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Preliminaries

Lorentz Gas: d-dimensional billiard system in the complement of
a (possibly aperiodic) array of semi-dispersing scatterers.
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Goals

Interested in (Poincaré) recurrence, because:

obvious implications for transport in channels, wires, etc.

recurrence = 0th ergodic property (no recurrence no chaos)

and in higher ergodic properties. For our LTs it turns out:

recurrence implies ergodicity, K -mixing for standard billiard
map and K -mixing (hence mixing) for suitable first-return
maps.

Additional motivation:

want to prove typicality of above properties in a large class of
LTs.
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Goals

Metaconjecture

Most LTs are recurrent and “chaotic”.

Question: Define “most”.
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Quenched Random LTs

Tube T =
⋃

n Cn, where each cell Cn = τn(C0) is a translated copy
of the polygon C0.

In each cell a random configuration of scatterers is placed,
depending on a parameter in some measure space Ω.

A global configuration is a realization of the stochastic process
` = (`n)n∈Z ∈ (ΩZ,Π) (Π probability law).

E.g.: i.i.d. local configurations, Π = π⊗Z (π probability on Ω)
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Quenched Random LTs

Endowed with the standard billiard dynamics, each configuration
defines a (deterministic) dynamical system. We have:

 ensemble of dynamical systems

 quenched random dynamical system (quenched random LT)

Another example:
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Assumptions (2D case)

(A1) Π stationary and ergodic for the action of Z on ΩZ (minimal
physical requirement: LLN must hold when one considers
more and more cells).

(A2) In each cell at most K smooth (C 3) semi-dispersing boundary
components (K universal constant).

(A3) Free flight b/w dispersing collisions bounded above and below
by universal constants

(=⇒ finite horizon).

Also, bounded number of flat collisions between two
dispersing collisions.
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Assumptions (2D case)

(A4) Curvature of dispersing boundaries of scatterers bounded
below by universal constant (hyperbolicity).

(A5) For a.e. configuration there is a non-singular trajectory
entering C0 from left/right gate and leaving it from left/right
gate (4 conditions).

Want to avoid:
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Assumptions (2D case)

Morally speaking...

The quenched random LT should be a uniformly nice finite-horizon
Sinai billiard (assumptions (A2)-(A4)),with no obvious reasons to
prevent ergodicity (assumption (A5)).

(Infinite — though locally finite — horizon can be worked out
(L, Troubetzkoy 2011) but requires stronger assumptions.)
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Main result

Theorem

For Π-a.e. configuration ` ∈ ΩZ, the standard billiard map for the
LT `

1 is hyperbolic (local stable/unstable manifolds (LSUMs) exist
a.e.; corresponding invariant foliations absolutely continuous
w.r.t. physical measure)

2 has a positive Lyapunov exponent

3 is recurrent

4 is ergodic

5 is K -mixing

6 the first-return map to any boundary component is K -mixing
(hence mixing).
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One idea about the proof

Main problem: A LT is an extended dynamical system; relevant
invariant measure is infinite.

Idea: The whole quenched random dynamical system (infinitely
many infinite-measure systems) can be described by one
finite-measure system that encompasses the dynamics of all
trajectories in all LTs.

Trick: Instead of following the particle from one cell to the next,
stay in C0 and shift the tube in the opposite direction.

 point of view of the particle
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Point of view of the particle

Suppose random configuration in C0 given by ω. Set:

N = {x = (q, v) incoming (in C0) position/velocity pair}
Rω(x) = Rω(q, v) = (τ−ε(q1), v1) ∈ N

(right exit: ε = +1; left exit: ε = −1)

Rw(q,v) (q ,v )
1 1

(q,v)

F (x , `) := (R`0(x) , σε(x ,`0)(`)) ∈ N × ΩZ

(σ = natural action of Z into ΩZ)

F : N × ΩZ −→ N × ΩZ preserves probability measure µ0 × Π
(µ0 = Liouville measure on N ; Π = random law for global conf’n)
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Point of view of the particle and recurrence

(N × ΩZ,F , µ0 × Π) called point of view of the particle (PVP)

Discrete itinerary: Sn(x , `) =
n−1∑
k=0

ε ◦ F k(x , `) (S0(x , `) ≡ 0)

(Z-valued cocycle of function ε, relative to PVP)

Classical Theorem (e.g., Atkinson 1976)

If (Σ,F , λ) is ergodic and ε : Σ −→ R is integrable, the (1D)
cocycle (Sn) of ε is recurrent, i.e.,

lim inf
n→∞

|Sn| = 0, λ-almost everywhere

if and only if
∫

Σ ε dλ = 0.
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Point of view of the particle and recurrence

Theorem

PVP is ergodic.

(Proof uses hyperbolicity and local ergodicity of all LTs in the
ensemble.)

Corollary

Cocycle (Sn) is recurrent.

Corollary

Quenched random LT is almost surely recurrent.
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Extensions I

Assumptions on tube can be relaxed in a number of ways, e.g.:

Shape of cell can be random too:
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Extensions II

Gates can comprise more than one side:
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Extensions III

More general isometries can be used in lieu of translations:

In 2D, use Riemann sheets to avoid self-intersections
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Extensions IV

Choice of gate can be random too:

G2

1G

3G
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Higher dimension

Most important extension: Dimension three and up
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Higher dimension

Most important extension: Dimension three and up

Everything can be generalized to d ≥ 3,

with caveats.

Assumptions: Suitable reformulation of (A1)-(A5) + other
requirements, including:

Scatterers piecewise algebraic, uniformly of the same type
(Sinai billiards with general convex scatterers are not known
to be hyperbolic and ergodic in d ≥ 3, cf. Bálint, Chernov,
Szász, Tóth 2002).

Every orbit has a non-grazing collision every so often (uniform
hyperbolicity more delicate in d ≥ 3, cf. astigmatism, etc.).
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