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Outline of the talk

Description of the model; motivation

Step one: Detailed analysis of a special case

Step two: Spectral gap for the general case

Example

Conclusion

A.Grigo (UofT) Spectral gap scaling 06/10/10 2 / 36



A concrete mechanical model

Bunimovich, Liverani, Pellegrinotti, Suhov proved ergodicity for
arbitrary number of (strongly) confined particles

Gaspard, Gilbert gave a derivation of a hydrodynamic description in a
certain limiting regime.
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A concrete mechanical model: limiting system

in strongly mixing systems return time statics are asymptotically
exponentially distributed

R L

r h
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A concrete mechanical model: limiting system

Two-step program to obtain a hydrodynamic description:

1 Rare interaction limit to obtain a master equation for a jump process

2 Hydrodynamic limit for the stochastic process corresponding to the
master equation
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A concrete mechanical model: limiting system

State space: only the energies are left in the limit

X = (X1, . . . ,XN) ∈ R
N
+

The limiting process has generator

LA(X) =
N−1
∑

i=1

Λ(Xi , Xi+1)

∫ 1

0
P

( Xi

Xi + Xi+1
, dα

)

[A(Ti ,αX) − A(X)]

where

Λ(Xi , Xi+1) = Λ+(Xi + Xi+1) ΛR

( Xi

Xi + Xi+1

)

Λ+(s) =
√

s

The total energy X1 + . . . + XN is preserved
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A concrete mechanical model: limiting system

With α = Xi

Xi+Xi+1

P(β, dα)

dα
=

3

2

1∧
√

α∧(1−α)
β ∧(1−β)

1
2 + β ∨(1 − β)

ΛR(β) =

√
2π

6

1
2 + β ∨(1 − β)
√

β ∨(1 − β)

Ti ,α =









1

α α
1 − α 1 − α

1









∈ R
N×N
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A concrete mechanical model: limiting system

In the limit as N → ∞ and ξ = i/N, t = N2 τ the empirical process

N
∑

i=1

1

N
δXi (t)

should converge to a process with density u(ξ, τ) solving

∂τu(ξ, τ) = ∂ξ(const
√

u(ξ, τ) ∂ξu(ξ, τ))

This was studied by Gaspard, Gilbert
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A concrete mechanical model: limiting system

Mathematical problems:

Non-gradient structure

The rates are not bounded away from zero

Questions that will be addressed in this talk:

Existence of stationary distributions

Rates of convergence as function of system size
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Special case

Consider Λ = 1 and some P = P(dα)

LA(x) =
N−1
∑

i=1

∫ 1

0
P(dα) [A(Ti ,αx) − A(x)]

Assumption and notation

We assume that
∫

P(dα)α = 1
2 .

The simplexes Sǫ,N = {x :
∑N

i=1
1
N

xi = ǫ} are invariant.

Remark

Proving a spectral gap even for this special case is non-trivial as is well
known from the Kac model (1956). (McKean 1966, Diaconis and
Saloff-Coste 2000, Janvresse 2001, Carlen, Carvalho and Loss 2000-2008)
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Lower bound

For any initial X(0) ∈ Sǫ,N

‖E X(t) − x∞
ǫ ‖ ≤ e−t ∆N ‖X(0) − x∞

ǫ ‖ where x∞
ǫ =







ǫ
...
ǫ







and ∆N = 2 sin2 π

2 N

for all t ≥ 0.

Remark

This inequality is sharp, and thus shows that convergence to equilibrium
cannot occur at a rate faster than O(N−2).
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Spectral gap

Theorem (L2
πǫ,N

–spectral gap for reversible πǫ,N)

Suppose that P satisfies
∫

P(dα)α = 1
2 and σ2

P < 1
4 . If the stationary

distribution πǫ,N of X(t) on Sǫ,N is reversible, then

σ(L) ⊂
(

−∞,−1

2
[1 − 4 σ2

P ] sin2
[ π

N + 2

]]

∪ {0}

for the spectrum of L acting as a selfadjoint, bounded negative
semi-definite operator on L2

πǫ,N
, and 0 is a simple eigenvalue corresponding

to the constant eigenfunction.
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Spectral gap

In what sense should we expect convergence?

If P(dα) has a density, then we should expect convergence in total
variation.

If P(dα) has a density, then we should expect convergence in L2(π).

If P(dα) = δ1/2(dα) then the convergence is not in total variation,
and L2(π) is trivial.

To handle general P we need a topological structure.
Idea of the proof:

1 Construct a special metric on Sǫ,N .

2 Establish weak convergence in Vaserstein distance.

3 Use reversibility to obtain a spectral gap in L2.
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Proof of convergence in Vaserstein-2 distance cont’d

Recall that the definition of the Vaserstein-p distance is

ρp(µ, ν) = inf
X∼µ
Y∼ν

[E d(X , Y )p]
1
p and set ρ(µ, ν) ≡ ρ1(µ, ν)

where µ and ν are two probability measures on a compact metric space
(S, d). Furthermore, for p = 1 the duality

ρ(µ, ν) = inf
X∼µ
Y∼ν

E d(X , Y ) = sup
f : Lip(f )≤1

µ(f ) − ν(f )

follows by the Kantorovich-Rubinstein theorem.
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Proof of convergence in Vaserstein-2 distance cont’d

Let d and d′ be two equivalent distances, then

ρ(µt , νt) ≤ c e−γ t ⇐⇒ ρ′(µt , νt) ≤ c ′ e−γ t

Therefore, to obtain a strict contraction

ρ(X(t, x), X(t, x ′)) ≤ d(x , x ′) e−γ t for all x , x ′ ∈ Sǫ,N

we need a carefully chosen distance!

The induced Euclidean distance on Sǫ,N does not work.
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Proof of convergence in Vaserstein-2 distance cont’d

Recall the definition of the matrices Ti ,α

Ti ,α =









1

α α
1 − α 1 − α

1









, i = 1, . . . ,N − 1 .

Key observation:

(

α α
1 − α 1 − α

) (

1
−1

)

= 0 ·
(

1
−1

)

super-stable

(

α α
1 − α 1 − α

) (

α
1 − α

)

= 1 ·
(

α
1 − α

)

neutral
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Proof of convergence in Vaserstein-2 distance cont’d

Any x ∈ Sǫ,N can be written as

x = ǫ 1 +
N−1
∑

i=1

ui [ei − ei+1]

for some u ∈ R
N−1.

Sǫ,N ⊂ R
N
+ is in one-to-one correspondence with the set

{u ∈ R
N−1 :−ǫ ≤ u1, ui−1 ≤ ǫ + ui , uN−1 ≤ ǫ}.

Conversely, ǫ =
∑N

i=1
1
N

xi , and u is the solution to the discrete
Poisson equation with Dirichlet boundary conditions

ui−1 − 2 ui + ui+1 = xi+1 − xi for i = 1, . . . ,N − 1

where we formally set u0 ≡ uN ≡ 0.
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Proof of convergence in Vaserstein-2 distance cont’d

ǫ is conserved, so that U(t) is Markov

X(t) = ǫ 1 +
N−1
∑

i=1

Ui (t) [ei − ei+1]

the generator reads

L̂ǫ,NA(u) = Λ
N−1
∑

i=1

∫

P(dα) [A(T̂ ǫ
i ,αu) − A(u)]

where

T̂ ǫ
i ,αu − u = [(1 − α) ui−1 + α ui+1 + (2α − 1) ǫ − ui ] ei

with the convention u0 ≡ uN ≡ 0.
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Proof of convergence in Vaserstein-2 distance cont’d

Definition (Adapted metric)

Let x and x ′ be any two initial points on Sǫ,N then

x = ǫ 1 +
N−1
∑

i=1

ui [ei − ei+1] , x ′ = ǫ 1 +
N−1
∑

i=1

u′
i [ei − ei+1]

and we define

d̂(u, u′):=
[

N−1
∑

i=1

(ui − u′
i )

2
] 1

2
, d(x , x ′) = d̂(u, u′)

maxu,u′∈Sǫ,N
d̂(u, u′) ≤ ǫ N

√
N − 1

T̂ ǫ
i ,α is super stable in direction i .
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Proof of convergence in Vaserstein-2 distance cont’d

Consider the bivariate Markov process (U(t), U′(t)) on Sǫ,N × Sǫ,N

L̄A(u, u′) =

N−1
∑

i=1

∫

P(dα) [A(T̂ ǫ
i ,αu, T̂ ǫ

i ,αu′) − A(u, u′)]

Proposition (Average contraction rate)

For any two u and u′,

L̄d̂(u, u′)2 ≤ −[1 − 4 σ2
P ] sin2

[ π

N + 2

]

d̂(u, u′)2

where σ2
P denotes the variance of P.
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Proof of convergence in Vaserstein-2 distance cont’d

Sketch of the proof:

It is straightforward to verify

L̄d̂(u, u′)2 = −
[1

4
− σ2

P

]

[u − u′]T C(N−1) [u − u′]

−
[1

4
+ σ2

P

] (

[u1 − u′
1]

2 + [uN−1 − u′
N−1]

2
)

C(N−1) =























2 0 −1 0 0

0 2 0 −1 0
−1 0 2 0 −1

. . .

−1 0 2 0 −1
0 −1 0 2 0

0 0 −1 0 2























∈ R
(N−1)×(N−1)

The spectrum of C(N−1) is explicitly computable.
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Proof of convergence in Vaserstein-2 distance cont’d

Proposition (Rate of convergence in Vaserstein-2 distance)

Let U(t) and U′(t) be any two Markov chains generated by L̂ on Sǫ,N .
Then

ρ2(U(t), U′(t)) ≤ ρ2(U(0), U′(0)) exp
(

− 1

2
[1 − 4 σ2

P ] sin2
[ π

N + 2

]

t
)

≤ ǫ N
√

N − 1 exp
(

− 1

2
[1 − 4 σ2

P ] sin2
[ π

N + 2

]

t
)

holds for all t.

If σ2
P < 1

4 , then there exists a unique stationary distribution πǫ,N on
each Sǫ,N .

This rate of convergence is again O(N−2), and thus optimal.

A.Grigo (UofT) Spectral gap scaling 06/10/10 22 / 36



Proof of L
2 spectral gap

A direct consequence (Kantorovich-Rubinstein duality) of the
one-step contraction of the metric is the following:

Lemma (Lipschitz contraction)

Let A : Sǫ,N → R be a Lipschitz continuous function with respect to the
distance d(., .), and set At(x) = E[A(X(t)) |X(t) = x ] for all t ≥ 0 and
x ∈ Sǫ,N . Then At is Lipschitz continuous with Lipschitz constant

Lip(At) ≤ Lip(A) exp
(

− 1

2
[1 − 4 σ2

P ] sin2
[ π

N + 2

]

t
)

for all t ≥ 0.
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Proof of L
2 spectral gap

If πǫ,N is reversible, then L is a self-adjoint bounded operator in L2
πǫ,N

.

the constant functions are eigenfunctions to the eigenvalue 0.

All Lipschitz constants get contracted by eL by a uniform rate
1
2 [1 − 4 σ2

P ] sin2[ π
N+2 ].

Spectral calculus then shows that the spectral gap of L is estimated
by 1

2 [1 − 4 σ2
P ] sin2[ π

N+2 ].

Summary:

Weak convergence at rate O(N−2) for any P.

Spectral gap O(N−2) for reversible π.
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Spectral Gap

Recall the general setup:

LA(X) =
N−1
∑

i=1

Λ(Xi , Xi+1)

∫ 1

0
P

( Xi

Xi + Xi+1
, dα

)

[A(Ti ,αX) − A(X)]

where

Λ(Xi , Xi+1) = Λ+(Xi + Xi+1) ΛR

( Xi

Xi + Xi+1

)

Λ+(s) =
√

s

Idea: Use a perturbation result to establish the spectral gap.
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Spectral Gap

If πǫ,N is reversible, then

Dǫ,N(A) =

∫

πǫ,N(dx)A(x) [−LA](x)

has the representation

Dǫ,N(A) =
1

2

∫

πǫ,N(dx)
N−1
∑

i=1

Λ+(xi + xi+1) ΛR

( xi

xi + xi+1

)

·

·
∫

P
( xi

xi + xi+1
, dα

)

[A(Ti ,αx) − A(x)]2

The spectral gap has the variational characterization

gap(L) = inf
{Dǫ,N(A)

Var(A)
:A ∈ L2

πǫ,N
, Var(A) 6= 0

}
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Spectral Gap

Proposition (Comparison)

Fix ǫ > 0 and N, and let πǫ,N be a reversible stationary distribution of L
on Sǫ,N .

(i) Λ+(xi + xi+1) ΛR( xi

xi+xi+1
) ≥ Λ−

ǫ,N .

(ii) P( xi

xi+xi+1
, .) ≥ β P⋆(.) for some β > 0 and some probability measure

P⋆ on [0, 1] with mean
∫

P⋆(dα)α = 1
2 and variance σ2

P⋆ < 1
4 ,

(iii) For the above choice of P⋆ the unique stationary distribution π⋆
ǫ,N of

L⋆ on Sǫ,N is reversible.

(iv) C−
ǫ,N ≤ πǫ,N(dx)

π⋆

ǫ,N
(dx) ≤ C+

ǫ,N for some 0 < C−
ǫ,N ≤ C+

ǫ,N < ∞

σ(L) ⊂
(

−∞,−β
C−

ǫ,N

C+
ǫ,N

Λ−
ǫ,N

1

2
[1 − 4 σ2

P⋆ ] sin2
[ π

N + 2

]]

∪ {0}
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Spectral Gap
Proof:

L2
πǫ,N

= L2
π⋆

ǫ,N

Dirichlet form comparison

Dǫ,N(A) =
1

2

∫

πǫ,N(dx)
N−1
∑

i=1

Λ+(xi + xi+1) ΛR

( xi

xi + xi+1

)

·

·
∫

P
( xi

xi + xi+1
, dα

)

[A(Ti ,αx) − A(x)]2

≥ β C−
ǫ,N Λ−

ǫ,N D⋆
ǫ,N(A)

Variance comparison

Var(A) = inf
c∈R

∫

πǫ,N(dx) [A(x) − c]2 ≤ C+
ǫ,N Var⋆(A)

gap ≥ β
C−

ǫ,N

C+
ǫ,N

Λ−
ǫ,Ngap⋆
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Reversible product measures

The results we obtained are for reversible πǫ,N .

Sǫ,N is a simplex, hence not with respect to product measures
µ(dx) = ν(dx1) · · · ν(dxN)

When is such a µ reversible on R
N
+?

For mechanical systems this is (the projection of) the well known
Boltzmann-Gibbs distribution.
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Reversible product measures

Lemma (Reversible product measures and system size)

The product measure µ(dx) = ν(dx1) · · · ν(dxN) is reversible for X(t) for
some N if and only if it is reversible for N = 2.

Proof.

Since the generator is a sum of pair interactions, reversibility holds iff

∫

R
2
+

ν(dx1) ν(dx2) Λ+(x1 + x2) ΛR

( x1

x1 + x2

)

∫

P
( x1

x1 + x2
, dα

)

·

· ψ(α [x1 + x2], (1 − α) [x1 + x2], x1, x2)

=

∫

R
2
+

ν(dx1) ν(dx2) Λ+(x1 + x2) ΛR

( x1

x1 + x2

)

∫

P
( x1

x1 + x2
, dα

)

·

· ψ(x1, x2, α [x1 + x2], (1 − α) [x1 + x2])

for any (non-negative) test function ψ : R
2
+ × R

2
+ → R.
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Reversible product measures

Corollary (Reversible product measures and rate functions)

The product measure µ is reversible for some rate functions ΛR and Λ+

with Λ+(η) > 0 for all η > 0 if and only if it reversible for any such choice
for Λ+ (while ΛR is kept fixed).

Reversibility holds if and only if

∫

R
2
+

ν(dx1) ν(dx2) ΛR

( x1

x1 + x2

)

∫

P
( x1

x1 + x2
, dα

)

η
(

x1 + x2, α,
x1

x1 + x2

)

=

∫

R
2
+

ν(dx1) ν(dx2) ΛR

( x1

x1 + x2

)

∫

P
( x1

x1 + x2
, dα

)

η
(

x1 + x2,
x1

x1 + x2
, α

)
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Reversible product measures

Theorem (Reversible product measures)

Suppose that the Markov chain on [0, 1] with transition kernel P(β, dα)
has a unique invariant distribution, say p(.). Then
µ(dx) = ν(dx1) · · · ν(dxN) is reversible if and only if either one holds:

1 There exists an ǫ > 0 such that ν(dx1) = δ(ǫ, dx1),
p(dα) = δ(1

2 , dα), and P(1
2 , dα) = δ(1

2 , dα).

2 There exists an ǫ > 0 and a d > 0 such that

ν(dx1) =
dx1

ǫ

[x1

ǫ

] d
2
−1 e−

x1
ǫ

Γ(d
2 )

p(dβ) = dβ [β (1 − β)]
d
2
−1 Γ(d)

Γ(d
2 )2

ΛR(β)
1

Z
∫

p(dβ)

∫

P(β, dα)ψ(α, β) =

∫

p(dβ)

∫

P(β, dα)ψ(β, α)
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Reversible product measures

Proof:

We only need to consider N = 2 and Λ+ = 1

Conditioning µ on the sum implies that reversibility holds iff

∫

νR(s, dβ) ΛR(β)

∫

P(β, dα) η(α, β)

=

∫

νR(s, dβ) ΛR(β)

∫

P(β, dα) η(β, α)

for ν+–almost every s

In particular p(dβ) = 1
Z

νR(s, dβ) ΛR(β) for ν+–almost every s,

Uniqueness of p shows that νR(s, dβ) is independent of s.

The constants and Gamma distributions are the only possible
solutions.
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Example – continued

The 3-dimension billiard chain considered by Gaspard and Gilbert:

Explicit computation:

P(β, dα)

dα
=

3

2

1∧
√

α∧(1−α)
β ∧(1−β)

1
2 + β ∨(1 − β)

ΛR(β) =

√
2π

6

1
2 + β ∨(1 − β)
√

β ∨(1 − β)
, Λ+(s) =

√
s
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Example – continued

Lemma

If Λ+(s) is replaced by any non-negative continuous function, which is
bounded away from zero, then the following hold for any N and ǫ.

1 The product measure µ(dx) = ν(dx1) · · · ν(dxN) with

ν(dx1) = dx1
ǫ

√

x1
ǫ

2 e−
x1
ǫ√

π
is the unique reversible product measure for

X(t).

2 On every Sǫ,N there exists a unique stationary distribution πǫ,N . This
measure is obtained by conditioning µ(dx).

3 The spectrum σ(L) of the generator L acting on L2
πǫ,N

satisfies

σ(L) ⊂
(

−∞,−C sin2
[ π

N + 2

]]

∪ {0}

for some constant C, which depends on the choice of Λ+.
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Conclusion and Future work

We showed weak convergence at rate O(N−2) for the state
independent setting.

We introduced a special metric which allowed to obtain L2 spectral
gaps for reversible measures.

We obtained L2 spectral bounds for the reversible state-dependent
process, assuming a lower bound on the rate function.

We classified all reversible product measures.

Modulo the cut-off we obtain spectral bounds for the billiard chain
model.

Hydrodynamics can be done for the state-independent process (linear
heat equation, gradient system)

Ongoing work is on the hydrodynamic limit for the state dependent
process, as well as removing the lower bound on the rate function.
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