Quenched results for random Lorentz Tubes

Marco Lenci

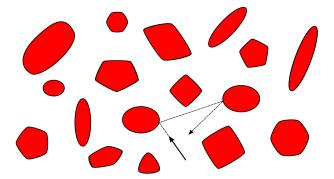
Università di Bologna

(joint papers with G. Cristadoro, M. Seri, M. Degli Esposti, S. Troubetzkoy)

Workshop on the Fourier Law and Related Topics Fields Institute, Toronto, April 4-8, 2011

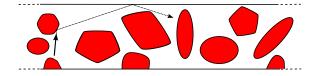
THEMATIC PROGRAM ON DYNAMICS AND TRANSPORT IN DISORDERED SYSTEMS

Lorentz Gas: *d*-dimensional billiard system in the complement of a (possibly aperiodic) array of semi-dispersing scatterers.

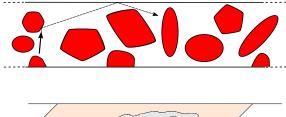


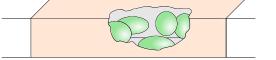
Lorentz Tube (LT): Lorentz gas in a domain spatially extended in one dimension only (effectively one-dimensional Lorentz Gas).

Lorentz Tube (LT): Lorentz gas in a domain spatially extended in one dimension only (effectively one-dimensional Lorentz Gas).

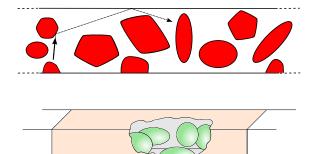


Lorentz Tube (LT): Lorentz gas in a domain spatially extended in one dimension only (effectively one-dimensional Lorentz Gas).





Lorentz Tube (LT): Lorentz gas in a domain spatially extended in one dimension only (effectively one-dimensional Lorentz Gas).



Specialize (for the moment) to d = 2.

Interested in (Poincaré) recurrence, because:

Interested in (Poincaré) recurrence, because:

• obvious implications for transport in channels, wires, etc.

Interested in (Poincaré) recurrence, because:

- obvious implications for transport in channels, wires, etc.
- ullet recurrence = 0^{th} ergodic property (no recurrence no chaos)

Interested in (Poincaré) recurrence, because:

- obvious implications for transport in channels, wires, etc.
- recurrence = 0th ergodic property (no recurrence no chaos)

and in higher ergodic properties. For our LTs it turns out:

Interested in (Poincaré) recurrence, because:

- obvious implications for transport in channels, wires, etc.
- recurrence = 0th ergodic property (no recurrence no chaos)

and in higher ergodic properties. For our LTs it turns out:

 recurrence implies ergodicity, K-mixing for standard billiard map and K-mixing (hence mixing) for suitable first-return maps.

Interested in (Poincaré) recurrence, because:

- obvious implications for transport in channels, wires, etc.
- recurrence = 0th ergodic property (no recurrence no chaos)

and in higher ergodic properties. For our LTs it turns out:

 recurrence implies ergodicity, K-mixing for standard billiard map and K-mixing (hence mixing) for suitable first-return maps.

Additional motivation:

Interested in (Poincaré) recurrence, because:

- obvious implications for transport in channels, wires, etc.
- recurrence = 0th ergodic property (no recurrence no chaos)

and in higher ergodic properties. For our LTs it turns out:

 recurrence implies ergodicity, K-mixing for standard billiard map and K-mixing (hence mixing) for suitable first-return maps.

Additional motivation:

 want to prove typicality of above properties in a large class of LTs.

Metaconjecture

Most LTs are recurrent and "chaotic".

Metaconjecture

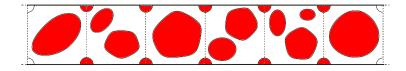
Most LTs are recurrent and "chaotic".

Question: Define "most".

Tube $\mathcal{T} = \bigcup_n C_n$, where each cell $C_n = \tau^n(C_0)$ is a translated copy of the polygon C_0 .

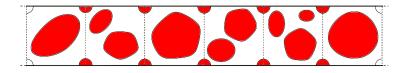
Tube $T = \bigcup_n C_n$, where each cell $C_n = \tau^n(C_0)$ is a translated copy of the polygon C_0 .

In each cell a random configuration of scatterers is placed, depending on a parameter in some measure space Ω .



Tube $T = \bigcup_n C_n$, where each cell $C_n = \tau^n(C_0)$ is a translated copy of the polygon C_0 .

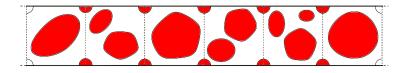
In each cell a random configuration of scatterers is placed, depending on a parameter in some measure space Ω .



A global configuration is a realization of the stochastic process $\ell = (\ell_n)_{n \in \mathbb{Z}} \in (\Omega^{\mathbb{Z}}, \Pi)$ (Π probability law).

Tube $\mathcal{T} = \bigcup_n C_n$, where each cell $C_n = \tau^n(C_0)$ is a translated copy of the polygon C_0 .

In each cell a random configuration of scatterers is placed, depending on a parameter in some measure space Ω .



A global configuration is a realization of the stochastic process $\ell = (\ell_n)_{n \in \mathbb{Z}} \in (\Omega^{\mathbb{Z}}, \Pi)$ (Π probability law).

E.g.: i.i.d. local configurations, $\Pi = \pi^{\otimes \mathbb{Z}}$ (π probability on Ω)

Endowed with the standard billiard dynamics, each configuration defines a (deterministic) dynamical system. We have:

Endowed with the standard billiard dynamics, each configuration defines a (deterministic) dynamical system. We have:

→ ensemble of dynamical systems

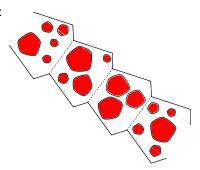
Endowed with the standard billiard dynamics, each configuration defines a (deterministic) dynamical system. We have:

- → ensemble of dynamical systems
- → quenched random dynamical system (quenched random LT)

Endowed with the standard billiard dynamics, each configuration defines a (deterministic) dynamical system. We have:

- → ensemble of dynamical systems
- → quenched random dynamical system (quenched random LT)

Another example:



(A1) Π stationary and ergodic for the action of \mathbb{Z} on $\Omega^{\mathbb{Z}}$ (minimal physical requirement: LLN must hold when one considers more and more cells).

- (A1) Π stationary and ergodic for the action of \mathbb{Z} on $\Omega^{\mathbb{Z}}$ (minimal physical requirement: LLN must hold when one considers more and more cells).
- (A2) In each cell at most K smooth (C^3) semi-dispersing boundary components (K universal constant).

- (A1) Π stationary and ergodic for the action of \mathbb{Z} on $\Omega^{\mathbb{Z}}$ (minimal physical requirement: LLN must hold when one considers more and more cells).
- (A2) In each cell at most K smooth (C^3) semi-dispersing boundary components (K universal constant).
- (A3) Free flight b/w dispersing collisions bounded above and below by universal constants

Also, bounded number of flat collisions between two dispersing collisions.

- (A1) Π stationary and ergodic for the action of \mathbb{Z} on $\Omega^{\mathbb{Z}}$ (minimal physical requirement: LLN must hold when one considers more and more cells).
- (A2) In each cell at most K smooth (C^3) semi-dispersing boundary components (K universal constant).
- (A3) Free flight b/w dispersing collisions bounded above and below by universal constants (⇒⇒ finite horizon).



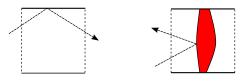
Also, bounded number of flat collisions between two dispersing collisions.

(A4) Curvature of dispersing boundaries of scatterers bounded below by universal constant (hyperbolicity).

- (A4) Curvature of dispersing boundaries of scatterers bounded below by universal constant (hyperbolicity).
- (A5) For a.e. configuration there is a non-singular trajectory entering C_0 from left/right gate and leaving it from left/right gate (4 conditions).

- (A4) Curvature of dispersing boundaries of scatterers bounded below by universal constant (hyperbolicity).
- (A5) For a.e. configuration there is a non-singular trajectory entering C_0 from left/right gate and leaving it from left/right gate (4 conditions).

Want to avoid:



Morally speaking...

Morally speaking...

The quenched random LT should be a uniformly nice finite-horizon Sinai billiard (assumptions (A2)-(A4)), with no obvious reasons to prevent ergodicity (assumption (A5)).

Morally speaking...

The quenched random LT should be a uniformly nice finite-horizon Sinai billiard (assumptions (A2)-(A4)), with no obvious reasons to prevent ergodicity (assumption (A5)).

(Infinite — though locally finite — horizon can be worked out (*L*, *Troubetzkoy 2011*) but requires stronger assumptions.)

Main result

Theorem

For Π -a.e. configuration $\ell \in \Omega^{\mathbb{Z}}$, the standard billiard map for the LT ℓ

Main result

Theorem

For Π -a.e. configuration $\ell \in \Omega^{\mathbb{Z}}$, the standard billiard map for the LT ℓ

• is hyperbolic (local stable/unstable manifolds (LSUMs) exist a.e.; corresponding invariant foliations absolutely continuous w.r.t. physical measure)

Main result

Theorem

For Π -a.e. configuration $\ell \in \Omega^{\mathbb{Z}}$, the standard billiard map for the LT ℓ

- is hyperbolic (local stable/unstable manifolds (LSUMs) exist a.e.; corresponding invariant foliations absolutely continuous w.r.t. physical measure)
- a has a positive Lyapunov exponent

Theorem

- is hyperbolic (local stable/unstable manifolds (LSUMs) exist a.e.; corresponding invariant foliations absolutely continuous w.r.t. physical measure)
- 4 has a positive Lyapunov exponent
- is recurrent

Theorem

- is hyperbolic (local stable/unstable manifolds (LSUMs) exist a.e.; corresponding invariant foliations absolutely continuous w.r.t. physical measure)
- has a positive Lyapunov exponent
- is recurrent
- is ergodic

Theorem

- is hyperbolic (local stable/unstable manifolds (LSUMs) exist a.e.; corresponding invariant foliations absolutely continuous w.r.t. physical measure)
- has a positive Lyapunov exponent
- is recurrent
- is ergodic
- is K-mixing

Theorem

- is hyperbolic (local stable/unstable manifolds (LSUMs) exist a.e.; corresponding invariant foliations absolutely continuous w.r.t. physical measure)
- has a positive Lyapunov exponent
- is recurrent
- is ergodic
- is K-mixing
- the first-return map to any boundary component is *K*-mixing (hence mixing).

Main problem: A LT is an *extended dynamical system*; relevant invariant measure is infinite.

Main problem: A LT is an *extended dynamical system*; relevant invariant measure is infinite.

Idea: The whole quenched random dynamical system (infinitely many infinite-measure systems) can be described by *one* finite-measure system that encompasses the dynamics of *all* trajectories in *all* LTs.

Main problem: A LT is an *extended dynamical system*; relevant invariant measure is infinite.

Idea: The whole quenched random dynamical system (infinitely many infinite-measure systems) can be described by *one* finite-measure system that encompasses the dynamics of *all* trajectories in *all* LTs.

Trick: Instead of following the particle from one cell to the next, stay in C_0 and shift the tube in the opposite direction.

Main problem: A LT is an extended dynamical system; relevant invariant measure is infinite.

Idea: The whole quenched random dynamical system (infinitely many infinite-measure systems) can be described by *one* finite-measure system that encompasses the dynamics of *all* trajectories in *all* LTs.

Trick: Instead of following the particle from one cell to the next, stay in C_0 and shift the tube in the opposite direction.

→ point of view of the particle

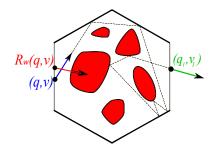
Suppose random configuration in C_0 given by ω . Set:

Suppose random configuration in C_0 given by ω . Set:

• $\mathcal{N} = \{x = (q, v) \text{ incoming (in } C_0) \text{ position/velocity pair} \}$

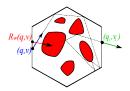
Suppose random configuration in C_0 given by ω . Set:

- $\mathcal{N} = \{x = (q, v) \text{ incoming (in } C_0) \text{ position/velocity pair}\}$
- $R_{\omega}(x) = R_{\omega}(q, v) = (\tau^{-\epsilon}(q_1), v_1) \in \mathcal{N}$ (right exit: $\epsilon = +1$; left exit: $\epsilon = -1$)



Suppose random configuration in C_0 given by ω . Set:

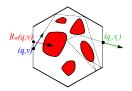
- $\mathcal{N} = \{x = (q, v) \text{ incoming (in } C_0) \text{ position/velocity pair}\}$
- $R_{\omega}(x) = R_{\omega}(q, v) = (\tau^{-\epsilon}(q_1), v_1) \in \mathcal{N}$ (right exit: $\epsilon = +1$; left exit: $\epsilon = -1$)



• $F(x,\ell) := (R_{\ell_0}(x), \sigma^{\epsilon(x,\ell_0)}(\ell)) \in \mathcal{N} \times \Omega^{\mathbb{Z}}$ ($\sigma = \text{natural action of } \mathbb{Z} \text{ into } \Omega^{\mathbb{Z}}$)

Suppose random configuration in C_0 given by ω . Set:

- $\mathcal{N} = \{x = (q, v) \text{ incoming (in } C_0) \text{ position/velocity pair}\}$
- $R_{\omega}(x) = R_{\omega}(q, v) = (\tau^{-\epsilon}(q_1), v_1) \in \mathcal{N}$ (right exit: $\epsilon = +1$; left exit: $\epsilon = -1$)



• $F(x,\ell) := (R_{\ell_0}(x), \sigma^{\epsilon(x,\ell_0)}(\ell)) \in \mathcal{N} \times \Omega^{\mathbb{Z}}$ ($\sigma = \text{natural action of } \mathbb{Z} \text{ into } \Omega^{\mathbb{Z}}$)

 $F: \mathcal{N} \times \Omega^{\mathbb{Z}} \longrightarrow \mathcal{N} \times \Omega^{\mathbb{Z}}$ preserves probability measure $\mu_0 \times \Pi$ $(\mu_0 = \text{Liouville measure on } \mathcal{N}; \Pi = \text{random law for global conf'n})$

 $(\mathcal{N} \times \Omega^{\mathbb{Z}}, F, \mu_0 \times \Pi)$ called point of view of the particle (PVP)

 $(\mathcal{N} \times \Omega^{\mathbb{Z}}, F, \mu_0 \times \Pi)$ called point of view of the particle (PVP)

Discrete itinerary:
$$S_n(x,\ell) = \sum_{k=0}^{n-1} \epsilon \circ F^k(x,\ell) \quad (S_0(x,\ell) \equiv 0)$$
 (\mathbb{Z} -valued cocycle of function ϵ , relative to PVP)

 $(\mathcal{N} \times \Omega^{\mathbb{Z}}, F, \mu_0 \times \Pi)$ called point of view of the particle (PVP)

Discrete itinerary:
$$S_n(x,\ell) = \sum_{k=0}^{n-1} \epsilon \circ F^k(x,\ell) \quad (S_0(x,\ell) \equiv 0)$$
 (\mathbb{Z} -valued cocycle of function ϵ , relative to PVP)

Classical Theorem (e.g., Atkinson 1976)

If (Σ, F, λ) is ergodic and $\epsilon : \Sigma \longrightarrow \mathbb{R}$ is integrable, the (1D) cocycle (S_n) of ϵ is recurrent, i.e.,

$$\liminf_{n \to \infty} |S_n| = 0, \quad \lambda$$
-almost everywhere

if and only if $\int_{\Sigma} \epsilon \, d\lambda = 0$.

Theorem

PVP is ergodic.

(Proof uses hyperbolicity and local ergodicity of *all* LTs in the ensemble.)

Theorem

PVP is ergodic.

(Proof uses hyperbolicity and local ergodicity of *all* LTs in the ensemble.)

Corollary

Cocycle (S_n) is recurrent.

Theorem

PVP is ergodic.

(Proof uses hyperbolicity and local ergodicity of *all* LTs in the ensemble.)

Corollary

Cocycle (S_n) is recurrent.

Corollary

Quenched random LT is almost surely recurrent.

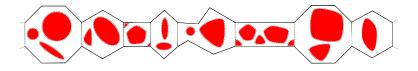
Extensions I

Assumptions on tube can be relaxed in a number of ways, e.g.:

Extensions I

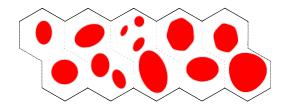
Assumptions on tube can be relaxed in a number of ways, e.g.:

Shape of cell can be random too:



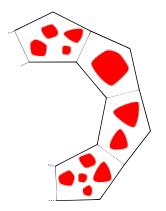
Extensions II

Gates can comprise more than one side:



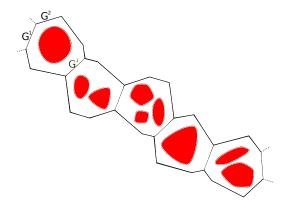
Extensions III

More general isometries can be used in lieu of translations:

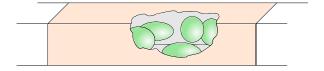


In 2D, use Riemann sheets to avoid self-intersections

Choice of gate can be random too:



Most important extension: Dimension three and up



Most important extension: Dimension three and up

Everything can be generalized to $d \ge 3$,

Most important extension: Dimension three and up

Everything can be generalized to $d \ge 3$, with *caveats*.

Most important extension: Dimension three and up

Everything can be generalized to $d \ge 3$, with *caveats*.

Assumptions: Suitable reformulation of (A1)-(A5) + other requirements, including:

Most important extension: Dimension three and up

Everything can be generalized to $d \ge 3$, with *caveats*.

Assumptions: Suitable reformulation of (A1)-(A5) + other requirements, including:

• Scatterers piecewise algebraic, uniformly of the same type (Sinai billiards with general convex scatterers are not known to be hyperbolic and ergodic in $d \ge 3$, cf. Bálint, Chernov, Szász, Tóth 2002).

Most important extension: Dimension three and up

Everything can be generalized to $d \ge 3$, with *caveats*.

Assumptions: Suitable reformulation of (A1)-(A5) + other requirements, including:

- Scatterers piecewise algebraic, uniformly of the same type (Sinai billiards with general convex scatterers are not known to be hyperbolic and ergodic in $d \ge 3$, cf. Bálint, Chernov, Szász, Tóth 2002).
- Every orbit has a non-grazing collision every so often (uniform hyperbolicity more delicate in $d \ge 3$, cf. astigmatism, etc.).