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Abstract

I will describe the characterization of heat transfer in models of
high-dimensional billiards, which capture the properties of
materials that possess both the spatial structure of solids and
collisional dynamics of gases. I will discuss the conditions
under which the heat conductivity of these models can be
universally expressed in terms of the frequency of collisions
between gas particles. This universality manifests itself when
interactions between gas particles are rare, though not
necessarily small. The dynamical properties of these models
will be analyzed, and the role of dimensionality emphasized.



Brief Survey

Historical Context
Fourier’s law (1822) describes the phenomenological relaxation
of heat towards a uniform temperature :

∂tT (x , t) = ∂x [κ∂xT (x , t)]

The works of Maxwell (1867) and Boltzmann (1872) on the
Kinetic Theory of Gases have emphasized the mechanical
origin of heat flow.

The Challenge
Can we provide a derivation of this law from first principles in
the framework of Hamiltonian mechanics?



Motivation from Material Science

Aerogels are 99.8% air-filled nano-porous materials which are
remarkable thermal insulators. They have the spatial structure
of solid materials and their kinetics is similar to rarefied gases.

Solid smoke

I Solid, gaseous and radiative
heat conductions are inhibited

I Gas molecules typically
collide with the nano-pore
walls rather than among
themselves

I This provides a local
equilibration mechanism



Our Perspective

Because of the confining mechanism of gas molecules
local equilibrium (without energy exchange) precedes local
thermalisation

Two-stage scenario for local thermalisation
Thermal conduction proceeds over three well-separated time
scales :

I short time scale τwall

I intermediate time scale τbinary

I long time scale τmacro

τwall � τbinary � τmacro

This scenario offers the means to deriving Fourier’s law!



An idealized aerogel
A one-parameter class of equivalent semi-dispersing billiards



An idealized aerogel
A one-parameter class of equivalent semi-dispersing billiards



Stochastic Energy Exchanges
P Gaspard and TG J Stat Mech P08020 (2009)
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Outline

Sinai billiards as models of mass transport

Models of heat transport with mass confinement

Stochastic reduction by coarse-graining

Thermal conductivity of the mechanical model
Lattice billiards
Square-Strings Model
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Mass transport Heat transport Stochastic Reduction Back to Billiards

Mass transport in a periodic Sinai billiard
L A Bunimovich and Ya Sinai Comm. Math. Phys. 78 247, 479 (1980)
J Machta and R Zwanzig Phys. Rev. Lett. 50 1959 (1983)

T. Gilbert Fourier’s law by two-stage thermalisation



Mass transport Heat transport Stochastic Reduction Back to Billiards

Mass transport in a periodic Sinai billiard
TG and D P Sanders Phys. Rev. E 80 041121 (2009)
TG and D P Sanders J. Phys. A 43 5001 (2010)
TG, H C Nguyen and D P Sanders J. Phys. A 44 065001 (2011)

∆

T. Gilbert Fourier’s law by two-stage thermalisation



Mass transport Heat transport Stochastic Reduction Back to Billiards

Diffusive transport at the macroscopic scale

From microscopic to mesoscopic to macroscopic scales

p(n, r, v, t) → pleq(n, t) → P(r, t)

Fokker-Planck equation at macroscopic scale

∂tP(r, t) = D∇2P(r, t)

with diffusion coefficient

D =
vδl2

πA
=

l2

4τ

This is the Machta Zwanzig approximation

T. Gilbert Fourier’s law by two-stage thermalisation



Mass transport Heat transport Stochastic Reduction Back to Billiards

Statistical evolution
pseudo-Liouville equation for p(n, r, v, t)

∂tp =

−v · ∂r +
c∑

n=1

K (d) +
4∑

j=1

W (j)

 p +
4∑

j=1

J(j)p

where
I −v · ∂r is the advection term due to the motion of the

particle inside the cell
I the disk collision term K (d) rules the collisions with the

fixed discs
I the wall collision term W (j) rules the collisions with the

(virtual) flat walls
I the jump term J(j) accounts for the advection of the tracer

across the cell boundaries
T. Gilbert Fourier’s law by two-stage thermalisation
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Continuous-time random walk

Local equilibrium distribution

pleq(n, t) =

∫
dr̃

∫
dṽδ(ṽ2 − v2)p(n, r̃, ṽ, t)

changes in time only according to jump events:

∂tpleq(n, t) =
4∑

j=1

∫
dr̃

∫
dṽδ(ṽ2 − v2)J(j)p(n, r̃, ṽ, t)

Jump operator (right wall)

J(1)p(n, r, v, t) = vxδ(rx − l/2)θ(ry + δ/2)θ(δ/2− ry )θ(vx)

×[p(n + (1, 0), r,−vx , vy , t)− p(n, r, vx , vy , t)]

T. Gilbert Fourier’s law by two-stage thermalisation



Mass transport Heat transport Stochastic Reduction Back to Billiards

Continuous-time random walk ct’d
Under the closure approximation

p(n, r̃, ṽ, t) =
1

πA
δ(ṽ2 − v2)pleq(n, t)

the Liouville equation reduces to a master equation:

∂tpleq(n, t) =
4∑

j=1

vδ

πA
[pleq(n + ej , t)− pleq(n, t)]

This is a continuous-time random walk
The waiting-time distribution is exponential with timescale

τJ =
πA
4vδ

T. Gilbert Fourier’s law by two-stage thermalisation
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Diffusion process

The master equation reduces to a Fokker-Planck equation
in the continuum limit r = ln, l → 0, v ∼ l−2:

pleq(n, t) → P(r, t)

∂tP(r, t) = D∇2P(r, t)

with the diffusion coefficient

D =
vδl2

πA
=

l2

4τJ

T. Gilbert Fourier’s law by two-stage thermalisation
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Numerical results for the billiard table
Timescales vs. cell opening parameter
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Numerical results for the billiard table
Diffusion coefficient vs. cell opening parameter

0.00 0.05 0.10 0.15 0.20 0.25

0.6

0.7

0.8

0.9

1.0

∆

4
D

Τ
J

l-
2

T. Gilbert Fourier’s law by two-stage thermalisation



Mass transport Heat transport Stochastic Reduction Back to Billiards

Numerical results for the billiard table
Waiting-time distributions
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Numerical results for the billiard table
Exponential test of waiting-time distributions
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Numerical results for the billiard table
Finite-size corrections due to persistent effects
TG and D P Sanders Phys. Rev. E 80 041121 (2009)
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Lattice Billiards: locally confined hard disk gases
P Gaspard and TG New J Phys 10 103004 (2008)
P Gaspard and TG Phys Rev Lett 101 020601 (2008)
Upright Square Geometry, ρ = 0.60, ρm = 0.40
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Ergodic systems of n balls in a billiard table
L A Bunimovich, C Liverani, A Pellegrinotti and Y Suhov

Commun Math Phys 146 357 (1992)

Main Theorem
The dynamical system generated by the motion of any number
n of adjacent balls in this billiard table is a K-flow on each
connected component of a constant energy manifold.



Mass transport Heat transport Stochastic Reduction Back to Billiards

Local Dynamics

Two equivalent representations of a dispersing billiard table:

Ρ

l

Ρ f
Ρm

l

Two parameters
l/2 < ρ < l/

√
2 and 0 < ρm < ρ (ρ = ρm + ρf)

Mean free path
π|Bρ|/|∂Bρ| ∝ 1/νw

T. Gilbert Fourier’s law by two-stage thermalisation
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Lattice Billiards – binary collisions dominate
Upright Square Geometry, ρ = 0.60, ρm = 0.49
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Lattice Billiards – local dynamics dominates
Upright Square Geometry, ρ = 0.60, ρm = 0.34
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T. Gilbert Fourier’s law by two-stage thermalisation
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Binary Collisions
Energy exchanges occur when two moving particles located in
neighbouring cells collide. These events are possible when

ρm > ρc ≡
√

ρ2 − l2

4

Binary collision event in the critical geometry ρm = ρc

Separation of time scales
(binary collision frequency) νB � νw (wall collision frequency)

T. Gilbert Fourier’s law by two-stage thermalisation
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Lyapunov Spectrum

Close to the critical geometry, at equilibrium :

λi = λ+

√
2kBT

m
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N
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Lyapunov Spectrum

Close to the critical geometry, at equilibrium :
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Kolmogorov Sinai Entropy

Close to the critical geometry, at equilibrium :
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Kolmogorov Sinai Entropy

Close to the critical geometry, at equilibrium :
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Kinetic Theory
P Gaspard and TG New J Phys 10 103004 (2008)

The phase-space probability density pN(r1, v1, . . . , rN , vN , t)
evolves according to the pseudo-Liouville equation

∂tpN =
N∑

a=1

[
−va · ∂ra +

d∑
k=1

K (a,k)

]
pN +

1
2

N∑
a,b=1

B(a,b)pN

where
I −va · ∂ra is the advection term due to the motion of the

particle a inside its cell;
I the wall term K (a,k) is the operator ruling the collisions of

particle a on the fixed disc k ;
I the binary collision term B(a,b) rules the collisions between

the particles a and b in neighbouring cells.

T. Gilbert Fourier’s law by two-stage thermalisation
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From Deterministic to Stochastic Dynamics
The local equilibrium distribution

P(leq)
N (ε1, . . . , εN , t) ≡

∫ N∏
a=1

dradvapN({ri , vi}, t)
N∏

a=1

δ(εa−mv2
a /2)

is left unchanged by the advection and wall terms.

We can make a closure approximation to obtain the
time-evolution of the local equilibrium distribution

∂tP
(leq)
N (ε1, . . . , εN , t) =

1
2

N∑
a,b=1

∫
dη

[
W (εa + η, εb − η|εa, εb) P(leq)

N (., εa + η, ., εb − η, ., t)

−W (εa, εb|εa − η, εb + η) P(leq)
N (. . . , εa, . . . , εb, . . . , t)

]
T. Gilbert Fourier’s law by two-stage thermalisation
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Transition Rates (2D dynamics)

The transition rate of the binary collisions of energy transfer η
between the neighbouring particles a and b is given by

W (εa, εb|εa − η, εb + η) =

2ρmm2

(2π)2|Lρ,ρm(2)|

∫
dφ dR

∫
êab·vab>0

dvadvb êab · vab

×δ
(
εa −

m
2

v2
a

)
δ
(
εb −

m
2

v2
b

)
×δ

(
η − m

2
[(êab · va)

2 − (êab · vb)2]
)

where the volume |Lρ,ρm(2)| ' |Bρ|2, φ is the angle of the unit
vector êab connecting a and b, and R their center of mass.

T. Gilbert Fourier’s law by two-stage thermalisation
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Transition Rates (2D dynamics)

After proper time renormalization, the kernel can be written in
terms of Jacobi elliptic functions K (εb > εa):

W (εa, εb|εa − η, εb + η) =

√
2
π3 ×


√

1
εa

K
(

εb+η
εa

)
−εb < η < εa − εb√

1
εb+η K

(
εa

εb+η

)
εa − εb < η < 0√

1
εb

K
(

εa−η
εb

)
0 < η < εa

T. Gilbert Fourier’s law by two-stage thermalisation
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Transition Rates (3D dynamics)
P Gaspard and TG J Stat Mech P08020 (2009)

For the underlying 3D hard sphere dynamics, we obtain a
simpler kernel:

W (εa, εb|εa − η, εb + η) =

√
π
8 ×


√

εb+η
εaεb

−εb < η < min(εa − εb, 0)
1√

max(εa,εb)
min(εa − εb, 0) < η < max(εa − εb, 0)√

εa−η
εaεb

max(εa − εb, 0) < η < εa

T. Gilbert Fourier’s law by two-stage thermalisation
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Energy Exchange Frequency

Assume a global microcanonical equilibrium at energy
E = ε1 + · · ·+ εN . The energy exchange frequency is

νB =

∫
dεdε′dηW (ε, ε′|ε− η, ε′ + η)P(eq)

a,b (ε, ε′)

The two-particle energy distribution is

P(eq)
a,b (ε, ε′) =

(N − 1)(N − 2)

E2

(
1− ε + ε′

E

)N−3

In the large N limit and letting E = NT

νB '
√

T [1 +O(N−1)]

T. Gilbert Fourier’s law by two-stage thermalisation
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Energy Exchange Frequency ct’d
P Gaspard and TG J Stat Mech P11021 (2008)
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Energy Diffusion

Helfand moment

H(t) =
N∑

a=1

aεa(t)

κ = lim
N→∞

1
N(E/N)2 lim

n→∞

〈
1

2τn
∆H(τn)

2
〉

E/N

= lim
N→∞

1
NT 2 lim

n→∞

[
n∑

i=1

〈
1

2τn
η(εki , εki+1)

2
〉

T

+2
n−1∑
i=1

n∑
j=i+1

〈
1

2τn
η(εki , εki+1)η(εkj , εkj+1)

〉
T

]

T. Gilbert Fourier’s law by two-stage thermalisation
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Energy Diffusion ct’d

Only static correlations contribute (not trivial!)

lim
N→∞

1
NT 2 lim

n→∞

n−1∑
i=1

n∑
j=i+1

〈
1

2τn
η(εki , εki+1)η(εkj , εkj+1)

〉
T

= 0

Therefore

κ = νB =
√

T

T. Gilbert Fourier’s law by two-stage thermalisation
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Energy Diffusion for the 2D dynamics
P Gaspard and TG J Stat Mech P11021 (2008)
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Energy Diffusion for the 3D dynamics
P Gaspard and TG J Stat Mech P08020 (2009)
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Energy Transport

Heat current

Ja,b = l
∫

dεdε′dη η W (ε, ε′|ε− η, ε′ + η)P(leq)
a,b (ε, ε′, t)

Local temperatures

Ta(t) =

∫
dε ε P(leq)

a (ε, t)

Fourier’s law (Ta ≈ Tb)

Ja,b =
κ

l
[Ta(t)− Tb(t)]

T. Gilbert Fourier’s law by two-stage thermalisation
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Non-equilibrium stationary state

Boundary conditions

P±N/2(ε) =
1

T±
exp

(
− ε

T±

)

The one-site distribution obeys a Boltzmann-Kac equation

Pa(ε) =
1
Ta

exp
(
− ε

Ta

)
is a “quasi” stationary state:

∂tPa(ε, t) = O(δT 2)

provided δT = T+−T−
N � 1

T. Gilbert Fourier’s law by two-stage thermalisation
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NESS from solving the BBGKY hierarchy

Does the two-site distribution factorize?

Pa,b(ε, ε′)
?
= Pa(ε) Pb(ε′)

No, because the current does not have the gradient form!

j(ε, ε′) 6= β

∫
dε′′e−βε′′ j(ε, ε′′)− β

∫
dε′′e−βε′′ j(ε′, ε′′)

T. Gilbert Fourier’s law by two-stage thermalisation
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NESS from solving the BBGKY hierarchy

The two-site distribution includes a O(δT ) correction

Pa,b(ε, ε′) = Pa(ε) Pb(ε′) +O(δT )

This correction does not affect the value of the current!

Pa,b(ε, ε′) = Pa(ε) Pb(ε′) +
δβ

β
Qa,b(βε, βε′)

The second order correction correction in the cluster expansion
Q is found to be a symmetric function of its arguments

T. Gilbert Fourier’s law by two-stage thermalisation
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Thermal Conductivity

The linear transport law yields

κ

l2
=

1
2(T )4

∫
dεadεbdη η(εb − εa)W (εa, εb|εa − η, εb + η)

×exp[−(εa + εb)/(T )]

=
√

T
= νB

T. Gilbert Fourier’s law by two-stage thermalisation
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Thermal conductivity for the 2D dynamics
P Gaspard and TG J Stat Mech P11021 (2008)
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Thermal conductivity for the 3D dynamics
P Gaspard and TG J Stat Mech P08020 (2009)
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Binary Collision Volume

Φ = 0 Φ = 0.05 Φ = 0.10 Φ = 0.15 Φ = 0.20

∫
dφ dR =

128ρc

3l2
(ρm − ρc)

3 +
256ρ2

c

3l4
(ρm − ρc)

4 + · · ·

Exact result at the critical geometry

lim
ρm→ρc

κ/l2

(ρm − ρc)3 = lim
ρm→ρc

νB

(ρm − ρc)3 =
2ρm

|Bρ|2

√
kBT
πm

128ρc

3l2

T. Gilbert Fourier’s law by two-stage thermalisation
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Numerical Results – Lattice Billiard
P Gaspard and TG New J Phys 10 103004 (2008)
Comparison between the wall and binary collision frequencies
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Numerical Results – Lattice Billiard
Comparison between κ, νB and the results of kinetic theory for a single thermalised cell

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

10
2

ρ
m

 − ρ
c

κ/
(l

2  T
1/

2 ),
 ν

b//T
1/

2

 

 

κ
ν

b

K.T.
0 0.05 0.1 0.15 0.2 0.25 0.3

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

ρ
m

 − ρ
c

(N
um

er
ic

al
 C

om
pu

ta
tio

n)
/(

T
he

or
et

ic
al

 P
re

di
ct

io
n)

 

 

 
κ
ν

b

(N = 1 with stochastic thermalisation, ρ = 0.36)

T. Gilbert Fourier’s law by two-stage thermalisation



Mass transport Heat transport Stochastic Reduction Back to Billiards

Numerical Results – Lattice Billiard
Thermal conductivity vs. ρm
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Numerical Results – Lattice billiard
Thermal conductivity vs. ρm
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Square-Strings: Hard-Core Interaction at a Distance
TG and R Lefevere Phys Rev Lett 101 200601 (2008)

T. Gilbert Fourier’s law by two-stage thermalisation
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Numerical Results – Square-strings
Thermal conductivity vs. a
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Conclusions

1. Our mechanism of heat conduction proceeds in two
stages : a fast local mixing stage which precedes energy
exchanges leading to local thermalisation

2. The local equilibrium mechanism provides a simple
accurate stochastic description of lattice billiards

3. The thermal conductivity vanishes at the critical geometry
4. The transport properties of the stochastic system can be

computed assuming local thermal equilibria and reduce to
a dimensional form

5. A similar two-stage mechanism is encountered in aerogels

T. Gilbert Fourier’s law by two-stage thermalisation
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