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As already explained, the main technical difficulty
in the derivation of the Heat equation or the
Fourier law lies in establishing some form of local
equilibrium

To simplify the problem one can study a weak coupling:

many independent systems with small interactions.
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Consider a finite region Λ ⊂ Zν , a Hamiltonian Hx(qx, px)

on a manifold Mx at each site x ∈ Λ and the total

Hamiltonian

Hε(q, p) =
∑
x

Hx(qx, px) + ε
∑
|x−y|=1

V (qx, qy).

If the single site dynamics has good mixing properties and ε

is small enough, then one expects to have the local systems

always close to equilibrium.
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Caveat: It cannot be always so simple.

If Hx ∼ ε, then the perturbation may be no longer small !

To simplify even further the problem one can try to make

sense of the limit ε→ 0, and hope that too small energies

will never occur.
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More precisely. Let Ex = Hx be the energy at site x,

d

dt
Ex = ε

∑
|x−y|=1

∇V (qx, qy)(px + py) =: ε
∑
|x−y|=1

jx,y.

The microcanical measure is symmetric in p, hence in

equilibrium E(jx,y) = 0.

The effective exchange of energy is due to fluctuations
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It is then natural to consider the random variables

Eε
x(t) = Ex(ε

−2t).

The randomness being in the initial condition on the q, p

variables at fixed energies.

Eε
x(t) = Eε

x(0) + ε

∫ tε−2

0

∑
|x−y|=1

jxy(s)ds.

Thus the limit ε→ 0 looks like some kind of CLT.
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Work in Collaboration with S.Olla

Let Mx = R2d and U, V ∈ C∞(Rd,R) strictly convex

Hx =
px
2

+ U(qx).

In this case the single site system has poor ergodic

properties. To deal with this we add a noise on the

velocities preserving the Kinetic energy and prove that the

resulting system has good mixing properties.
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Theorem 1 (Olla, L.) The process {Eε
x} converges weakly

to a limit {Ex} satisfying the mesoscopic SDE

dEx =
∑
|x−y|=1

a(Ex, Ey)dt+
∑
|x−y|=1

b(Ex, Ey)dBx,y

where a(Ex, Ey) = −a(Ey, Ex), b(Ex, Ey) = b(Ey, Ex) and

Bx,y = −By,x are independent standard random walks.

In addition, a, b2 ∈ C∞((0,∞)2) and

b2(Ex, Ey) = AExEy(1 +O(Ex + Ey))
a(Ex, Ey) = A(Ex − Ey)(1 +O(Ex + Ey))
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Work in Collaboration with D.Dolgopyat

Let Mx = T ∗M , M being a d-dimensional manifold with

strictly negative curvature

Hx =
p2
x

2
.

The system is mixing (Dolgopyat (1998), Liverani (2004)).

But mixing is not so good: mixing rate goes to zero when

energy goes to zero! (Harder to study)
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Theorem 2 (Dolgopyat, L.) For d ≥ 3, {Eε
x} converges

weakly to a limit {Ex} satisfying the mesoscopic SDE

dEx =
∑
|x−y|=1

a(Ex, Ey)dt+
∑
|x−y|=1

b(Ex, Ey)dBx,y

where a(Ex, Ey) = −a(Ey, Ex), b(Ex, Ey) = b(Ey, Ex) and

Bx,y = −By,x are independent standard random walks.

In addition, a, b2 ∈ C∞((0,∞)2) and, for Ex ≤ Ey,

b2(Ex, Ey) =
AEx√

2Ey
+O

(
E

3
2
x E−1

y

)
a(Ex, Ey) =

A(d− 2)

2
√

2Ey
+O

(
E

1
2
x E−1

y

)
,
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In both cases we can prove that zero is unreachable, i.e. if

at time zero all the energies are strictly positive, then they

will remain strictly positive for all times. This implies that

the SDE have a unique solution (uniqueness of the

Martingale problem).
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Next step

Consider the above SDE in a region ΛL = [−L,L]ν ⊂ Zν ,

and, for each ϕ ∈ C∞0 (Rν ,R), define the random variable

ẼL(t, ϕ) = L−ν
∑
x∈ΛL

Ex(L2t)ϕ(L−1x)

Prove that (Hydrodynamics limit) ẼL(t, ϕ) converges weakly

to
∫
ρ(t, x)ϕ(x) where (Heat equation)

∂ρt = div(D∇ρ),

for some diffusion coefficient D ∈ C1(Rν , GL(ν,R)).
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