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I will describe old and recent attempts to derive, heuristically or

rigorously, the experimentally observed diffusive behavior of energy

transport, i.e. Fourier’s law ,from microscopic models. The score

to date is: no success of rigorous derivations for realistic determinis-

tic, Hamiltonian systems, much success for stochastic models. I will

focus on deterministic models and leave out topics which (I expect)

will be covered by other speakers.

Fields Institute, Toronto

April 2011

1



Fourier’s law gives the energy flux J(r) at position r inside a region

Λ occupied by a system with a non-uniform temperature T(r), or

energy density e(r), profile as

J(r) = −κ(T)∇T(r) = −D(e)∇e(r), r ∈ Λ ⊂ R3

There are two cases where Fourier’s law (FL) appears to hold for

systems in R3. (I will discuss lower dimensional systems later.)

I. Isolated systems with a nonuniform temperature profiles evolving

in time according to the equation

∂e(r,t)
∂t = −∇.J, J = −κ∇T = −D∇e

e.g a metal bar with an initially nonuniform temperature profile.
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II. Open systems with time independent nonuniform temperature

profiles maintained by external heat baths, e.g a metal bar with

one end held in boiling water and the other in melting ice. The

stationary heat flux is then given by J = −κ∇T with T determined

by the solution of the equation ∇.(κ(T)∇T) = 0, with appropriate

boundary conditions.

As far as physicists are concerned, case I is the same as case II. In

particular they have no doubt that one has the same κ (given by the

Green-Kubo formula).

Problem for physicisits: Find κ for a given material from its mi-

croscopic structure.

Problem for mathematical physicist: Prove validity of FL for

systems with realistic microscopic dynamics.
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Heuristic Derivation

A derivation of Fourier’s law was given by Clausius and Maxwell

using the concept of “mean free path” λ ∼ (ρπσ2)−1: the average

distance traveled by an atom, in a gas with density ρ and collision

cross-section πσ2, between collisions.

They considered a gas with a temperature profile varying along the

x-axis, T(x). Between collisions a particle moves from x to x+λ/
√

3

carrying with it its kinetic energy, 1
2mv2 proportional to T(x). In the

opposite direction the amount carried is proportional to T(x+λ/
√

3).
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The amount of energy transported per unit area and time across

a plane perpendicular to the x-axis is then, for a “slowly” varying

temperature profile, proportional to the flux of particles, given by

ρ
√

T , times the net transport of energy per particle

J ∼ ρ
√

T [T(x) − T(x + λ/
√

3)]

∼ −ρ
√

TλdT/dx

� −σ−2
√

T
dT

dx
,

and so κ ∼ √
T independent of ρ, in agreement with (improved)

experiment: a triumph for the kinetic (molecular) theory of matter.

Implicit assumption: well defined local temperature T(q, t), i.e.

“local thermal equilibrium” (LTE). This should be a reasonable ap-

proximation when (λ/T)dT
dx � 1 (but J is also proportional to dT/dx.)
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LTE in this case refers to a Maxwell-Boltzmann distribution,

floc.eq.(q,v) = (2πβ)−d/2ρ(q) exp[−β(q)(v − u(q))2/2)].

where ρ, u and β can also depend on t.

(One could make a version of the ”Kac model” where this behavior

could be proven rigorously but this would involve bringing in stochas-

ticity.)

The theory was refined by Boltzmann, Hilbert, Chapman and En-

skog, using the Boltzmann Equation to describe the time evolution

of the six dimensional smoothed (coarse grained) density profile

f(q, v, t) of a gas. This yields accurate transport coefficients for

hard spheres at very low density (as compared to MD simulations).
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We can also consider nonequilibrium stationary solutions (NESS) of

the BE for a gas in a box with Maxwell boundary conditions on the

sides perpendicular to x: after a collision with the left (right) wall,

the particle emerges with a velocity distribution

fα(v) ∼ βα |vx| exp[−βαv2/2], α = L, R,

vx > 0, for x = 0, vx < 0, for x = 1

With these b.c one can prove the existence of a stationary solution

of the BE which will be for small gradients close to LTE with a T̄ (x)

satisfying

d

dx
[
√

T̄(x)
dT̄

dx
] = 0, T̄ (0) = TL, T̄ (1) = TR, (ρ̄(x) = (pressure)/T̄(x))

N.B: I do not hesitate to use stochastic b.c, as long as the bulk

dynamics comes from a Hamiltonian.
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From the mathematical point of view there are serious problems

even on the level of the BE. The existence (but not uniqueness) of

hydrodynamic (close to LTE) solutions can only be proven rigorously

under very restrictive assumptions of small mean free path and types

of initial conditions. For NESS one also requires that (TL−TR)/(TL+

TR) be quite small (Esposito, Lebowitz, Marra). For inhomogeneous

initial conditions even existence of classical solutions of BE is not

proven. There is also no derivation of the BE for NESS. Lanford’s

derivation assumes an initial state without too much correlations.Of

course we expect the BE to have a much larger domain of validity

but there is no proof.

Let us return to more general systems.

8



Microscopic to Macroscopic The derivation of autonomous macro-

scopic equations for ”macrovariables” M such as the heat equation
∂e
∂t = ∇.(D∇e) from microscopic dynamics is one of the basic un-

solved problems of nonequilibrium statistical mechanics.

Difficulties arise already at the conceptual level : Are such time

asymmetric equations compatible with the time symmetric (classical

or quantum) dynamics?

In classical mechanics the microstate of a system is specified by

a point X = (r,v1, · · ·, rN,vN) ∈ Γ , the phase space of the sys-

tem. The time evolution is given by the solution of the Hamiltonian

equations of motion X(t) = φtX(0) which are time symmetric, i.e.

letting RX = (r1,−v1, ...,−rN,−vN) we have φtRφtX = RX. for

all t ∈ (−∞,∞), as long as the system is isolated ( A similar time

reversibility holds for quantum systems with RΨ = Ψ̄).
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Macrostates:

Let ΓM ⊂ Γ be the set of phase points X such that M(X) = M

The existence of an autonomous equation for Mt whose solution

gives M1 → M2 when t2 → t1, implies that “almost all” points in a

phase space region ΓM1
at time t1, go into ΓM2

at time t2. Now by

Liouville’s theorem, the Liouville volume of M2, |ΓM2
| ≥ |ΓM1

|.Thus

the entropy of M2, SB(M2) ≡ log|ΓM2
| ≥ SB(M1) ≡ log|ΓM1

| . If the

evolution is in fact given by a dissipative equation like the diffusion

equation, the Navier Stokes equations or the BE then |ΓM2
| � |ΓM1

|
since the entropy scales with N. This means that SB(M) which can

be computed from equilibrium considerations, when the system is in

LTE, must be a Lyupanov function for such macroscopic equations.

This is indeeed the case of the heat equation and BE (but that is

another talk).
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The existence of a macroscopic autonomous evolution equation im-

plies not only that |(φt2−t1ΓM1
)

⋂
ΓM2

| ∼ |ΓM1
| << |ΓM2

|, but also

that the “future” time evolution (but not the past time evolution)

of almost all the phase points in (φt2−t1ΓM1
)

⋂
ΓM2

behave as if they

were typical of ΓM2
.

Clearly the derivation of such macroscopic equations from Hamilto-

nian or quantum dynamics is a very difficult task which will require

much work and ingenuity.(Poincare 1893 quote)

A necessary (but far from sufficient input) ingredient in such a

derivation is the large difference in the microscopic and macroscopic

time scales.
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Hydrodynamical Scaling Limit

To make precise the scale separation necessary to obtain exact

macroscopic laws, in analogy to the Law of Large Numbers, it is

necessary to consider a limit in which the ratio of macro to micro

spatial scale ε−1 → ∞; ε−1 could be the size of a macroscopic box in

microscopic units. The kind of hydrodynamical equations we might

get then depends on the macroscopic time scale ε−α;

α = 1 Euler
α = 2 Diffusive
α = other?

q = ε−1r, τ = ε−αt

r, t macro;q, τ micro
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The hydrodynamic equations obtained this way will then of necessity

inherit this scale invariance:

Diffusion eq.: α = 2,

Euler Equations: α = 1

Derivation of macroscopic equations requires showing that the mi-

croscopic system behaves, on the macroscopic scale, as if it was

close to state of local equilibrium (LTE). That is, it is locally close

to a homogeneous equilibrium state specified by local values of the

conserved quantities - which then change only on the much slower

macroscopic time scale according to the macroscopic equations.

This is analogous to what we saw in the heuristic derivation of

Fourier’s law for a dilute gas.
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To describe the state of LTE consider an isolated macroscopic sys-
tem with Hamiltonian

H(P, Q) =
N∑

i=1

[
p2
i

2m
+

∑
j 
=i

φ(qj − qi) + u(qi)]

A LTE state is then descibed by an ensemble density

µloc.eq.(P, Q : β0(x))

∼ exp{−
N∑

i=1

β0(εqi)[
p2
i

2m
+

∑
j 
=i

φ(qj − qi) + u(qi)]}

Want to prove that for ε � 1

µt(P, Q) � µloc.eq.(P, Q; β(x, t))

where x and t are in macroscopic units and β(x, t) is the solution
of a suitable macroscopic equation. More generally one would also
have a velocity field u(x, t) and density field ρ(x, t) - imposed via a
chemical potential λ(x, t).
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As already noted a mathematical derivation of such behavior from

Hamiltonian dynamics is exceedingly difficult and has not been achieved

so far for any realistic classical system. (The same is true for quan-

tum systems)

On the other hand Olla, Varadhan and Yau did ( almost) succeed in

deriving the Euler equations from the microscoipic dynamics (”al-

most” because they needed to add a little stochasticity to the dy-

namics.)

The only Hamiltonian system for which such a macroscopic equation

has been derived just by scaling of space and time is a system of

non interacting point particles moving among a fixed periodic array

of convex scatterers with finite horizon (Sinai Billiard).
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Let y(t) and v(t) be the position and velocity of a particle at time

t. Suppose that the position y(0) and the angle of the velocity

v(0), (|v(t)| = |v(0)|), are chosen from some smooth distribution,

then Yε(t) = εy(t/ε2) converges weakly to Brownian motion with

positive diffusion tensor D. (Bunimovich, Sinai, Chernov)

It follows from this that the density profile of a macroscopic system

of independent point particles all with the same speed v, moving

in such a periodic array satisfies, under appropriate hydrodynamic

scaling, the diffusion equation (Fick’s law)

∂n(x, t)

∂t
= ∇ · (D · ∇n(x, t))

N.B. There is no proof of such a result for the case when the scat-

terers have random positions (Lorentz model)
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The tensor D is obtained from the Einstein-Green-Kubo relation

D =
∫ ∞
0

dt〈v(t)v(0)〉
where 〈 〉 is wrt the “equilibrium” isotropic distribution of veloci-

ties.

Similar formulas are expected hold for all transport coefficients, i.e.

thermal conductivity, viscosity, etc., in general interacting systems

with J, the corresponding flux, taking the place of v.

The existence of such integrals is a central question in deriving

Fourier’s law.
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There are also other important cases where autonomous macro-

scopic (or mesoscopic) equations were derived from Hamiltonian or

quantum dynamics in certain “kinetic” limits. These include:

i) Boltzmann eq. for short times(Lanford): derived for hard spheres

with diameter σ in the limit σ → 0, particle density ρ → ∞, ρσ2 ∼ λ−1

fixed.

ii) Vlasov equation (Braun and Hepp)

iii) Laser equation (Hepp and Lieb)

iv) Linear Boltzmann eqn. for random hard scatterers (Gallavotti,

classical; Spohn, Yau, Erdos, quantum)

v) Fokker-Planck type,or Landau eqn.

for weak scatterers (Dürr, Goldstein, Lebowitz)
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NESS of Crystals

Let me come now to attempts, still very much ongoing, of deriving
Fourier’s law directly from considerations of nonequilibrium station-
ary states of microscopic systems. I will focus mostly on insulator
crystals. In such systems the microscopic dynamics concern the vi-
brations of the atoms about their equilibrium positions which form
a regular lattice.

We consider now the NESS of such a crystal in contact with ther-
mal reservoirs at different temperatures. These reservoirs act at
the boundaries of the systems. Let us consider for simplicity one
dimension. The internal Hamiltonian is given by :

H =
N∑

i=1

[
p2
i

2mi
+ φ(qi − qi+1) + u(qi))] = K + V

with qi the displacement (say in vertical direction) from the equilib-
rium position ia and q0 = qN+1 = 0.
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The time evolution is then given by:

miq̈i = ṗi = −∂V

∂qi
+ {−λipi +

√
2miTiλiFi}

where V is the potential energy and the terms in the bracket repre-

sent the effect of the reservoirs at specified temperature Ti modeled

by Langevin forces (Ornstein-Uhlenbeck process). We shall assume

that

λi = 0 for i 
= 1, N ; 〈Fi(t)Fi(t
′)〉 = δ(t − t′) for i = 1, N

The above time evolution equations lead, as is well known, to a

Fokker-Planck type equation for the probability density µ(X, t),

X = (q1, q2, · · · qN, p1, · · · , pN).

∂µt(X)
∂t + (µt, H) =

∑
α=1,N λα

∂
∂pα

[pαµt + βαmα
∂

∂pα
µt]
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The stationary state of this system is described by µst which satisfies

the above equation with the time derivative set equal to zero. When

the temperature of the left reservoir T1 ≡ TL is not equal to the

temperature of the right reservoir TN = TR, µst will be a NESS.

Consider first general anharmonic interactions φ and u:

Questions

1. Do there exist NESS described by measures µs(X)?

2. Are they unique?

3. Starting from some arbitrary initial distribution µ0(X) will

µt(X) → µs(X) as t → ∞.
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4. What is the nature of the stationary measure? In particular how

does the energy flux in the NESS JN = 〈j(X)〉s depend on N .

Write

JN = KN(TL − TR)/N, TL > TR

Then, if Fourier’s law held for KN → K > 0, N → ∞.

Some exact results

1. Eckmann, Pillet, and Rey-Bellet (1999) considered a 1d chain in

contact with infinite phonon baths at temperatures TL and TR. They

were able to prove existence, uniqueness and exponential approach

to µs under suitable conditions on φ and u. This turned out to be

nontrivial since the phase space is not compact. Later Ray-Bellet

and Thomas proved the Gallavatti-Cohen theorem for these NESS.

Their results also hold for the model considered here.

What about d > 1 ?



2. The existence of NESS of fluids in a domain Λ with Maxwell
b.c. on different parts of (∂Λ)α were proven by Goldstein, Lebowitz,
Presutti (1979), and Goldstein, Ianiro and Kipnis, under the assump-
tion that the the pair interactions v(r) is smooth and repulsive, i.e
v′(r) < 0 for all r > 0. When these hold, there is an exponential
approach to a unique stationary measure which is absolutely con-
tinuous wrt Lebesgue measure. Possible extension of this result to
include hard cores is currently under investigation.
3. There have also been various works by Ruelle, by Jaksic and Pillet
and others proving the existence of NESS for quantum systems with
various kinds of reservoirs; phonon baths, spin systems, Ideal Fermi
or Boson gases, etc.

Unfortunately none of these prove Fourier’s law or its violation.
A serious attempt to derive Fourier’s law for weakly anharmonic crys-
tals in d = 3 was made by Bricmont and Kupiainen in (2007). Un-
fortunately they had to resort in the end to an uncontrolled approx-
imation involving truncation(in a sophisticated way) of the BBGKY
hierarchy. Thier work is related to that of Spohn et al in deriving a
phonon Boltzmann equation.
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What do we know about the heat flux in the general case:

The average energy flux from the reservoirs into the system is readily

shown to be

−Jα = λα[Tα − 〈p2
α〉], α = 1, N(L, R)

with d〈H〉
dt = −(JL + JR)

The average energy flux between sites i and i + 1 is

Ji,i+1 =
1

2
〈∂φ(qi+1 − qi)

∂qi
(pi + pi+1)〉µ

Furthermore, the total “ Gibbs entropy production”

σ = JL/TL + JR/TR +
d

dt
[−

∫
µt(X)logµt(X)dX] ≥ 0

can be proven to be non-negative (by easy calculation).
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In the stationary state (assuming it exists)

−JL = +JR = Ji,i+1 = J independent of i

σ = J( 1
TR

− 1
TL

) ≥ 0, so J ≥ 0 if TL > TR

i.e. we can prove that heat does not flow from cold to hot in

the steady state. This is actually something that holds for general

systems with a large class of stochastic reservoirs, e.g for particles

in a box with Maxwell boundary conditions.

Computer Simulations Of Anharmonic Case As already noted

very little is known about the nature of the NESS for the anharmonic

case. Results from computer simulations strongly suggest that : In

d=3, Fourier’s law always holds. In d=1, Fourier’s law holds if there

is pinning, i.e u(qi) 
= 0 and momentum is not conserved. Without

pinning the heat conduction is anomalous with κN ∼ Nα, α > 0. In

d=2 with u(qi) = 0 , κN ∼ logN .
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Harmonic Crystal: Consider now the case when

φ(q) =
1

2
ω2q2, u(q) =

1

2
ν2q2

For this system we can answer all questions for all d. In particular

µt(X) → µs(X) ∼ exp[−1

2
X · C−1 · X]

Here C is 2N by 2N covariance matrix. Unlike equilibrium, this

Gaussian NESS mixes position and momentum. In particular the

heat flux Ji,i+1 �〈qipi+1〉 
= 0, when TL 
= TR

Setting T(i) ≡ 〈p2
i 〉/m the profile is very flat, T(i) � 1

2(TL + TR) and

the heat flux is given by : JN ∼ N [(TL − TR)/N ] = independent of

N , as N → ∞, so K(N) = limTL→TR
J/[TL − TR/N ] ∼ N

(NO FOURIER LAW)
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Expressions for C in d = 1 were given in RLL and for d > 1 by

Nakazawa (1970). We have generally

C = 1
2(TL + TR)Ceq(T = 1) + 1

2(TL − TR)Ĉ

where Ĉ satisfies linear equations and is independent of TL and TR

Fig 1 shows T(i) for mi = m

Fig 2 shows T(i) when the masses alternate
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I should also mention here the work of Rubin and Greer and of Spohn

and L who considered the case of an infinite harmonic crystal (chain)

in which the left (right) end is initally described by a Gibbs measure

with temperature TL(TR).

They proved that as t → ∞ the system approaches a stationary

translation invariant Gaussian NESS with a constant heat flux. The

exact relation between the covariance of that measure and that ob-

tained from the RLL model when N → ∞ has not been fully clarified.

It seems possible that the mean energy 〈p2
i 〉 and the heat flux 〈qipi+1〉

are sufficient to determine the NESS. But this is not clear at the

moment.
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A related question is what happens when there is an inhomogene-

ity in the system, such as a different mass. The NESS is then

no longer translation invariant (when looked at from the vicinity of

the impurity). So what does it look like (an explicit calculation by

Venkateshan for the RLL model is shown in Fig 3). This problem is

similar to that of a quantum system where a quantum dot is placed

between leads acting as ideal Fermi gases at different chemical po-

tentials (considered by Mehta and Andrei and also by Jaksic and

Pillet).
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Harmonic crystals with random masses

The heat flux JN is very different if one considers harmonic cystals

with random masses (a reasonable representation of isotropically

disordered crystals at low temperatures).

It is then possible to prove (Casher-L,others), using Fürstenberg’s

theorem about products of random matrices, that for the pinned

harmonic chain (1D) the heat flux JN in the NESS decays exponen-

tially with N . This is due to the localization of the phonon modes.
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For the case where the pinning occurs only at the boundaries (C-L,

Dhar,..)

JN ∼ N−3/2

When there is no pinning at all, which corresponds in a way to

considering a segment of an infinite chain then (Verheggen, Dhar)

JN ∼ N−1/2

In the unpinned cases the energy is carried across the system by low

frequency long wavelength phonons which barely see the disorder.
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Nothing rigorous is known about heat transport in random mass

harmonic crystals in dimensions greater than one. Computer simu-

lations and non-rigorous arguments suggest that Fourier’s law holds

in three dimensions with pinning, but not in two (Dhar et al). Con-

nection to localization in quantum systems?

Other models with Hamiltonian bulk dynamics: Mexican, Rotor,

Casatti et al, Eckmann and Young, Chernov-L, Gaspard and Gilbert

Models with deterministic non-Hamiltonian bulk dynamics: (Gaus-

sian Thermostats) Gallavotti-Cohen, Ruelle

Other: Gershenfeld, Derrida, L

I will now discuss briefly the C-L, Ruelle, and GDL examples.
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Deterministic non-Hamiltonian Bulk Dynamics

A. Gershenfeld, B. Derrida, J.L. Lebowitz

Ianiro - L model: N-Point particles on a line of length L are in contact

with heat reservoir walls at temperatures Ta and Tb via Maxwell

boundary conditions, i.e. particles leaving the wall after a collision

have a velocity distribution,

fα = βα|v|exp[−1

2
βαv2], α = a, b

with v > 0 at x = 0 and v < 0 at x = L.

We can also have more general, even deterministic boundary reser-

voirs, e.g. all particles hitting the left wall come out with velocity

va and all those hitting the right wall come out with velocity - vb.
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If the system followed Hamiltonian dynamics particles would just

exchange velocities when they collide, which is the same as saying

that they pass through each other without colliding, i.e. it would

be just like an ideal gas. The current would then be, for a given

density, n = N/L, independent of N , just as for the ordered harmonic

crystal(Frisch-L).

To remedy this I-L introduced the following collision rules: if two

particles going in opposite directions meet they each reverse their

velocities, i.e.

v, v′ → −v,−v′ when vv′ < 0

while if they meet with both going in the same direction they just

exchange velocities (the same as passing each other). Note that the

speed of any particle, say |vi|, is not changed by the collisions.
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Interestingly enough I-L could solve exactly the Boltzmann equation

for this model. This means that we assume that the joint density

of having a particle with velocity v meet a particle with velocity v′
at its right, with v > v′, at position x, is just equal to the product

f(x, v)f(x, v′) (Boltzmann’s “stosszohl” ansatz).

The stationary solution of this BE gave a linear density and temper-

ature profile and a heat flux JN which goes as N−1, i.e. Fourier’s

law holds according to the BE.

Alas: this result is not consistent with the simulations which gave

JN ∼ N−.7 Clearly the ansatz leading to the BE is not valid. What

is going on in low dimensions?
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Stochastic Bulk Dynamics: When one adds to the Hamiltonian dy-

namics a non momentum conserving stochasticity, e.g. random

reversal of the velocities of each oscillator, then Fourier’s law is

valid in all dimensions, both for the regular (Olla, et al) and ran-

dom harmonic system (Bernardin). Also true for regular anharmonic

(Bernardin, Olla) What about momentum conserving noise? O.K.

in d = 3, for harmonic case (BBO) but not in d = 1,2

Dhar, Venkateshan, L have carried out simulations on a harmonic

chain with velocity flips both for regular and random masses. The

NESS has correlations which satisfy autonomous equations which for

the covariances are identical to those obtained from self-consistent

reservoirs. The non-Gaussian NESS corresponds to a state of local

equilibrium with a linear temperature profile.
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