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Deriving Fourier’s law in two steps (I)

Try to obtain Fourier’s law

∂tE = ∂x
(
κ . ∂xE

)
from a Hamiltonian system by taking two successive limits.

Here

I E ≡ E (x , t) is the local energy (in a macroscopic description),

I κ ≡ κ(E ) is the thermal conductivity of the material.

Only a purely 1-D dynamics will be considered in this talk



Deriving Fourier’s law in two steps (II)

1. Microscopic hamiltonian system

Hamiltonian systems of N identical particles such that

I the interaction between particles is controlled
by a small parameter ε > 0,

I when the interaction is turned off (ε = 0),
the dynamics of single particles have good mixing properties.

Typical example:
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Deriving Fourier’s law in two steps (III)

2. Weak coupling limit: send ε→ 0 and rescale time
Take the energy of atom k :

ek(q,p) (= p2
k/2 in our model).

Find a non trivial α > 0 such that

ek
(
qε(ε

−αt) , pε(ε
−αt)

) D−→ Ek(t) as ε→ 0

where

I (Ek)1≤k≤N is an autonomous Markov process:

dEk = f (E1, . . . ,EN),

I The convergence
D−→ is in distribution w.r.t. initial measure.

Remark: the number N of particles is constant: no space rescaling



Deriving Fourier’s law in two steps (IV)

3. Diffusive limit: rescale space and time
Start from the stochastic process (Ek)1≤k≤N and define

EN(x , t) = Ex .N (t .N2)

Show, in some specific sense, that EN → E as N →∞, with

∂tE = ∂x
(
κ . ∂xE

)
.

4. Our contribution
We accomplish rigorously this program starting from a 1-D almost
hamiltonian microscopic system.

Main source of inspiration:

I Gaspard and Gilbert (2008)

I Liverani and Olla (2010)



The model (I)

1-D particles moving in their cells:
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I One particle in each cell cell.

I Overlap region of size ε between near cells.

I Exchange of momenta through elastic collision in this region.

When ε→ 0,

collisions should become rare,
but the interaction is still strong.



The model (II)
1. Dynamics of one isolated particle (ε = 0)

Hamiltonian dynamics + Stochastic noise

The particle

I moves freely in its cell,
and is reflected elastically at the boundaries of the cell.

I is equipped with an independent Poisson clock,
which flips the sign of its velocity when it rings.
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So the noise

I mimics a chaotic dynamics inside each cell,

I acts on every particle individually,

I preserves the energy of each particle.



The model (III)

2. Adding the interaction (ε > 0)

I The energy of particles only contains a kinetic term:

ek = p2
k/2.

I 1-D elastic collisions between equal masses:

exchange of momenta and thus exchange of energy✈ ✲ ✈✛ � ✈✛ ✈ ✲
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I So, if the initial energies are

0 < e1 < · · · < eN′ < +∞ (N ′ ≤ N),

then they are forever the only reachable energies.



Weak coupling limit (I)

1. Definitions and Assumptions

Define

I The energy at rescaled time

Eεk(t) := eεk(ε−1t) =
1

2

(
pεk
)2

(ε−1t).

I For a, b ∈ R+, let

γ(a, b) :=
1

2
max

{√
2a,
√

2b
}
.

Assume

I The initial measure has some regularity.

I Energies are such that 0 < e1 < · · · < eN′ < +∞.

I Energies lie in some subset of RN′
+ of full Lebesgue measure.



Weak coupling limit (II)
2. Theorem (S. Olla, F.H.)

Under these assumptions,

I There exists a cad-lag process

E = (Ek)1≤k≤N with values in {e1, . . . , eN′}N

such that

Eε = (Eεk)1≤k≤N
D−→ E = (Ek)1≤k≤N as ε→ 0.

I The probability distribution Pt( · ) of E(t) solves the equation

∂tPt(e1, . . . , eN)

=
N−1∑
k=1

γ(ek , ek+1)
(

Pt(. . . , ek+1, ek , . . . )− Pt(. . . , ek , ek+1, . . . )
)



Hydrodynamic limit from the weak coupling limit

The following cases at least can be obtained

I Only two different energies: e1 < e2. Then

∂tPt( · ) = γ .

N−1∑
k=1

(
Pt(. . . , ek+1, ek , . . . )−Pt(. . . , ek , ek+1, . . . )

)
with γ :=

√
2e2. Hydrodynamic limit for the SSEP:

∂tE (x , t) = γ . ∂2
xE (x , t).

I N ′ independent of N different energies: e1 < · · · < eN′ .
Heat equation with non-constant coefficient:

∂tE (x , t) = ∂x
(
κ . ∂xE (x , t)

)
.



Heuristic of the theorem (I)
The intuition of the theorem follows Gaspard and Gilbert.
Let us take only two particles. Initially
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Particle 1 has energy e1, Particle 2 has energy e2.

When ε→ 0,

collisions rarefy
⇓

particles evolve almost independently
⇓

they reach quickly their own equilibrium.

For e = e1 or e = e2, this measure is given by

µe(u) =
1

2

∑
p=±

√
2e

∫ 1

0
u(q, p)dq



Heuristic of the theorem (II)

For q1 < q2, a collision occurs in a small time interval ∆t > 0 if

p1 > p2 and ✈ ✲p1 ✈✛p2

✲✛
q2 − q1 ≤ (p1 − p2)∆t

1

The energy exchange rate should be given by

γ̃ = lim
∆t→0

1

∆t
P (a collision occurs during the time interval ∆t)

= lim
∆t→0

1

∆t

1

4

∑
p1=±

√
2e1

p2=±
√

2e2

∫
χR+(p1 − p2) . χ[0,(p1−p2)∆t](q2 − q1) dq1dq2

= ε .
1

2
max

{√
2e1,
√

2e2

}
Thus

I The non trivial time rescaling should be by a factor ε−1.

I The asymptotic exchange rate should be the γ in the theorem.



Comments on the hypotheses (I)

Deterministic trajectory matters on microscopic time scales since:

I it persists during time ∆t ∼ 1 with probability e−λ∆t ∼ 1
(λ the parameter of the Poisson clocks),

I the interaction is strong.

1. Regularity of the initial measure
A Dirac distribution w.r.t. positions could produce a discontinuity
at t = 0 (in the limit ε→ 0 in the rescaled time)
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These particles collide with probability ∼ 1, even when ε→ 0.



Comments on the hypotheses (II)

2. Condition on the momenta
After a collision, for the deterministic trajectory:
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|p2| = α|p1|: “typical” |p2| = 2|p1| : “exceptional”

Correlations for (microscopic) times ∆t ∼ 1 are different:

I Typical case: P
(
recollision in ∆t ∼ 1

)
∼ ε (noise)

I Atypical case: P
(
recollision in ∆t ∼ 1

)
∼ 1 (deterministic)

Our theorem is shown for the typical case.
A similar theorem could hold in the atypical case, with another γ.



About the proof (I)

1. Basic ideas

As in Olla and Liverani:
coupled dynamics is seen as perturbation of the uncoupled one

In practice here:

I look at the dynamics during a time ε−1τ ,

I expand it in the number of collision per particle,

I the term of order 0 corresponds to the uncoupled dynamics,

I evaluate the 1st order term in the limit ε→ 0,

I show that the 2d order is O(τ2).

Let us look at this in some more details...



About the proof (II)

2. Formula to be established

Let us take only two particles. Take µ an initial measure s.t.

I µ gives energy e1 to particle 1,

I µ gives energy e2 to particle 2,

I µ is uniform in position and sign of the velocity.

Let also

I Pt
ε µ: evolution of µ by the coupled dynamics,

I Pt
0 µ: evolution of µ by the uncoupled dynamics.

For τ → 0 and ε << τ , we wish to get

Pε
−1τ
ε µ− Pε

−1τ
0 µ = τ . γ(e1, e2) .

(
µ(e2, e1)− µ(e1, e2)

)
+ O(τ2)

Roughly speaking, this implies our theorem.



About the proof (III)
3. Duhamel expansion
Write

Pt
εµ = eLεtµ and Pt

0µ = eL0tµ.

Actually, µ is such that Pt
0µ = µ, and so

eLεε
−1τµ− eL0ε

−1τµ =

∫ ε−1τ

0
esLε(Lε − L0)µ ds

=

∫ ε−1τ

0
esL0(Lε − L0)µ ds

+

∫ ε−1τ

0
ds

∫ s

0
e(s−r)Lε(Lε − L0)erL0(Lε − L0)µ dr

I the first term in the RHS can be evaluated “explicitly”,

I the rest term is shown to be O(τ2),

I Lε − L0 formal but can be made rigorous (time discretization).



Beyond the two step strategy ?

Now, fix ε > 0 and let N →∞.

Can we say something when taking a diffusive limit directly
from our microscopic model ?

Very few yet, except in one (anecdotic) case:

Only one fast particle in a sea of slow particles
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Due to chocks, the high energy describes some random walk.



Beyond the two step strategy ?

This walk can be understood:

I Take the “point of view of the particle”:
shift the dynamics s.t. the fast particle stays in the origin cell.

I Let Xs be the shifted dynamics.

I For Xs , the energy in each cell is now fixed.

I So, Xs can be seen to have space-time mixing properties
independent of the system size.

So, the question reduces to the analysis of

1√
t

∫ t

0
f ◦ Xs ds

with

f = |p1 − p0| . δ0(q1 − q0) − |p0 − p−1| . δ0(q0 − q−1)

with Xs having a spectral gap of order 1.


