
Dynamic and static large deviations in

nonequilibrium statistical mechanics:

an overview

Giovanni Jona-Lasinio

TORONTO, April 4-8, 2011

1 / 70



Introduction

Success in proving the Fourier law from mechanics would represent
a perfect realization of a reductionist program.

You can be less demanding and still obtain a reasonable
understanding of a problem: we understood a lot on equilibrium, in
particular on phase transitions and critical phenomena from the
Ising model which is not a realistic system.

Stationary states are the simplest generalization of equilibrium
states and we may ask whether we can develop a self-contained
macroscopic description.

The hope is that stochastic particle models may play a role in non
equilibrium similar to Ising in equilibrium.
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Large deviations deal with fluctuations from a law of large
numbers: in our case this is hydrodynamics.

Starting from the theory of large deviations in stochastic particle
models, during the last ten years some progress has been achieved
in understanding the macroscopic behavior in nonequilibrium. It
has been a collective effort and many people have contributed to it.
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1. The large deviation formula for diffusive systems with a
conserved quantity and some general consequences
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Freidlin-Wentzell theory

Consider a stochastic differential equation

dxt = b(xt)dt+ εσdwt, (1)

where the vector field b is the drift and σ the diffusion matrix. One
is interested in the limit ε→ 0. Then the following holds: the
probability that the solution stay close to a trajectory φt in a fixed
time interval [0, T ] is

P (xt ' φt) ' exp (− 1

ε2
IT (φt)), (2)

where

IT (φt) =
1

2

∫ T

0
dt(φ̇− b(φt)σ

−2(φ̇− b(φt). (3)

IT is called the large deviation functional.
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The estimate of the stationary distribution in the neighborhood of
an equilibrium point follows

P (x) ' exp (− 1

ε2
V (x)), (4)

where V (x) = I∞(φ∗t ) with φ∗t a trajectory connecting the
equilibrium point to x and minimizing I∞. If there are several
equilibrium points or attractors the theory can be easily extended.
V (x) is called the quasi-potential.

Equation (4) reminds of the Einstein theory of equilibrium
thermodynamic fluctuations which states that the probability of a
fluctuation from equilibrium in a macroscopic region of volume |Λ|
is proportional to

exp{|Λ|∆S/k},

where ∆S is the variation of entropy density calculated along a
reversible transformation creating the fluctuation and k is the
Boltzmann constant.
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The lesson we learn is twofold:

1. in the limit of small noise an estimate of the stationary
distribution is reduced to the solution of a variational problem.

2. the quasi-potential is the analog of a thermodynamic function.
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Macroscopic systems out of equilibrium

1. The macroscopic state is completely described by the local
density ρ = ρ(t, x) and the associated current j = j(t, x).

2. The macroscopic evolution is given by the continuity equation

∂tρ+∇ · j = 0 (5)

together with the constitutive equation

j = J(ρ) = −D(ρ)∇ρ+ χ(ρ)E (6)

where the diffusion coefficient D(ρ) and the mobility χ(ρ) are
d× d positive matrices. The transport coefficients D and χ
satisfy the local Einstein relation

D(ρ) = χ(ρ) f ′′0 (ρ) (7)

where f0 is the equilibrium free energy of the homogeneous
system.
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The equations (5)–(6) have to be supplemented by the appropriate
boundary conditions on ∂Λ due to the interaction with the external
reservoirs. Recalling that λ0(x), x ∈ ∂Λ, is the chemical potential
of the external reservoirs, these boundary conditions are

f ′0
(
ρ(x)

)
= λ0(x) x ∈ ∂Λ (8)

We denote by ρ̄ = ρ̄(x), x ∈ Λ, the stationary solution, assumed to
be unique, of (5), (6), and (8).

10 / 70



The basic dynamic large deviation formula for joint
fluctuations of the empirical density and current
BDGJL

P
N
µN

(
πN ≈ ρ,JN ≈ j t ∈ [0, T ]

)
∼ exp{−NdG[0,T ](ρ, j)} (9)

Here PN
µN is the stationary probability measure,

G[0,T ](ρ, j) =

{
V (ρ(0)) + I[0,T ](j) if ∂tρ+∇ · j = 0

+∞ otherwise
(10)

V (ρ) is the large deviation functional of the invariant measure and

I[0,T ](j) =
1

4

∫ T

0
dt
〈
[j − J(ρ)], χ(ρ)−1[j − J(ρ)]

〉
(11)

in which we recall that

J(ρ) = −D(ρ)∇ρ+ χ(ρ)E .
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Dynamic large deviation functional for the density

The large deviation functional for the density can be obtained by
projection. We fix a path ρ = ρ(t, u), (t, u) ∈ [0, T ]× Λ. There are
many possible trajectories j = j(t, u), differing by divergence free
vector fields, such that the continuity equation is satisfied. By
minimizing I[0,T ](ρ, j) over all such paths j

I[0,T ](ρ) = inf
j :

∇·j=−∂tρ

I[0,T ](j) (12)

Let F be the external field which generates the current j according
to

j = −D(ρ)∇ρ+ χ(ρ)(E + F ) .

and minimize with respect to F . We show that the infimum above
is obtained when the external perturbation F is a gradient vector
field whose potential H solves

∂tρ = ∇ ·
(
D(ρ)∇ρ− χ(ρ)

[
E +∇H

])
(13)

which is a Poisson equation for H.
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Write
F = ∇H + F̃ (14)

We get

I[0,T ](j) =
1

4

∫ T

0
dt
{
〈∇H,χ(ρ)∇H〉+ 〈F̃ , χ(ρ)F̃ 〉

}
Therefore the infimum is obtained when F̃ = 0. Then I[0,T ](ρ) can
be written

I[0,T ](ρ) =
1

4

∫ T

0
dt
〈
∇H(t), χ(ρ(t))∇H(t)

〉
(15)

=
1

4

∫ T2

T1

dt
〈[
∂tρ+∇ · J(ρ)

]
K(ρ)−1

[
∂tρ+∇ · J(ρ)

]〉
where the positive operator K(ρ̂) is defined on functions u : Λ → R
vanishing at the boundary ∂Λ by K(ρ̂)u = −∇ ·

(
χ(ρ̂)∇u

)
.
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Time reversal

To the time reversed process corresponds the adjoint generator
with respect to the invariant measure. Let us define the operator
inverting the time of a trajectory [θf ](t) = f(−t) for f scalar and
[θj](t) = −j(−t) for the current. The stationary adjoint process,
that we denote by PN,a

µN , is the time reversal of PN
µN , i.e. we have

P
N,a
µN = P

N
µN ◦ ϑ−1. Then

P
N
µN

(
πN ≈ ρ, JN ≈ j t ∈ [−T, T ]

)
= P

N,a
µN

(
πN ≈ ϑρ, JN ≈ ϑj t ∈ [−T, T ]

)
(16)

At the level of large deviations this implies

G[−T,T ](ρ, j) = Ga
[−T,T ](ϑρ, ϑj) (17)

where Ga
[−T,T ] is the large deviation functional for the adjoint

process.
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The previous relationship has far reaching consequences. By
dividing both sides by 2T and taking the limit T → 0 we find

−
〈δV
δρ
,∇ · j

〉
= −

〈
J(ρ) + Ja(ρ), χ(ρ)−1j

〉
+

1

2

〈
J(ρ) + Ja(ρ), χ(ρ)−1[J(ρ)− Ja(ρ)]

〉
(18)

which has to be satisfied for any ρ and j. Integrating by parts the
left hand side

J(ρ) + Ja(ρ) = −2χ(ρ)∇δV
δρ

(19)〈
J(ρ), χ(ρ)−1J(ρ)

〉
=
〈
Ja(ρ), χ(ρ)−1Ja(ρ)

〉
(20)

Inserting finally the first of these two equations into the second
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we obtain the equation for V〈
∇δV
δρ
, χ(ρ)∇δV

δρ

〉
−
〈δV
δρ
,∇ · J(ρ)

〉
= 0 (21)

This is the Hamilton-Jacobi equation associated to the variational
characterization of V

V (ρ) = inf
ρ : ρ(−∞)=ρ̄

ρ(0)=ρ

I[−∞,0](ρ) (22)

This interpretation follows by considering the functional I as an
action functional in the variables ρ and ∂tρ and performing a
Legendre transform. The associated Hamiltonian is

H(ρ, π) =
〈
∇π · χ(ρ)∇π

〉
+
〈
∇π · J(ρ)

〉
(23)

where π is the conjugate momentum.
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The quasi-potential and the identification of the
minimizing trajectory

The variational characterization of V follows again by a time
reversal argument which allows also to identify the minimizing
trajectory. Consider a trajectory connecting the density profiles ρt1

and ρt2 . From time reversal we have

V (ρt1) + I[t1,t2](ρ) = V (ρt2) + Ia
[−t2,−t1]

(θρ) (24)

By taking ρt1 = ρ̄, which implies V (ρt1) = 0, ρt2 = ρ, the inf over
all possible trajectories and time intervals we obtain the variational
expression of V with the minimizer defined by

Ia
[−∞,0](θρ) = 0 (25)

that is θρ must be a solution of the adjoint hydrodynamics.
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The adjoint hydrodynamics

The adjoint hydrodynamics follows immediately recalling the
relationship between J and Ja

Ja(ρ) = −2χ(ρ)∇δV
δρ

− J(ρ)

We have

∂tρ+∇Ja = ∂tρ+∇{D(ρ)∇ρ− χ(ρ)(E + 2∇δV
δρ

)} = 0 (26)

The minimizer is therefore the time reversal of the relaxation
solution of this equation connecting ρ to ρ̄. The optimal field to
create the fluctuation is F = 2∇ δV

δρ , that is minus twice the
dissipative thermodynamic force.
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Interpretation of the quasi-potential

It is easy to see that V (ρ) is equal to the energy dissipated by the
thermodynamic force −∇ δV

δρ along the optimal trajectory denoted
ρ∗.

V (ρ) =

∫ 0

−∞
dt
〈δV
δρ
, ∂tρ

∗
〉

=

∫ 0

−∞
dt
〈δV
δρ
,∇ · Ja(ρ∗)

〉
=

∫ 0

−∞
dt
〈
(−Ja(ρ∗)) · ∇δV

δρ

〉
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The hydrodynamic equations in terms of V

∂tρ = ∇ ·
(
χ(ρ)∇δV

δρ

)
+A(ρ)

∂tρ = ∇ ·
(
χ(ρ)∇δV

δρ

)
−A(ρ)

The second equation is the hydrodynamics corresponding to the
time reversed system. The Hamilton–Jacobi equation implies the
orthogonality condition 〈δV

δρ
, A(ρ)

〉
= 0

The above decompositions remind of the electrical conduction in
presence of a magnetic field.
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Consider the motion of electrons in a conductor: a simple model is
given by the effective equation,

ṗ = −e
(
E +

1

mc
p ∧H

)
− 1

τ
p (27)

where p is the momentum, e the electron charge, E the electric
field, H the magnetic field, m the mass, c the velocity of the light,
and τ the relaxation time. The dissipative term p/τ is orthogonal
to the Lorenz force p ∧H. We define time reversal as the
transformation p 7→ −p, H 7→ −H. The time reversed evolution is
given by

ṗ = e
(
E +

1

mc
p ∧H

)
− 1

τ
p (28)

Let us consider in particular the Hall effect where we have
conduction along a rectangular plate immersed in a perpendicular
magnetic field H with a potential difference across the long side.
The magnetic field determines a potential difference across the
short side of the plate. In our setting on the contrary it is the
difference in chemical potentials at the boundaries that introduces
in the equations a magnetic–like term.
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A control theory point of view

We consider the system in presence of an extra field F so that the
hydrodynamic equation is

∂tρ = −∇J(ρ)−∇(χ(ρ)F ) (29)

We want to choose F to drive the system from its stationary state
ρ̄ to an arbitrary state ρ with minimal cost. We define the cost
function as before

1

4

∫ t2

t1

ds 〈F (s), χ(ρF (s))F (s)〉 (30)

where ρF (s) is the solution of (29). More precisely, given ρ(t1) = ρ̄
we want to drive the system to ρ(t2) = ρ by an external field F
which minimizes (30). This is a standard problem in control theory.
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Let

V(ρ) = inf
1

4

∫ t2

t1

ds 〈F (s), χ(ρF (s))F (s)〉 (31)

where the infimum is taken with respect to all fields F which drive
the system to ρ in an arbitrary time interval [t1, t2]. The optimal
field F can be obtained by solving the Bellman equation which
reads

min
F

{1

4

〈
F, χ(ρ)F

〉
+
〈
∇(J(ρ) + χ(ρ)F ),

δV
δρ

〉}
= 0 (32)

It is easy to express the optimal F in terms of V; we get

F = 2∇δV
δρ

(33)

By substituting in (32) this reduces to the Hamilton-Jacobi
equation.
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Characterization of equilibrium states

We define the system to be in equilibrium if and only if the current
in the stationary profile ρ̄ vanishes, i.e. J(ρ̄) = 0. In this case, even
in presence of external fields (e.g. gravitational or centrifugal
fields), the Hamilton-Jacobi equation can be solved. Let

f(ρ, x) =

∫ ρ

ρ̄(x)
dr

∫ r

ρ̄(x)
dr′ f ′′0 (r′) = f0(ρ)− f0(ρ̄(x))

−f ′0
(
ρ̄(x)

)[
ρ− ρ̄(x)

]
(34)

the maximal solution of H-J is

V (ρ) =

∫
Λ
dx f

(
ρ(x), x

)
(35)

24 / 70



Define macroscopic reversibility

J∗(ρ) = −2χ(ρ)∇δV
δρ

− J(ρ) = J(ρ) (36)

We have the following theorem
J(ρ̄) = 0 is equivalent to macroscopic reversibility.
In the case of macroscopic reversibility the Hamilton-Jacobi
equation reduces to

J(ρ) = −χ(ρ)∇δV
δρ

(ρ) (37)

We remark that, even if the free energy V is a non local functional,
the equality J(ρ) = J∗(ρ) implies that the thermodynamic force
∇δV/δρ is local.
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2. Applications
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Correlation functions

We are concerned only with macroscopic correlations which are a
generic feature of nonequilibrium models. Microscopic correlations
which decay as a summable power law disappear at the
macroscopic level.
We introduce the pressure functional as the Legendre transform of
the quasi-potential V

G(h) = sup
ρ

{
〈hρ〉 − V (ρ)

}
By Legendre duality we have the change of variable formulae
h = δV

δρ , ρ = δG
δh , so that the Hamilton-Jacobi equation can then

be rewritten in terms of G as〈
∇h · χ

(δG
δh

)
∇h
〉
−
〈
∇h ·D

(δG
δh

)
∇δG
δh
−χ
(δG
δh

)
E
〉

= 0 (38)

where h vanishes at the boundary of Λ. As for equilibrium systems,
G is the generating functional of the correlation functions.
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We define

Cn(x1, . . . , xn) =
δnG

δh(x1) · · · δh(xn)

∣∣∣
h=0

(39)

By expanding (38) around the stationary state we obtain after non
trivial manipulations and combinatorics the following recursive
equations for the correlation functions

1

(n+ 1)!
L†n+1Cn+1(x1, x2, . . . , xn+1)

=

{ ∑
~ι

N(~ι)=n−1

1
K(~ι)∇x1 ·

(
χ(Σ(~ι))(ρ̄(x1))C~ι(x1, . . . , xn)∇x1δ(x1 −

xn+1)
)

-
∑

~ι
N(~ι)=n,in=0

1
K(~ι)∇x1 · ∇x1

(
D(Σ(~ι)−1)(ρ̄(x1))C~ι(x1, . . . , xn+1)

)
+
∑

~ι
N(~ι)=n,in=0

1
K(~ι)∇x1 ·(

χ(Σ(~ι))(ρ̄(x1))C~ι(x1, . . . , xn+1)E(x1)
)}sym
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For the pair correlations write

C(x, y) = Ceq(x)δ(x− y) +B(x, y)

where
Ceq(x) = D−1(ρ̄(x))χ(ρ̄(x))

We then obtain the following equation for B

L†B(x, y) = α(x)δ(x− y) (40)

where L† is the formal adjoint of the elliptic operator L = Lx + Ly

given by, using the usual convention that repeated indices are
summed,

Lx = Dij(ρ̄(x))∂xi∂xj + χ′ij(ρ̄(x))Ej(x)∂xi (41)

and
α(x) = ∂xi

[
χ′ij
(
ρ̄(x)

)
D−1

jk

(
ρ̄(x)

)
J̄k(x)

]
where J̄ = J(ρ̄) = −D(ρ̄(x))∇ρ̄(x) + χ(ρ̄(x))E(x) is the
macroscopic current in the stationary profile.

29 / 70



Diffusive systems with periodic boundary conditions

We consider a system on a ring satisfying the Einstein relation
D(ρ) = χ(ρ)f”

0 (ρ). In the case of constant field E the stationary
solution is simply the constant function ρ̄(u) = m. We define

fm(ρ) =

∫ ρ

m
dr

∫ r

m
dr′f”

0 (r′)

We claim that the quasi-potential is

Vm(ρ) =

∫
Λ
du fm(ρ(u)) (42)

for any value of the external field E.
If E = 0, by using the Einstein relation it is easy to check that Vm

solves the Hamilton-Jacobi equation. If E is a constant, since the
boundary conditions are periodic, we have that〈δVm

δρ
,∇ · χ(ρ)E

〉
= 0

hence Vm solves the Hamilton-Jacobi equation for any (constant)
external field E.
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Thermodynamics of currents: the Φ(J) functional
BDGJL

Currents involve time in their definition so it is natural to consider
space-time thermodynamics. The cost functional to produce a
current trajectory j(t, x) is

I[0,T ](j) =
1

4

∫ T

0
dt
〈
[j − J(ρ)], χ(ρ)−1[j − J(ρ)]

〉
(43)

in which we recall that

J(ρ) = −D(ρ)∇ρ+ χ(ρ)E .

where ρ = ρ(t, u) is obtained by solving the continuity equation
∂tρ+∇ · j = 0.
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Let J(x) be the time average of j(t, x) that we assume divergence
free, i.e.

J(x) =
1

T

∫ T

0
j(x, t)dt (44)

and define

Φ(J) = lim
T→∞

inf
j

1

T
I[0,T ](j) , (45)

where the infimum is carried over all paths j = j(t, u) having time
average J .
This functional is convex and satisfies a Gallavotti-Cohen type
relationship

Φ(J)−Φ(−J) = Φ(J)−Φa(J) = −2〈J,E〉+
∫

∂Λ
dΣλ0 J · n̂ (46)

Note that the right hand side of (46) is the power produced by the
external field and the boundary reservoirs. Entropy production can
be simply derived from Φ(J)).
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Universality in current fluctuations
Appert-Rolland, Derrida, Lecomte, van Wijland

Let Q(t) =
∫ t
0 j(t

′)dt′ the total integrated current during the time
interval (0, t). Define the generating function of the cumulants of
Q

ψJ(s) = lim
t→∞

ln〈exp−sQ〉
t

= Φ∗(s) (47)

where the brackets denote an average over the time evolution
during (0, t). Φ∗(s) is the Legendre transform of Φ(J). The
authors estimate Φ(J) from the large deviation formula

P({ρ(x, t), j(x, t)}) ' exp−L
4

∫ T

0
dt
〈
[j − J(ρ)], χ(ρ)−1[j − J(ρ)]

〉
from which they obtain

lim
t→∞

〈Q2n〉
t

= B2n−2
2n!

n!(n− 1)!
D(

−χχ′′

8D2
)nL2n−2
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Current fluctuations with a step initial density profile
Derrida, Gerschenfeld

By direct calculation they proved that the generating function of
the moments of the integrated current Qt =

∫ t
0 j(t

′)dt′ for
exclusion processes takes the asymptotic form for large t〈

eλQt

〉
� e

√
tµ(λ,ρa,ρb) , (48)

with µ(λ, ρa, ρb) given by

µ(λ, ρa, ρb) =
1

π

∫ ∞

−∞
dk log

[
1 + ωe−k2

]
, (49)

and where ω is a function of ρa, ρb and λ

ω = ρa(e
λ − 1) + ρb(e

−λ − 1) + ρaρb(e
λ − 1)(e−λ − 1) . (50)

Furthermore µ(λ, ρa, ρb) satisfies a symmetry very reminiscent of
the fluctuation theorem

µ
(
λ, ρa, ρb

)
= µ

(
−λ+ log

ρb

1− ρb
− log

ρa

1− ρa
, ρa, ρb

)
(51)
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They then showed that these results can be understood and
extended using the macroscopic fluctuation theory. They
considered two cases

I the annealed case where one averages eλQt both on the
history and on the initial condition

µannnealed(λ) = lim
t→∞

1√
t
log

[〈
eλQt

〉
history, initial condition

]
;

(52)

I the quenched case, where one averages eλQt only on the
history for a typical initial condition

µquenched(λ) = lim
t→∞

1√
t

〈
log

[〈
eλQt

〉
history

] 〉
initial condition

.

(53)

In the annealed case the result for SSEP can be used to obtain the
distribution of Qt for several other models. This has generically the
non-gaussian decay exp[−q3/t].
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A model with two conservation laws

Stationary nonequilibrium properties for a heat conduction model

Cédric Bernardin*
Université de Lyon, CNRS (UMPA), and Ecole Normale Supérieure de Lyon, 46, allée d’Italie, 69364 Lyon Cedex 07 France

!Received 2 May 2008; published 26 August 2008"

We consider a stochastic heat conduction model for solids composed of N interacting atoms. The system is
in contact with two heat baths at different temperatures T! and Tr. The bulk dynamics conserves two quantities:
the energy and the deformation between atoms. If T!!Tr, a heat flux occurs in the system. For large N, the
system adopts a linear temperature profile between T! and Tr. We establish the hydrodynamic limit for the two
conserved quantities. We introduce the fluctuation field of the energy and of the deformation in the nonequi-
librium steady state. As N goes to infinity, we show that this field converges to a Gaussian field and we
compute the limiting covariance matrix. The main contribution of the paper is the study of large deviations for
the temperature profile in the nonequilibrium stationary state. A variational formula for the rate function is
derived following the recent macroscopic fluctuation theory of Bertini et al. #J. Stat. Phys. 107, 635 !2002";
Math. Phys., Anal. Geom. 6, 231 !2003"; J. Stat. Phys. 121, 843 !2005"$.

DOI: 10.1103/PhysRevE.78.021134 PACS number!s": 05.60.Cd

I. INTRODUCTION

The understanding of the steady state of nonequilibrium
systems is the subject of intense research. The typical situa-
tion is a solid in contact with two heat baths at different
temperatures. Unlike equilibrium systems, where the
Boltzmann-Gibbs formalism provides an explicit description
of the steady state, no equivalent theory is available for a
nonequilibrium stationary state !NESS".

In the last few years, efforts have been concentrated on
stochastic lattice gases #1$. For these, valuable information
on the steady state, like the typical macroscopic profile of
conserved quantities and the form of the Gaussian fluctua-
tions around this profile, has been obtained #1$. Recently,
Bertini et al. proposed a definition of nonequilibrium ther-
modynamic functionals via a macroscopic fluctuation theory
!MFT" which for large diffusive systems gives the probabil-
ity of atypical profiles #2,3$ in the NESS. The method relies
on the theory of hydrodynamic limits and can be seen as an
infinite-dimensional generalization of the Freidlin-Wentzel
theory. The approach of Bertini et al. provides a variational
principle from which one can write the equation of the time
evolution of the typical profile responsible for a given fluc-
tuation. The resolution of this variational problem is in gen-
eral very difficult, however, and it has been done for only
two models: the symmetric simple exclusion process !SSEP"
#3$ and the Kipnis-Marchioro-Presutti !KMP" model #4$.
Hence, it is of extreme importance to identify simple models
where one can test the validity of the MFT.

The most studied stochastic lattice gas is the simple ex-
clusion process. Particles perform random walks on a lattice
but jumps to occupied sites are suppressed. Hence the only
interaction is due to the exclusion condition. The only quan-
tity conserved by the bulk dynamics is the number of par-
ticles. In this situation, the heat reservoirs are replaced by
particle reservoirs which fix the density at the boundaries.
The KMP process is a Markov process composed of particles

on a lattice. Each particle has an energy and a stochastic
mechanism exchanges energy between nearest-neigbor par-
ticles #5$.

The real motivation is to extend the MFT for Hamiltonian
systems #6$. Unfortunately, for these systems, even the deri-
vation of the typical profile of temperature adopted by the
system in the steady state is beyond the range of the actual
techniques #7$. The difficulty is to show that the systems
behave ergodically, e.g., that the only time-invariant mea-
sures locally absolutely continuous with respect to the Le-
besgue measure are, for infinitely extended spatially uniform
systems, of the Gibbs type. For some stochastic lattice gases
it can be proven but it remains a challenging problem for
Hamiltonian dynamics.

We investigate here the MFT for a system of harmonic
oscillators perturbed by a conservative noise #8–10$. These
stochastic perturbations are here to reproduce !qualitatively"
the effective !deterministic" randomness coming from the
Hamiltonian dynamics #11–13$. This hybrid system can be
considered as a first modest step in the direction of purely
Hamiltonian systems.

From a more technical point of view, the SSEP and KMP
process are gradient systems and have only one conserved
quantity. For gradient systems the microscopic current is a
gradient #14$ so that the macroscopic diffusive character of
the system is trivial. In dealing with nongradient models, we
have to show that, microscopically, the current is a gradient
up to a small fluctuating term. The decomposition of the
current into these two terms is known in the hydrodynamic
limit literature as a fluctuation-dissipation equation #15$. In
general, it is extremely difficult to solve such an equation.

Our model has two conserved quantities, energy and de-
formation, and is nongradient. But fortunately an exact
fluctuation-dissipation equation can be established. In fact
we are not able to apply the MFT for the two conserved
quantities but only for the temperature field, which is a
simple, but nonlinear, functional of the energy and deforma-
tion fields.

The paper is organized as follows. In Sec. II, we define
the model. In Sec. III we establish the fluctuation-dissipation
equation and obtain hydrodynamic limits for the system on a*cbernard@umpa.ens-lyon.fr
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The ABC model

We here consider - both from a microscopic and macroscopic point
of view - a model with two conservation laws. Given an integer
N ≥ 1 let ZN = {1, . . . , N} be the discrete ring with N sites so
that N + 1 ≡ 1. The microscopic space state is given by
ΩN = {A,B,C}ZN so that at each site x ∈ ZN the occupation
variable, denoted by ηx, take values in the set {A,B,C}; one may
think that A,B stand for two different species of particles and C
for an empty site. Note that this state space takes into account an
exclusion condition: at each site there is at most one species of
particles.
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We first consider a weakly asymmetric dynamics that fits in the
framework discussed so far that is defined by choosing the
following transition rates. If the occupation variables across the
bond {x, x+ 1} are (ξ, ζ), they are exchanged to (ζ, ξ) with rate
cEx,x+1 = exp{(Eξ − Eζ)/(2N)} for fixed constant external fields
EA, EB, EC .
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The hydrodynamic equations for the densities of A and B particles
are given by

∂t

(
ρA

ρB

)
= ∆

(
ρA

ρB

)
−∇ ·

(
ρA(1− ρA) −ρAρB

−ρAρB ρB(1− ρB)

)
×
(
EA − EC

EB − EC

)
of course the density of C particles is then ρC = 1− ρA − ρB.
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The functional I[T1,T2] with D = 1 and mobility

χ(ρA, ρB) =

(
ρA(1− ρA) −ρAρB

−ρAρB ρB(1− ρB)

)
(54)

is the dynamical large deviation functional associated to this
model. The free energy is the maximal solution of the
Hamilton-Jacobi equation which can be easily computed. Namely,

V 0
mA,mB

(ρA, ρB) =

∫
dx
[
ρA log

ρA

mA
+ ρB log

ρB

mB

+ (1− ρA − ρB) log
1− ρA − ρB

1−mA −mB

]
(55)

where
∫
dx ρA = mA and

∫
dx ρB = mB. If EA, EB and EC are

not all equal, this model is a nonequilibrium model nevertheless, in
view of the periodic boundary conditions, its free energy is
independent of the external field.
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We next discuss a different choice of the weakly asymmetric
perturbation which, as we shall see, does not fit in the scheme
discussed so far. This choice is the one referred to in the literature
as the ABC model. The transition rates are the following. If the
occupation variables across the bond {x, x+ 1} are (ξ, ζ), they are
exchanged to (ζ, ξ) with rate exp{V (ξ, η)/N} where
V (A,B) = V (B,C) = V (C,A) = −β/2 and
V (B,A) = V (C,B) = V (A,C) = β/2 for some β > 0. Therefore
the A-particles prefer to jump to the left of the B-particles but to
the right of the C-particles while the B-particles prefer to jump to
the the left of the C-particles, i.e. the preferred sequence is ABC
and its cyclic permutations. These rates do not satisfy the local
detailed balance.
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The hydrodynamic equations are

∂t

(
ρA

ρB

)
+∇ ·

(
JA(ρA, ρB)
JB(ρA, ρB)

)
= 0

where

J(ρA, ρB) =

(
JA(ρA, ρB)
JB(ρA, ρB)

)
=

(
−∇ρA + βρA(1− 2ρB − ρA)
−∇ρB + βρB(2ρA + ρB − 1)

)
The asymmetric term in the present hydrodynamic equations is not
of the form ∇ ·

(
χ(ρ)E

)
as in (5)–(7). Hence the the theorem

requiring the free energy to be local does not apply.
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The appropriate cost functional is however still given by the
solution of Hamilton-Jacobi. In the case of equal densities∫
dx ρA =

∫
dx ρB = 1/3, a straightforward computation shows

that for any positive β the solution is given by

V β
1
3
, 1
3

(ρA, ρB) = V 0
1
3
, 1
3
(ρA, ρB)

+β

∫ 1

0
dx

∫ 1

0
dy y

{
ρA(x)ρB(x+ y) + ρB(x)[1− ρA(x+ y)

− ρB(x+ y)] + [1− ρA(x)− ρB(x)]ρA(x+ y)
}

+ κ

where V 0
1
3
, 1
3

is the functional in (55) with mA = mB = 1/3 and κ
is the appropriate normalization constant. This result has been
already obtained by direct computations from the invariant
measure. Indeed, in this case, the ABC model is microscopically
reversible and the invariant measure can be computed explicitly.
The macroscopic reversibility of the model is expressed as the
identity, which holds in the case of equal densities, J(ρ) = J∗(ρ).
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The hydrodynamic equations can be written in terms V

∂tρ = ∇(χ(ρ)∇δV
δρ

)

where ρ = (ρA, ρB).
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3. Phase transitions
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Lagrangian phase transitions: singularities of V (ρ)
BDGJL

We want to show that the quasi-potential V (ρ) of the weakly
asymmetric simple exclusion process is non-differentiable for large
values of the external field if ρ0 < ρ1. For this we switch to a
Hamiltonian picture. The canonical equations associated to the
Hamiltonian

H(ρ, π) =
〈
∇π · χ(ρ)∇π

〉
+
〈
∇π · J(ρ)

〉
(56)

are

ρt +∇ · χ(ρ)E = ∇ ·D(ρ)∇ρ − 2∇ · χ(ρ)∇π (57)

πt + E · χ′(ρ)∇π = −∇π · χ′(ρ)∇π −D(ρ)∇∇π (58)

in this formula, D(ρ)∇∇π =
∑

i,j Di,j(ρ)∂
2
xi,xj

π.
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Since ρ̄ is a stationary solution of the hydrodynamic equation the
Hamiltonian dynamics admits the equilibrium position (ρ̄, 0).
Consider the solution of the canonical equations with initial
condition (ρ, 0). Due to ρ̄ being globally attractive for the
hydrodynamics, such a solution of the canonical equations
converges to the equilibrium position (ρ̄, 0) as t→ +∞. The set of
points {(ρ, π) : π = 0} is therefore the stable manifold Ms

associated to the equilibrium position (ρ̄, 0). The unstable
manifold Mu is defined as the set of points (ρ, π) such that the
solution of the canonical equations starting from (ρ, π) converges
to (ρ̄, 0) as t→ −∞. By the conservation of the energy, Mu is a
subset of the manifold {(ρ, π) : H(ρ, π) = H(ρ̄, 0) = 0}.
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A basic result in Hamiltonian dynamics is the following . Given a
closed curve γ = {(ρ(α), π(α)) , α ∈ [0, 1]}, the integral∮
γ π dρ =

∫ 1
0 〈π(α) ρα(α)〉 dα is invariant under the Hamiltonian

evolution. This means that, by denoting with γ(t) the evolution of
γ under the Hamiltonian flow,

∮
γ(t) π dρ =

∮
γ π dρ . In view of this

result, if γ is a closed curve contained in the unstable manifold Mu

then
∮
γ π dρ = limt→−∞

∮
γ(t) π dρ = 0. We can therefore define

the pre-potential W : Mu → R by

W (ρ, π) =

∫
γ
π̂ dρ̂ , (59)

where the integral is carried over a path γ = (ρ̂, π̂) in Mu which
connects (ρ̄, 0) to (ρ, π). The possibility of defining such potential
is usually referred to by saying that Mu is a Lagrangian manifold.
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The relationship between the quasi-potential and the pre-potential
is given by

V (ρ) = inf
{
W (ρ, π) , π : (ρ, π) ∈ Mu

}
. (60)

Indeed, fix ρ and consider π such that (ρ, π) belongs to Mu. Let
(ρ̂(t), π̂(t)) be the solution of the Hamilton equation starting from
(ρ, π) at t = 0. Since (ρ, π) ∈ Mu, (ρ̂(t), π̂(t)) converges to (ρ̄, 0)
as t→ −∞. Therefore, the path ρ̂(t) is a solution of the
Euler-Lagrange equations for the action I(−∞,0], which means that
it is a critical path for (22). Since L(ρ̂, ρ̂t) = 〈π̂ ρ̂t〉 − H(ρ̂, π̂) and
H(ρ̂(t), π̂(t)) = 0, the action of such path ρ̂(t) is given by
I(−∞,0](ρ̂) = W (ρ, π). The right hand side selects among all such
paths the one with minimal action.
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Figure: (a) Picture of the unstable manifold. (b) Graph of the
quasi-potential. ρc is a caustic point.
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In a neighborhood of the fixed point (ρ̄, 0), the unstable manifold
Mu can be written as a graph, namely it has the form
Mu = {(ρ, π) : π = mu(ρ)} for some map mu. In this case, the
infimum is trivial and V (ρ) = W (ρ,mu(ρ)). In general this is not
true globally and it may happen, for special ρ, that the variational
problem admits more than a single minimizer (Figure 1.a). The set
of profiles ρ for which the minimizer is not unique is called the
caustic. In general, it is a codimension one submanifold of the
configuration space. We call the occurrence of this situation a
Lagrangian phase transition. In this case, profiles arbitrarily close
to each other but lying on opposite sides of the caustic are reached
by optimal paths which are not close to each other. This implies
that on the caustics the first derivative of the quasi-potential is
discontinuous (Figure 1.b).
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Consider the case of the weakly asymmetric exclusion with D = 1,
ρ(1− ρ) and E constant. Introducing the functional GE

GE(ρ, ϕ) =

∫ 1

0

[
s(ρ) + s(ϕx/E) + (1− ρ)ϕ− log

(
1 + eϕ

)]
dx ,

with s(ρ) = ρ log ρ+ (1− ρ) log(1− ρ) it can be shown that∫
Γ
〈π, dρ〉 = GE

(
ρ(1), φ(1)

)
− GE

(
ρ(0), φ(0)

)
.

Hence WE(ρ, π) = GE(ρ, ϕ)−GE(ρ̄E , s
′(ρ̄E)), where (ϕ, ρ) ∈ Mu.

Therefore,

VE(ρ) = inf
{
GE(ρ, ϕ) , ϕ : (ϕ, ρ) ∈ Mu

}
−GE(ρ̄E , s

′(ρ̄E)) . (61)
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It is not difficult to show that in the limit E = ∞ , if the density
profile ρ is suitably chosen, the variational principle admits two
minimizers. Then by a continuity argument one shows that this
persists when the external field E is large.

-·
0

·
1

x
·ρ0

·ρ1

A •

y−

•

y0

•

y+

ρ(x)
······························· ·······························

Figure: Graph of a caustic density profile for E = ∞. The shaded regions
have equal area.
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Dynamical phase transitions: singularities of Φ(J)

Let us denote by U the functional obtained by restricting the
infimum in (45) to divergence free current paths j, i.e.

U(J) = inf
ρ

1

4

〈
[J − J(ρ)], χ(ρ)−1[J − J(ρ)]

〉
(62)

where the infimum is carried out over all the density profiles
ρ = ρ(u) satisfying the appropriate boundary conditions. This
functional was introduced by Bodineau and Derrida to describe the
fluctuations of the time averaged current e.g. in SSEP. From the
definition it follows that Φ ≤ U . There are two possibilities,
Φ = U or the strict inequality Φ < U . They correspond to
different dynamical states. The transition from one regime to the
other is a dynamical phase transition.
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Consider as an example a ring in which an average current J is
flowing in presence of an external field E. Depending on J , E,
D(ρ), χ(ρ) and their derivatives, a constant density profile or a
traveling wave is the optimal choice. It has been shown that in the
weakly asymmetric exclusion model (by Bodineau and Derrida) and
in the Kipnis-Marchioro-Presutti model (by BDGJL) these
transitions exist.
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A sufficient condition for Φ = U

We consider the case when the matrices D(ρ) and χ(ρ) are
multiple of the identity, i.e., there are strictly positive scalar
functions still denoted by D(ρ), χ(ρ), so that D(ρ)i,j = D(ρ)δi,j ,
χ(ρ)i,j = χ(ρ)δi,j , i, j = 1, . . . , d. We denote derivatives with a
superscript. Let us first consider the case with no external field,
i.e. E = 0. If

D(ρ)χ′′(ρ) ≤ D′(ρ)χ′(ρ) for any ρ (63)

then Φ = U . In this case U is necessarily convex.
Moreover if

D(ρ)χ′′(ρ) = D′(ρ)χ′(ρ) for any ρ (64)

then we have Φ = U for any external field E.
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Condition (63) is satisfied e.g. for the symmetric simple exclusion
process, where D = 1 and χ(ρ) = ρ(1− ρ), ρ ∈ [0, 1]. Condition
(64) is satisfied either if D is proportional to χ′ or χ is constant
and D arbitrary. Examples are the zero range model, where
D(ρ) = Ψ′(ρ) and χ(ρ) = Ψ(ρ) for some strictly increasing
function Ψ : R+ → R+, and the non interacting Ginzburg–Landau
model, where D(ρ), ρ ∈ R, is an arbitrary strictly positive function
and χ(ρ) is constant.
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4. Large deviations for reaction-diffusion systems
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Glauber+Kawasaki dynamics: the dynamical functional
J-L, Landim, Vares

Unlike the models discussed so far, the so-called Glauber +
Kawasaki process is not a lattice gas in the sense that the number
of particles is not locally conserved. A reaction term allowing
creation/annihilation of particles is added in the bulk. The
hydrodynamics is

∂tρ = ∆ρ+ b(ρ)− d(ρ) = ∆ρ+ v (65)

where the reaction terms b and d are polynomials in ρ. The
associated large deviation functional for the density is

I[0,T ](ρ) =

∫ T

0
dt
{1

4

〈
∇H, ρ(1− ρ)∇H

〉
+
〈
b(ρ),

(
1− eH +HeH

)〉
+
〈
d(ρ),

(
1− e−H −He−H

)〉}
(66)

where the external potential H is connected to the fluctuation ρ by

∂tρ = ∆ρ−∇ ·
(
ρ(1− ρ̂)∇H

)
+ b(ρ)eH − d(ρ)e−H (67)
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G+K dynamics: density-current-source fluctuations
Bodineau, Lagouche

The hydrodynamic equation has a local source term v and we are
interested in the joint fluctuations of ρ, J(ρ) = −∇ρ,
v = b(ρ)− d(ρ). The large deviation functional is given by

I0(ρ, j, v) =

∫ T

0
dt
〈 {1

4

(
j − J(ρ)

)2
χ
(
ρ
) + Φ

(
ρ, v
)}〉

, (68)

with

Φ(ρ, v) = b(ρ)+d(ρ)−
√
v2 + 4d(ρ)b(ρ)+v log

(√
v2 + 4d(ρ)b(ρ) + v

2b(ρ)

)
.

(69)
where ρ, j and v are connected by the equation

∂tρ = −∇j + v (70)
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Quadratic approximation of the quasi-potential
Basile, J-L

The Hamiltonian associated to the large deviation functional for
this model is not quadratic

H(ρ, π) =

∫
du

{
1

2
π∆ρ+

1

2
(∇π)2ρ(1− ρ)

−b(ρ)(1− expπ)− d(ρ)(1− exp−π)

}
(71)

where π is the conjugate momentum. The Hamilton-Jacobi
equation

H(ρ,
δV

δρ
) = 0 (72)

is therefore very complicated but can be solved by successive
approximations using as an expansion parameter ρ− ρ̄ where ρ̄ is a
solution of B(ρ) = D(ρ) that is a stationary solution of
hydrodynamics.
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We are looking for an approximate solution of (72) of the form

V (ρ) =
1

2

∫
du

∫
dv(ρ(u)− ρ̄)k(u, v)(ρ(v)− ρ̄) + o(ρ− ρ̄)2 (73)

The kernel k(u, v) is the inverse of the density correlation function
c(u, v). ∫

c(u, y)k(y, v)dy = δ(u− v) (74)

By inserting (73) in (72) one can show that k(u, v) satisfies the
following equation

1

2
ρ̄(1− ρ̄)∆uk(u, v)− b0k(u, v)−

1

2
∆uδ(u− v)

+(d1 − b1)δ(u− v) = 0 (75)

where
b1 = b′(ρ)|ρ=ρ̄ , d1 = d′(ρ)|ρ=ρ̄

and
b0 = b(ρ̄) = d(ρ̄) = d0 (76)
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If V is a local functional of the density, k(u, v) must be of the
form k(u, v) = f(ρ̄)δ(u− v) which inserted in (75) gives

f(ρ̄) = [ρ̄(1− ρ̄)]−1 (77)

and
b0[ρ̄(1− ρ̄)]−1 − (d1 − b1) = 0. (78)

Therefore if b0, b1, d1 do not satisfy the last equation the entropy
cannot be a local functional of the density. It can be shown that in
this case time reversal invariance is violated and the adjoint
hydrodynamics is different from (65). This calculation supports the
conjecture that macroscopic correlations are a generic feature of
equilibrium states of non reversible lattice gases.
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5. Large deviations in the hyperbolic case
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Hydrodynamics of ASEP

The hydrodynamic equation has the form of a hyperbolic
conservation law

ρt + (f(ρ))x = 0 (79)

where f(ρ) = ρ(1− ρ). This equation has to be understood in a
weak sense. Existence and uniqueness hold if an additional entropy
condition is imposed on the solution. Introduce a pair of functions
h, g such that g′ = f ′h′ define

Kh,ρ(Φ) = −
∫ T

0

∫ 1

0
∂tΦh(ρ) + ∂xΦg(ρ)dxdt (80)

Φ is a test function. A solution ρ satisfies the entropy condition if

Kh,ρ(Φ) ≤ 0 (81)

for all bounded convex functions h.
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The quasi-potential for the asymmetric exclusion process
Derrida, Lebowitz, Speer

1. The case ρa ≥ ρb

V ({ρ}; ρa, ρb) = −(b− a)K(ρa, ρb)

+ sup
F (x)

∫ b

a
dx ρ(x) log [ρ(x)(1− F (x))]

+(1− ρ(x)) log [(1− ρ(x))F (x)] , (82)

where the supremum is over all monotone nonincreasing functions
F (x) which for a ≤ x < y ≤ b satisfy

ρa = F (a) ≥ F (x) ≥ F (y) ≥ F (b) = ρb. (83)

where
K(ρa, ρb) = sup

ρb≤ρ≤ρa

log[ρ(1− ρ)], (84)
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2. The case ρa ≤ ρb

V ({ρ}; ρa, ρb)) = −(b− a)K(ρa, ρb) + (85)

inf
a≤y≤b

{∫ y

a
dx ρ(x) log [ρ(x)(1− ρa)] + (1− ρ(x)) log [(1− ρ(x))ρa]

+

∫ b

y
dx ρ(x) log [ρ(x)(1− ρb)] + (1− ρ(x)) log [(1− ρ(x))ρb]

}
.

where

K(ρa, ρb) = min [log ρa(1− ρa), log ρb(1− ρb)] , (86)
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6. Conclusions
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Large deviation theory has produced a phenomenological
description of stationary nonequilibrium states of diffusive systems
requiring as input the transport coefficients which are measurable
quantities. In particular

1. we have a variational principle leading to a natural definition
of the free energy for nonequilibrium states whose singularities
are interpreted as phase transitions.

2. this principle implies that macroscopic long range correlations
are a generic property of stationary nonequilibrium as
experimentally observed.

3. we have a variational principle associated with the observation
of time averaged currents: this implies the existence of
dynamical phase transitions which spontaneously break time
translational invariance.
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4. In the theory developed so far the boundary conditions are
kept fixed: the study under boundary conditions (chemical
potentials, volume...) which slowly change on the macroscopic
time scale is a next natural step.
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