}, \\ \|\psi\|'_{\ln} &\simeq \sup_{x,y} \frac{|\psi(x) - \psi(y)|}{|x - y|^{\alpha} \ln |x - y|^{-1}} \end{split}$$

• Nonlinearity Q maps $X \to X'$ but $\int_0^t ds \, e^{-(t-s)L} Q[\psi_s]$ is a bounded map $X \to X$

•
$$e^{-tL}$$
 has a "spectral" gap in X:
 $L: X \to X'$, $\|e^{-tL}\psi_0\| \le Ce^{-\delta t}\|\psi_0\|$ for some $\delta > 0$

23

Main novelty: analysis of the linear semigroup

Why can do sup-norms?

 $\|\psi\| \le \|\psi\|_{L^2} + \|\psi\|', \quad \|\psi\|_{\ln} \le \|\psi\|_{L^2} + \|\psi\|'_{\ln}$

• The singularity at x = 0 enhances smoothing:

With
$$\psi_t = e^{-tL}\psi_0$$
, $\Delta = |x - y|$, $\Phi_1(x, y) = (x + y)^{-1/2}$,
 $\alpha(x, y, t) = \alpha + \frac{1-\alpha}{2} (1 + [t\Phi_1(x, y)]^{-1})^{-1}$, it holds
 $|\psi_t(x) - \psi_t(y)|$
 $\leq \ln \Delta^{-1} \Delta^{\alpha(x, y, t)} (1 + t^2 \Phi_1(x, y)^2)^{-1} ||\psi_0||_{\text{In}}$

• Gap in X proven via similar upper bound + gap in L^2 .

How are the upper bounds derived?

- Move x = 0 to $u = -\infty$: change variables to $u = \ln(e^x 1)$
- Then $x^{-1/2} \rightarrow e^{-u/2}$

• Let $\Gamma_{uv}(t)$ denote the appropriate weight, and control

$$\mathcal{F}_{uv}(t) := rac{\psi_t(u) - \psi_t(v)}{\Gamma_{uv}(t)}, \qquad |u - v| \leq arepsilon$$

which satisfies (with an explicit time-independent $K_{\mu\nu}$)

$$\partial_t F_{uv} = F_{uv} \partial_t \ln \Gamma_{uv}^{-1}$$

- $\Gamma_{uv}^{-1} \int dw \left[K_{uw}(\psi_t(u) - \psi_t(w)) - K_{vw}(\psi_t(v) - \psi_t(w)) \right]$

Main observation: can generate a "potential term" by

$$= F_{uv} \frac{2AB}{A+B} + \frac{A-B}{\Gamma_{uv}} \frac{A}{A+B} (\psi_t(u) - \psi_t(w)) - (u \leftrightarrow v)$$

- The potential is singular on the diagonal $u \simeq v$
- Split the remaining integral over w into three parts
 - **1** Region dominated directly by the singular potential
 - **2** An integral containing $\int dw \psi_t(w) \cdots$, use Schwarz ineq.
 - **3** For the rest, "telescope": $\psi_t(u) \psi_t(w) = \sum_n F_{w_n, w_{n+1}}$
- For $|u v| \le \varepsilon_0 \ll 1$ the singular potential dominates \Rightarrow Banach fixed point theorem shows that $F_{uv}(t)$ is bounded \Rightarrow proves that $\psi_t \in X$

Main mathematical result

26

Theorem

Let $\bar{n} > 0$ and suppose the initial data $f^{\text{reg}}(x, 0)$ is such that $\|\psi_0\|$ is sufficiently small. Then there is a (unique) solution $f^{\text{reg}}(x, t)$ which conserves total energy and mass and which converges exponentially fast to equilibrium: $f^{\text{reg}} \to f_{\beta,0}, n(t) \to \bar{n}$ as $t \to \infty$.

Moreover, the equations derived by Spohn are satisfied and the corresponding family of measures provides a weak solution to the original Boltzmann equation, as considered by Lu.

Microscopic justification of the evolution equation? $\partial_t f^{\text{reg}} = C_4[f^{\text{reg}}] + n(t)C_3[f^{\text{reg}}]$

Assume that there is a density n₀ of particles in a state which has a "constant wavefunction"

 \Rightarrow Then would expect an additional term in ρ_1 :

$$\langle a(y,0)^*a(x,0)\rangle = n_0 + w(x-y,0)$$

This leads to an initial state with

 $\langle a(k,0)^* a(k',0) \rangle = \delta(k'-k) \left[n_0 \delta(k) + \hat{w}(k,0) \right]$

Can we still do the perturbation argument?

References

റ	0
2	0

Weakly interacting quantum fluids (derivation of C_4): JL and H. Spohn, J. Stat. Phys. 134 (2009) 1133-1172 Rigorous results on weakly nonlinear kinetic limits: JL and H. Spohn, Invent. Math. 183 (2011) 79-188 On total condensation and the Gross-Pitaevskii equation: E. H. Lieb, R. Seiringer, J. Yngvason, Phys. Rev. A 61 (2000) 043602 L. Erdős, B. Schlein, H.-T. Yau, Ann. Math. 172 (2010) 291-370 Boltzmann-Nordheim equation with singular initial data: M. Escobedo, S. Mischler, J. Velázquez, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 67-107 Boltzmann-Nordheim equation and condensation: D. V. Semikoz and I. I. Tkachev, Phys. Rev. D 55 (1997) 489-502 X. Lu, J. Stat. Phys. 116 (2004) 1597-1649 X. Lu, J. Stat. Phys. 119 (2005) 1027-1067 H. Spohn, Physica D 239 (2010) 627-634