L^2 -Mixing properties of a heat conduction model

Alexander Grigo¹, Konstantin Khanin¹, Domokos Szasz²

¹University of Toronto, ²Budapest University of Technology

Workshop on the Fourier Law and Related Topics Fields Institute, Toronto, Canada April 8, 2011

Outline of the talk

- Description of the model; motivation
- Step one: Detailed analysis of a special case
- Step two: Spectral gap for the general case
- Example
- Conclusion

A concrete mechanical model

- Bunimovich, Liverani, Pellegrinotti, Suhov proved ergodicity for arbitrary number of (strongly) confined particles
- Gaspard, Gilbert gave a derivation of a hydrodynamic description in a certain limiting regime.

 in strongly mixing systems return time statics are asymptotically exponentially distributed

Two-step program to obtain a hydrodynamic description:

- Rare interaction limit to obtain a master equation for a jump process
- Wydrodynamic limit for the stochastic process corresponding to the master equation

State space: only the energies are left in the limit

$$X=(X_1,\dots,X_N)\in\mathbb{R}_+^N$$

• The limiting process has generator

$$\mathcal{L}A(X) = \sum_{i=1}^{N-1} \Lambda(X_i, X_{i+1}) \int_0^1 P\left(\frac{X_i}{X_i + X_{i+1}}, d\alpha\right) \left[A(T_{i,\alpha}X) - A(X)\right]$$

where

$$\Lambda(X_i, X_{i+1}) = \Lambda_+(X_i + X_{i+1}) \Lambda_R \left(\frac{X_i}{X_i + X_{i+1}} \right)$$
$$\Lambda_+(s) = \sqrt{s}$$

• The total energy $X_1 + \ldots + X_N$ is preserved

- 4 ロ → 4 個 → 4 種 → 4 種 → 1 型 - り Q (C)

With
$$\alpha = \frac{X_i}{X_i + X_{i+1}}$$

$$\frac{P(\beta, d\alpha)}{d\alpha} = \frac{3}{2} \frac{\frac{1}{2} \wedge \sqrt{\frac{\alpha \wedge (1-\alpha)}{\beta \wedge (1-\beta)}}}{\frac{1}{2} + \beta \vee (1-\beta)}$$

$$\Lambda_R(\beta) = \frac{\sqrt{2\pi}}{6} \frac{\frac{1}{2} + \beta \vee (1-\beta)}{\sqrt{\beta \vee (1-\beta)}}$$

$$T_{i,\alpha} = \begin{pmatrix} 1 & \alpha & \alpha & \alpha \\ 1 - \alpha & 1 - \alpha & 1 \end{pmatrix} \in \mathbb{R}^{N \times N}$$

• In the limit as $N \to \infty$ and $\xi = i/N$, $t = N^2 \tau$ the empirical process

$$\sum_{i=1}^{N} \frac{1}{N} \, \delta_{X_i(t)}$$

should converge to a process with density $u(\xi, \tau)$ solving

$$\partial_{\tau} u(\xi, \tau) = \partial_{\xi} (\operatorname{const} \sqrt{u(\xi, \tau)} \, \partial_{\xi} u(\xi, \tau))$$

• This was studied by Gaspard, Gilbert

Mathematical problems:

- Non-gradient structure
- The rates are not bounded away from zero

Questions that will be addressed in this talk:

- Existence of stationary distributions
- Rates of convergence as function of system size

Special case

Consider $\Lambda = 1$ and some $P = P(d\alpha)$

$$\mathcal{L}A(x) = \sum_{i=1}^{N-1} \int_0^1 P(d\alpha) \left[A(T_{i,\alpha}x) - A(x) \right]$$

Assumption and notation

- We assume that $\int P(d\alpha) \alpha = \frac{1}{2}$.
- The simplexes $S_{\epsilon,N} = \{x : \sum_{i=1}^{N} \frac{1}{N} x_i = \epsilon \}$ are invariant.

Remark

Proving a spectral gap even for this special case is non-trivial as is well known from the Kac model (1956). (McKean 1966, Diaconis and Saloff-Coste 2000, Janvresse 2001, Carlen, Carvalho and Loss 2000-2008)

4日 → 4日 → 4 目 → 4 目 → 9 Q ○

Lower bound

For any initial $\mathsf{X}(0) \in \mathcal{S}_{\epsilon, N}$

$$\|\mathbb{E} \mathsf{X}(t) - x_{\epsilon}^{\infty}\| \le e^{-t\Delta_{N}} \|\mathsf{X}(0) - x_{\epsilon}^{\infty}\| \quad \text{where} \quad x_{\epsilon}^{\infty} = \begin{pmatrix} \epsilon \\ \vdots \\ \epsilon \end{pmatrix}$$
 and $\Delta_{N} = 2 \sin^{2} \frac{\pi}{2N}$

for all $t \geq 0$.

Remark

This inequality is sharp, and thus shows that convergence to equilibrium cannot occur at a rate faster than $\mathcal{O}(N^{-2})$.

(ロ) (部) (注) (注) 注 り(())

A.Grigo (UofT)

Theorem $(L^2_{\pi_{\epsilon,N}}$ -spectral gap for reversible $\pi_{\epsilon,N})$

Suppose that P satisfies $\int P(d\alpha) \alpha = \frac{1}{2}$ and $\sigma_P^2 < \frac{1}{4}$. If the stationary distribution $\pi_{\epsilon,N}$ of X(t) on $S_{\epsilon,N}$ is reversible, then

$$\sigma(\mathcal{L}) \subset \left(-\infty, -\frac{1}{2}\left[1 - 4\sigma_P^2\right] \sin^2\left[\frac{\pi}{N+2}\right]\right] \cup \{0\}$$

for the spectrum of $\mathcal L$ acting as a selfadjoint, bounded negative semi-definite operator on $L^2_{\pi_{\epsilon,N}}$, and 0 is a simple eigenvalue corresponding to the constant eigenfunction.

<ロ > ← □ > ← □ > ← □ > ← □ = ・ つへ(^-)

In what sense should we expect convergence?

- If $P(d\alpha)$ has a density, then we should expect convergence in total variation.
- If $P(d\alpha)$ has a density, then we should expect convergence in $L^2(\pi)$.
- If $P(d\alpha) = \delta_{1/2}(d\alpha)$ then the convergence is not in total variation, and $L^2(\pi)$ is trivial.

To handle general P we need a topological structure. Idea of the proof:

- **①** Construct a special metric on $S_{\epsilon,N}$.
- 2 Establish weak convergence in Vaserstein distance.
- **3** Use reversibility to obtain a spectral gap in L^2 .

Recall that the definition of the Vaserstein-p distance is

$$\rho_p(\mu,\nu) = \inf_{\substack{X \sim \mu \\ Y \sim \nu}} [\mathbb{E} \, \mathrm{d}(X,Y)^p]^{\frac{1}{p}} \qquad \text{and set} \qquad \rho(\mu,\nu) \equiv \rho_1(\mu,\nu)$$

where μ and ν are two probability measures on a compact metric space (\mathcal{S},d) . Furthermore, for p=1 the duality

$$\rho(\mu,\nu) = \inf_{\substack{X \sim \mu \\ Y \sim \nu}} \mathbb{E} d(X,Y) = \sup_{f: \operatorname{Lip}(f) \leq 1} \mu(f) - \nu(f)$$

follows by the Kantorovich-Rubinstein theorem.

ullet Let d and d' be two equivalent distances, then

$$\rho(\mu_t, \nu_t) \le c e^{-\gamma t} \iff \rho'(\mu_t, \nu_t) \le c' e^{-\gamma t}$$

Therefore, to obtain a strict contraction

$$ho(\mathsf{X}(t,x),\mathsf{X}(t,x')) \leq \mathrm{d}(x,x')\,\mathrm{e}^{-\gamma\,t} \quad ext{for all} \quad x,x' \in \mathcal{S}_{\epsilon,N}$$

we need a carefully chosen distance!

• The induced Euclidean distance on $S_{\epsilon,N}$ does not work.

Recall the definition of the matrices $T_{i,\alpha}$

Key observation:

$$\begin{pmatrix} \alpha & \alpha \\ 1-\alpha & 1-\alpha \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad \text{super-stable}$$

$$\begin{pmatrix} \alpha & \alpha \\ 1-\alpha & 1-\alpha \end{pmatrix} \begin{pmatrix} \alpha \\ 1-\alpha \end{pmatrix} = 1 \cdot \begin{pmatrix} \alpha \\ 1-\alpha \end{pmatrix} \qquad \text{neutral}$$

ullet Any $x \in \mathcal{S}_{\epsilon, N}$ can be written as

$$x = \epsilon \mathbf{1} + \sum_{i=1}^{N-1} u_i \left[\mathbf{e}_i - \mathbf{e}_{i+1} \right]$$

for some $u \in \mathbb{R}^{N-1}$.

- $S_{\epsilon,N} \subset \mathbb{R}_+^N$ is in one-to-one correspondence with the set $\{u \in \mathbb{R}^{N-1} : -\epsilon \leq u_1, \ u_{i-1} \leq \epsilon + u_i, \ u_{N-1} \leq \epsilon\}.$
- Conversely, $\epsilon = \sum_{i=1}^{N} \frac{1}{N} x_i$, and u is the solution to the discrete Poisson equation with Dirichlet boundary conditions

$$u_{i-1} - 2u_i + u_{i+1} = x_{i+1} - x_i$$
 for $i = 1, ..., N - 1$

where we formally set $u_0 \equiv u_N \equiv 0$.

◆ロ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□

 \bullet ϵ is conserved, so that U(t) is Markov

$$\mathsf{X}(t) = \epsilon \, \mathbf{1} + \sum_{i=1}^{N-1} \mathsf{U}_i(t) \left[\mathbf{e}_i - \mathbf{e}_{i+1} \right]$$

• the generator reads

$$\hat{\mathcal{L}}_{\epsilon,N}A(u) = \Lambda \sum_{i=1}^{N-1} \int P(d\alpha) \left[A(\hat{T}_{i,\alpha}^{\epsilon} u) - A(u) \right]$$

where

$$\hat{T}_{i,\alpha}^{\epsilon}u - u = [(1-\alpha)u_{i-1} + \alpha u_{i+1} + (2\alpha - 1)\epsilon - u_i]\mathbf{e}_i$$

with the convention $u_0 \equiv u_N \equiv 0$.

◆□ → ◆□ → ◆ き → ◆ き → り へ ○

Definition (Adapted metric)

Let x and x' be any two initial points on $\mathcal{S}_{\epsilon,N}$ then

$$x = \epsilon \mathbf{1} + \sum_{i=1}^{N-1} u_i [\mathbf{e}_i - \mathbf{e}_{i+1}], \qquad x' = \epsilon \mathbf{1} + \sum_{i=1}^{N-1} u_i' [\mathbf{e}_i - \mathbf{e}_{i+1}]$$

and we define

$$\hat{d}(u,u') := \left[\sum_{i=1}^{N-1} (u_i - u_i')^2\right]^{\frac{1}{2}}, \quad d(x,x') = \hat{d}(u,u')$$

- $\max_{u,u' \in \mathcal{S}_{\epsilon,N}} \hat{\mathbf{d}}(u,u') \le \epsilon \, N \, \sqrt{N-1}$
- $\hat{T}_{i,\alpha}^{\epsilon}$ is super stable in direction i.

(ロ) (部) (注) (注) 注 り(0)

Consider the bivariate Markov process $(\mathsf{U}(t),\mathsf{U}'(t))$ on $\mathcal{S}_{\epsilon,\mathit{N}} imes\mathcal{S}_{\epsilon,\mathit{N}}$

$$\bar{\mathcal{L}}A(u,u') = \sum_{i=1}^{N-1} \int P(d\alpha) \left[A(\hat{T}_{i,\alpha}^{\epsilon}u, \hat{T}_{i,\alpha}^{\epsilon}u') - A(u,u') \right]$$

Proposition (Average contraction rate)

For any two u and u',

$$\bar{\mathcal{L}}\hat{\mathbf{d}}(u,u')^2 \leq -[1-4\,\sigma_P^2]\,\sin^2\left[\frac{\pi}{N+2}\right]\hat{\mathbf{d}}(u,u')^2$$

where σ_P^2 denotes the variance of P.

◆ロ > ◆園 > ◆ き > ◆き > き め < ○</p>

Sketch of the proof:

• It is straightforward to verify

$$\bar{\mathcal{L}}\hat{\mathbf{d}}(u,u')^{2} = -\left[\frac{1}{4} - \sigma_{P}^{2}\right] \left[u - u'\right]^{T} \mathcal{C}^{(N-1)} \left[u - u'\right] \\
- \left[\frac{1}{4} + \sigma_{P}^{2}\right] \left(\left[u_{1} - u'_{1}\right]^{2} + \left[u_{N-1} - u'_{N-1}\right]^{2}\right) \\
\begin{pmatrix}
2 & 0 & -1 & 0 & 0 & | \\
0 & 2 & 0 & -1 & 0 & | \\
-1 & 0 & 2 & 0 & -1 & | \\
& & \ddots & & & & \\
& & -1 & 0 & 2 & 0 & | -1 \\
& & 0 & -1 & 0 & 2 & 0 & | \\
& & 0 & 0 & -1 & 0 & 2
\end{pmatrix} \in \mathbb{R}^{(N-1)\times(N-1)}$$

• The spectrum of $C^{(N-1)}$ is explicitly computable.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

A.Grigo (UofT)

Proposition (Rate of convergence in Vaserstein-2 distance)

Let U(t) and U'(t) be any two Markov chains generated by $\hat{\mathcal{L}}$ on $\mathcal{S}_{\epsilon,N}$. Then

$$\rho_2(\mathsf{U}(t),\mathsf{U}'(t)) \le \rho_2(\mathsf{U}(0),\mathsf{U}'(0)) \exp\left(-\frac{1}{2}\left[1-4\,\sigma_P^2\right]\sin^2\left[\frac{\pi}{N+2}\right]t\right)$$
$$\le \epsilon\,N\,\sqrt{N-1}\,\exp\left(-\frac{1}{2}\left[1-4\,\sigma_P^2\right]\sin^2\left[\frac{\pi}{N+2}\right]t\right)$$

holds for all t.

- If $\sigma_P^2 < \frac{1}{4}$, then there exists a unique stationary distribution $\pi_{\epsilon,N}$ on each $\mathcal{S}_{\epsilon,N}$.
- This rate of convergence is again $\mathcal{O}(N^{-2})$, and thus optimal.

◆ロ > ◆部 > ◆き > ◆き > き のQ

Proof of L^2 spectral gap

 A direct consequence (Kantorovich-Rubinstein duality) of the one-step contraction of the metric is the following:

Lemma (Lipschitz contraction)

Let $A: \mathcal{S}_{\epsilon,N} \to \mathbb{R}$ be a Lipschitz continuous function with respect to the distance $\mathrm{d}(.,.)$, and set $A_t(x) = \mathbb{E}[A(\mathsf{X}(t)) \,|\, \mathsf{X}(t) = x]$ for all $t \geq 0$ and $x \in \mathcal{S}_{\epsilon,N}$. Then A_t is Lipschitz continuous with Lipschitz constant

$$\operatorname{Lip}(A_t) \leq \operatorname{Lip}(A) \, \exp\left(-rac{1}{2}\left[1 - 4\,\sigma_P^2
ight] \, \sin^2\left[rac{\pi}{N+2}
ight] t
ight)$$

for all t > 0.

◆ロ > ← 部 > ← 差 > を差 ● の Q (*)

Proof of L^2 spectral gap

- ullet If $\pi_{\epsilon, N}$ is reversible, then ${\mathcal L}$ is a self-adjoint bounded operator in $L^2_{\pi_{\epsilon, N}}$.
- the constant functions are eigenfunctions to the eigenvalue 0.
- All Lipschitz constants get contracted by $e^{\mathcal{L}}$ by a uniform rate $\frac{1}{2} \left[1 4 \, \sigma_P^2 \right] \, \sin^2 \left[\frac{\pi}{N+2} \right]$.
- Spectral calculus then shows that the spectral gap of $\mathcal L$ is estimated by $\frac{1}{2} \left[1 4 \, \sigma_P^2 \right] \, \sin^2 \left[\frac{\pi}{N+2} \right]$.

Summary:

- Weak convergence at rate $\mathcal{O}(N^{-2})$ for any P.
- Spectral gap $\mathcal{O}(N^{-2})$ for reversible π .

Recall the general setup:

$$\mathcal{L}A(X) = \sum_{i=1}^{N-1} \Lambda(X_i, X_{i+1}) \int_0^1 P\left(\frac{X_i}{X_i + X_{i+1}}, d\alpha\right) \left[A(T_{i,\alpha}X) - A(X)\right]$$

where

$$\Lambda(X_i, X_{i+1}) = \Lambda_+(X_i + X_{i+1}) \Lambda_R\left(\frac{X_i}{X_i + X_{i+1}}\right)$$
$$\Lambda_+(s) = \sqrt{s}$$

• Idea: Use a perturbation result to establish the spectral gap.

◆ロ → ← 回 → ← 三 → りへで

If $\pi_{\epsilon,N}$ is reversible, then

$$\mathcal{D}_{\epsilon,N}(A) = \int \pi_{\epsilon,N}(dx) A(x) [-\mathcal{L}A](x)$$

has the representation

$$\mathcal{D}_{\epsilon,N}(A) = \frac{1}{2} \int \pi_{\epsilon,N}(dx) \sum_{i=1}^{N-1} \Lambda_{+}(x_i + x_{i+1}) \Lambda_{R}\left(\frac{x_i}{x_i + x_{i+1}}\right) \cdot \int P\left(\frac{x_i}{x_i + x_{i+1}}, d\alpha\right) \left[A(T_{i,\alpha}x) - A(x)\right]^2$$

The spectral gap has the variational characterization

$$\operatorname{\mathsf{gap}}(\mathcal{L}) = \inf \left\{ rac{\mathcal{D}_{\epsilon,N}(A)}{\operatorname{\mathsf{Var}}(A)} : A \in L^2_{\pi_{\epsilon,N}} \;, \quad \operatorname{\mathsf{Var}}(A)
eq 0
ight\}$$

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ かへ(^)

A.Grigo (UofT)

Proposition (Comparison)

Fix $\epsilon > 0$ and N, and let $\pi_{\epsilon,N}$ be a reversible stationary distribution of \mathcal{L} on $\mathcal{S}_{\epsilon,N}$.

- (i) $\Lambda_+(x_i+x_{i+1})\Lambda_R(\frac{x_i}{x_i+x_{i+1}}) \geq \Lambda_{\epsilon,N}^-$.
- (ii) $P(\frac{x_i}{x_i+x_{i+1}},.) \geq \beta P^*(.)$ for some $\beta > 0$ and some probability measure P^* on [0,1] with mean $\int P^*(d\alpha) \alpha = \frac{1}{2}$ and variance $\sigma_{P^*}^2 < \frac{1}{4}$,
- (iii) For the above choice of P^* the unique stationary distribution $\pi_{\epsilon,N}^*$ of \mathcal{L}^* on $\mathcal{S}_{\epsilon,N}$ is reversible.
- (iv) $C_{\epsilon,N}^- \le \frac{\pi_{\epsilon,N}(dx)}{\pi_{\epsilon,N}^*(dx)} \le C_{\epsilon,N}^+$ for some $0 < C_{\epsilon,N}^- \le C_{\epsilon,N}^+ < \infty$

$$\sigma(\mathcal{L}) \subset \Big(-\infty, -\beta \, \frac{C_{\epsilon,N}^-}{C_{\epsilon,N}^+} \, \Lambda_{\epsilon,N}^- \, \frac{1}{2} \, [1 - 4 \, \sigma_{P^\star}^2] \, \sin^2 \left[\frac{\pi}{N+2}\right] \Big] \cup \{0\}$$

4 D > 4 B > 4 E > 4 E > 5 P P

Proof:

$$\bullet \ L^2_{\pi_{\epsilon,N}} = L^2_{\pi^\star_{\epsilon,N}}$$

Dirichlet form comparison

$$\mathcal{D}_{\epsilon,N}(A) = \frac{1}{2} \int \pi_{\epsilon,N}(dx) \sum_{i=1}^{N-1} \Lambda_{+}(x_{i} + x_{i+1}) \Lambda_{R}\left(\frac{x_{i}}{x_{i} + x_{i+1}}\right) \cdot \int P\left(\frac{x_{i}}{x_{i} + x_{i+1}}, d\alpha\right) [A(T_{i,\alpha}x) - A(x)]^{2}$$
$$\geq \beta C_{\epsilon,N}^{-} \Lambda_{\epsilon,N}^{-} \mathcal{D}_{\epsilon,N}^{\star}(A)$$

Variance comparison

$$\mathsf{Var}(A) = \inf_{c \in \mathbb{R}} \int \pi_{\epsilon,N}(dx) \left[A(x) - c \right]^2 \leq C_{\epsilon,N}^+ \, \mathsf{Var}^\star(A)$$

ullet gap $\geq eta rac{C_{\epsilon,N}^-}{C_{\epsilon,N}^+} \Lambda_{\epsilon,N}^-$ gap*

- The results we obtained are for reversible $\pi_{\epsilon,N}$.
- $S_{\epsilon,N}$ is a simplex, hence not with respect to product measures $\mu(dx) = \nu(dx_1) \cdots \nu(dx_N)$
- When is such a μ reversible on \mathbb{R}_+^N ?
- For mechanical systems this is (the projection of) the well known Boltzmann-Gibbs distribution.

Lemma (Reversible product measures and system size)

The product measure $\mu(dx) = \nu(dx_1) \cdots \nu(dx_N)$ is reversible for X(t) for some N if and only if it is reversible for N = 2.

Proof.

Since the generator is a sum of pair interactions, reversibility holds iff

$$\begin{split} \int_{\mathbb{R}^{2}_{+}} \nu(dx_{1}) \, \nu(dx_{2}) \, \Lambda_{+}(x_{1} + x_{2}) \, \Lambda_{R}\Big(\frac{x_{1}}{x_{1} + x_{2}}\Big) \int P\Big(\frac{x_{1}}{x_{1} + x_{2}}, d\alpha\Big) \cdot \\ \cdot \, \psi(\alpha \, [x_{1} + x_{2}], (1 - \alpha) \, [x_{1} + x_{2}], x_{1}, x_{2}) \\ = \int_{\mathbb{R}^{2}_{+}} \nu(dx_{1}) \, \nu(dx_{2}) \, \Lambda_{+}(x_{1} + x_{2}) \, \Lambda_{R}\Big(\frac{x_{1}}{x_{1} + x_{2}}\Big) \int P\Big(\frac{x_{1}}{x_{1} + x_{2}}, d\alpha\Big) \cdot \\ \cdot \, \psi(x_{1}, x_{2}, \alpha \, [x_{1} + x_{2}], (1 - \alpha) \, [x_{1} + x_{2}]) \end{split}$$

for any (non-negative) test function $\psi \colon \mathbb{R}^2_+ \times \mathbb{R}^2_+ \to \mathbb{R}$.

Corollary (Reversible product measures and rate functions)

The product measure μ is reversible for some rate functions Λ_R and Λ_+ with $\Lambda_+(\eta) > 0$ for all $\eta > 0$ if and only if it reversible for any such choice for Λ_+ (while Λ_R is kept fixed).

Reversibility holds if and only if

$$\begin{split} & \int_{\mathbb{R}^{2}_{+}} \nu(dx_{1}) \, \nu(dx_{2}) \, \Lambda_{R}\left(\frac{x_{1}}{x_{1} + x_{2}}\right) \int P\left(\frac{x_{1}}{x_{1} + x_{2}}, d\alpha\right) \eta\left(x_{1} + x_{2}, \alpha, \frac{x_{1}}{x_{1} + x_{2}}\right) \\ & = \int_{\mathbb{R}^{2}_{+}} \nu(dx_{1}) \, \nu(dx_{2}) \, \Lambda_{R}\left(\frac{x_{1}}{x_{1} + x_{2}}\right) \int P\left(\frac{x_{1}}{x_{1} + x_{2}}, d\alpha\right) \eta\left(x_{1} + x_{2}, \frac{x_{1}}{x_{1} + x_{2}}, \alpha\right) \end{split}$$

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ からぐ

Theorem (Reversible product measures)

Suppose that the Markov chain on [0,1] with transition kernel $P(\beta, d\alpha)$ has a unique invariant distribution, say p(.). Then $\mu(dx) = \nu(dx_1) \cdots \nu(dx_N)$ is reversible if and only if either one holds:

- There exists an $\epsilon > 0$ such that $\nu(dx_1) = \delta(\epsilon, dx_1)$, $p(d\alpha) = \delta(\frac{1}{2}, d\alpha)$, and $P(\frac{1}{2}, d\alpha) = \delta(\frac{1}{2}, d\alpha)$.
- 2 There exists an $\epsilon > 0$ and a d > 0 such that

$$\nu(dx_1) = \frac{dx_1}{\epsilon} \left[\frac{x_1}{\epsilon} \right]^{\frac{d}{2} - 1} \frac{e^{-\frac{\alpha}{\epsilon}}}{\Gamma(\frac{d}{2})}$$

$$p(d\beta) = d\beta \left[\beta \left(1 - \beta \right) \right]^{\frac{d}{2} - 1} \frac{\Gamma(d)}{\Gamma(\frac{d}{2})^2} \Lambda_R(\beta) \frac{1}{Z}$$

$$\int p(d\beta) \int P(\beta, d\alpha) \, \psi(\alpha, \beta) = \int p(d\beta) \int P(\beta, d\alpha) \, \psi(\beta, \alpha)$$

A.Grigo (UofT) Spectral gap scaling 06/10/10 32 / 36

Proof:

- ullet We only need to consider N=2 and $\Lambda_+=1$
- ullet Conditioning μ on the sum implies that reversibility holds iff

$$\int \nu_{R}(s, d\beta) \Lambda_{R}(\beta) \int P(\beta, d\alpha) \eta(\alpha, \beta)$$

$$= \int \nu_{R}(s, d\beta) \Lambda_{R}(\beta) \int P(\beta, d\alpha) \eta(\beta, \alpha)$$

for ν_+ -almost every s

- In particular $p(d\beta) = \frac{1}{Z} \nu_R(s, d\beta) \Lambda_R(\beta)$ for ν_+ -almost every s,
- Uniqueness of p shows that $\nu_R(s,d\beta)$ is independent of s.
- The constants and Gamma distributions are the only possible solutions.

◆ロト ◆団ト ◆豆ト ◆豆ト □ りゅぐ

Example – continued

The 3-dimension billiard chain considered by Gaspard and Gilbert:

• Explicit computation:

$$egin{aligned} rac{P(eta,dlpha)}{dlpha} &= rac{3}{2} \, rac{1 \wedge \sqrt{rac{lpha \wedge (1-lpha)}{eta \wedge (1-eta)}}}{rac{1}{2} + eta \, ee (1-eta)} \ &\Lambda_R(eta) &= rac{\sqrt{2\pi}}{6} \, rac{rac{1}{2} + eta \, ee (1-eta)}{\sqrt{eta \, ee (1-eta)}} \;, \qquad \Lambda_+(s) &= \sqrt{s} \end{aligned}$$

Example - continued

Lemma

If $\Lambda_+(s)$ is replaced by any non-negative continuous function, which is bounded away from zero, then the following hold for any N and ϵ .

- The product measure $\mu(dx) = \nu(dx_1) \cdots \nu(dx_N)$ with $\nu(dx_1) = \frac{dx_1}{\epsilon} \sqrt{\frac{x_1}{\epsilon}} \frac{2 e^{-\frac{x_1}{\epsilon}}}{\sqrt{\pi}}$ is the unique reversible product measure for X(t).
- ② On every $S_{\epsilon,N}$ there exists a unique stationary distribution $\pi_{\epsilon,N}$. This measure is obtained by conditioning $\mu(dx)$.
- **3** The spectrum $\sigma(\mathcal{L})$ of the generator \mathcal{L} acting on $L^2_{\pi_{\epsilon,N}}$ satisfies

$$\sigma(\mathcal{L}) \subset \left(-\infty, -C \sin^2\left[\frac{\pi}{N+2}\right]\right] \cup \{0\}$$

for some constant C, which depends on the choice of Λ_+ .

- 4 ロ ト 4 団 ト 4 珪 ト 4 珪 ト - 珪 - り Q

Conclusion and Future work

- We showed weak convergence at rate $\mathcal{O}(N^{-2})$ for the state independent setting.
- We introduced a special metric which allowed to obtain L^2 spectral gaps for reversible measures.
- We obtained L^2 spectral bounds for the reversible state-dependent process, assuming a lower bound on the rate function.
- We classified all reversible product measures.
- Modulo the cut-off we obtain spectral bounds for the billiard chain model.
- Hydrodynamics can be done for the state-independent process (linear heat equation, gradient system)

Ongoing work is on the hydrodynamic limit for the state dependent process, as well as removing the lower bound on the rate function.