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e Introduction: Heat conduction in 1D systems.

o Disordered harmonic chains
@ Ordered anharmonic chains
@ Disordered anharmonic chains: effect of interactions on localization.

e Stochastic models of heat conduction.

o Analytically tractable model to study effects of interactions on localization .

o Exact results.
@ Numerical results.

e Discussion.
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Fourier’s Law

For small AT = T, — Tg and system size L :

AT
Fourier’s law implies : J ~ I{T J

The thermal conductivity « is expected to be an intrinsic material property.

@ Fourier’s law is not generally valid in low-dimensional systems . x depends on
system size L.

@ Necessary and sufficient conditions for validity of Fourier’s law ?
Role of anharmonicity, disorder and dimensionality.

Bonetto, Lebowitz, Rey-Bellet, Math. Phys. (2000) .

Lepri, Livi, Politi, Phys. Rep. (2003) .
Dhar, Adv. Phys. (2008) .
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Disordered Harmonic systems: Results in 1D

T, Tr
- [ VAV IVAV VAV QVAV QVAVAVAV 4VAV LVaVavaV 4VaV VeV Lvav ) |:|

Exact expression for nonequilibrium heat current [“Landauer-like” formula for phonons.]
In classical case:

J = kBAT/ dwT(w), J
2r  Jo

where T(w) is the phonon transmission function.

[Casher and Lebowitz (1971), Rubin and Greer (1971), Dhar and Roy (2006)].

Anderson localization implies:  T(w) ~ e~L/4«) with ¢(w) ~ 1/w? forw — 0 .
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Disordered Harmonic systems: 1D

Hence frequencies w < L—=1/2 “do not see” the randomness and can carry current.

These are the ballistic modes.

Hence J~ fOL_Vz T(w)dw. J

Form of T(w) (at small w) depends on boundary conditions.

Fixed BC: T(w)~w? J~1/L%/2
Free BC: T(w)~w® J~1/L1/2

If all sites are pinned then low frequency modes are cut off. Hence we get:

Pinned case : J~e b/t J

Matsuda, Ishii, Rubin/Greer, Casher/Lebowitz, Dhar.
Exact results: Verheggen (1979), Ajanki/ Huveneers (2010).
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One dimensional disordered harmonic chain

@ Almost all normal modes of the chain are localized and their amplitude at
the boundaries is exponentially small (in L) leading to transmission
decaying exponentially.

@ Low frequency modes are extended and transmit energy.

@ No Fourier’s law: Strong boundary condition dependence.

@ Heat insulator in pinned case.
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One-dimensional systems with nonintegrable interactions

Momentum conserving system: FPU - model

N1 5 s B .
H— Z P +Z[ QZ 1) +k3(<7@ ?f’hq) +>\((M ;7471)

Momentum non-conserving system: ¢* - model

N 2 2 N
P 9 (qe - q/g 1)? q;
H= L4 kL ko ~—— — .
Doty |+ 2 + 22
=1 £=1,N+1 £=1
Simulations:

@ Momentum conserving: x ~ L1/3 ([2/5 [1/2 2,

@ Momentum nonconserving (pinned case): & ~ L°
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Systems with non-integrable Hamiltonian dynamics

Theory
@ Momentum conserving:
MC ( Lepri, Livi, Politi, Delfini) &« ~ L'/3 [1/2 (odd, even)
RG ( Narayan, Ramaswamy ) & ~ L'/3 (universal)
Kinetic theory ( Pereverzev, Lukkarinen, Spohn) x ~ L2/5. (even)

@ Momentum nonconserving (pinned case): & ~ L0 .

@ Long wavelength modes lead to slow decay of current-current correlations
and hence to anomalous transport.

@ Value of current depends on BCs, but exponents do not.
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Effect of interaction on localization (Numerical results)

(A) Disordered FPU model (Dhar and Saito)

4
H— Z 2m2+ Z k(CIe QE 1)? ( —Qo—1)

¢=1,N £=1,N+1 4

(B) Disordered ¢* model (Dhar and Lebowitz)

H=Z[p§+koqe]+ ) P qg 1)? +Z/\

Z:1,N2 £ £=1,N+1 =1,N
{me} = [m—A,m+ Al
Disorder — A Anharmonicity — . J
Simulations:

Case (A) A=0:x~L1/2 [-1/2 A>0: w~ L3,

Case(B) A=0:x~e°, A>0: w~ L0,
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Numerical results: Pinned case

Dhar/Lebowitz (2008)

N [<JN>]

for small amount of interaction.

Dramatic transition: e—°N/¢ 1N J

K~ (AT)2

a=1/2 [ a =4 - Flach etal (2011) ]

(RRI) July 2010  10/29



Effect of interactions on localization

@ Many-body localization — In the A — A plane, is there a conductor-insulator
transition ?

@ Transport mechanism: Destruction of localization ?, Hopping of energy
between localized states ?

@ Small X behaviour of k() .

Look at analytically tractable models to address these questions.
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Stochastic models of heat conduction

MOTIVATION

@ Analytically tractable.

@ Physical relevance: one hopes that they effectively mimic anharmonicity and environmental
degrees of freedom.

Purely Stochastic dynamics (Local energy conservation)

@ Kipnis-Marchioro-Presutti model for heat conduction in harmonic oscillator chain .
@ Creutz model for heat conduction in Ising model .

Hamiltonian + Stochastic dynamics

@ Self-Consistent Reservoirs (Momentum Non-conserving)
( Bolsterli, Rich, Visscher)

@ Local momentum exchange dynamics (Both momentum conserving and non-conserving)
( Basile, Bernardin, Olla )
( Delfini, Lepri, Livi, Politi, Mejia-Monasterio )
( Bernardin )
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Self-consistent reservoirs

Tl, ............. TI,\I—I Tf\]

T T

|| JVAV' VAVl VAV AVAV QVAVAVAV VAV LVavAVAV QVAV JVaV LvaV § |

mag = —ipam + [ ¢+ @yT) ()] + [—viar + @ T)2¢(1) ]
mGe = —PemGm + [~ + (2 T))/2C(t)] €=2,.,N-1,
myan = —OnmGm + [—van + @vTR)2an(t) ] + [ —nan + v Th) 2en(t) 1.

Self-consistency condition: Zero net current into side reservoirs.

(P/my)=T,, €=1,2,...,N.
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Self-consistent reservoirs

@ Model introduced by Bolsterli, Rich, Visscher (1970):
“Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs”

@ Ordered harmonic chain: solved exactly by Bonetto, Lebowitz and Lukkarinen (2004).
Fourier’s law satisfied and « is finite.

@ Disordered harmonic chain: numerically studied by Rich and Visscher.

@ Finite conductivity, independent of boundary conditions.

@ CONJECTURE: In the limit of vanishing coupling to side reservoirs,
the conductivity < — a finite value.

NOTE: In absence of side-reservoirs:
Kk — oo free BCs.
x — 0 fixed BCs.

@ Momentum non-conserving. Energy conserved, on average.
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Stochastic models with local momentum/energy conservation

Momentum and energy conserving models
@ Basile,Bernardin,Olla: 3-particle collisions
Pe—1 4 Pe + Peiq = constant
p%q AP p% ar p%H = constant.
@ Delfini, Lepri, Livi, Politi, Mejia-Monasterio: 2 particle collisions
Pe < Poy1 -

@ Ordered harmonic chain:  x ~ L1/2 .
[numerical and analytical results]

Energy conserving (Momentum non-conserving)
@ Bernardin: 2-particle collisions
p% + pf 1 = constant.

@ Present study: Momentum flip model

Pe < —Ppe -
@ Ordered and disordered harmonic chain:  x ~ L°.
[numerical and analytical results]

V.
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Definition of model studied by us

qg Qe 1) Q1 qN
H = > +k2+2kf+k > +t3
2=1,N 2=2,N
1
= 2[pM "p+qbq

ko = 0: Unpinned case  FreeBC (k' =0), FixedBC (k' >0)
ko > 0: Pinned case .

The system’s time evolution has:
@ A deterministic part described by the Hamiltonian above.
@ A momentum flipping noise at all sites: transition p, — —p, occurs with a rate .

© Particles at the boundaries £ = 1 and £ = N which are attached to Langevin heat
baths at temperatures T; and Tg respectively.

(RRI) July 2010  16/29



Thermal conductivity

@ Non-equilibrium definition:

= Current density .

@ From Green-Kubo formulation:

re = lim OL'L";? / dt e~ (7(0).7(1)) -

J = Total current .
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Master equation for time evolution

Letx = (q1 » 42, -+, AN, P15, P2, '”7pN) = (X1 » X2, ""X2N)
P(x, t): phase-space probabilty distribution .

Master equation:

OP(x) d,
( Za me Z2 "" Z[P( 5 =180 w00)) = [P v (D 00) 1] 9
Z,m
R 0o - - 0 0
where @ = (a> f-1p-1 ) d:( 0 2ff )
Too = Te1+ TRoen
Foe = 7(0e1+3n)
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Equations for pair-correlations

Define pair-correlation matrix:

. o 2 . . .
°= ( sT ¢ ) , where g, m = (qedm) , Ve,m = (PePm) , Ze,m = (QePm) -

Closed equation of motion for ¢:

dc an aaT A dc
— = —ac-—ca d — .
dt + +<dt>co,

Term from flip dynamics is given by:

dc 0 z R X
<E)col = ( 27 2(‘7_ OD) ) » Where [VD]Z’Z =Vee= <p% > :

In steady state d¢/dt = 0 gives:

dc N

a2 AT

ac+ca' — <—> =d
at col

With v, = 2 A m; and (p%/mg ) = T, , the above equations are identical to
the correlation equations for model with self-consistent reservoirs.

v
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Pair-correlations in NESS

@ Steady state current given by J = k ( x; vy1 ). Exact solution available for ordered case —
BLL (2004).

@ Closed equations for correlation in all orders. However NON-GAUSSIAN unlike
self-consistent reservoir model .

@ N2+ N(N + 1) linear equations for same number of unknown variables . Accurate numerical

solution possible for disordered case and both steady state current and temperature profiles
can be obtained.
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Green-Kubo conductivity

No Langevin baths for end-particles, periodic BCs. Master equation is:

PN _ Lpw)
ot ’
where L = A+ )\S,
N N
pe OP(x) OP(x) L
AP(x) = - (0] Hamiltonian part ,
0 = | -h e+ X Gumin p
SP(x) = > [P(;—pe,.) = Py pr, ) ] Stochastic part.
The Green-Kubo thermal conductivity kg is:
— —zt
ey = z@o N“_Tx NT? / dt &= (7(0)7 (1)

lim lim NL<J(Z—L)1 J).

z—0N—oo
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Green-Kubo conductivity

The total current which is carried entirely by the Hamiltonian part can be written in the following
form:

N

k Pe
T = 5222;;@((7“1 — Qe—1)

With this and the forms of A and S it follows:

by iq;
ATPeq = Y —24(qei1 — Ge_1)Peg
o M
and SJPeq = —2]Peq.

Ordered case: AT Peqg =0 .
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Green-Kubo conductivity

Ordered case (exact expression for k).

kg = lim lim / KT 55 J Peg = lim T :
20 N—oo TZN 97 N—oo 2XT2N
i where D 4k
R = —— . = .
K~ 8axm 2k + Ko + [(Ko)(4k + ko)]'/2

Same as result for « for self-consistent reservoirs.— BLL (2004)

Disordered case (lower and upper bounds):

kD < [rerl < kD [ 1 :|
S IRekl = oy | =
8A[m](1 -‘r-k“/n;])\_;D/[m]) 8\ m

— Bernardin (2008)
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Numerical results

Motivations:
@ Bounds show that kg finite for any finite lambda. For A = 0 — kg~ A, kyg ~ 1/A.
Not clear what happens at A — 0.

@ Comparing « (from NESS) with xgk.

@ Apply temperature difference AT and compute J for different system sizes. Use two methods:

—- From numerical solution of steady state equations for pair-correlations .

—- Direct non-equilibrium simulations .
@ Plot ky = JN/AT and check if this saturates for large N . Hence obtain «.

@ Study two different cases
(i) Unpinned system with fixed and free BCs .

(i) Pinned system .
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Numerical results: Pinned case

INA(T -Tp)
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JN/AT - versus - system size
for different values of A J

Conductivity-versus-\
« follows the lower bound xgk -
k~1/Xatlarge X .
Kk~ Aatsmall .
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Pinned case: discusion

Heuristic argument for small A behaviour .
@ For A = 0, all phonon modes are localized within length-scales ¢, ~ kin (%)2 .

@ For small A\, mean free path of phonons ¢ ~ 1/X.
Since ¢ >> ¢;, localized states are not destroyed completely.

@ There is diffusion of energy between the localized states with a diffusion
constant ~ ¢2X. Hence:

K2m*
K~ AL
kA4

This is consistent with numerical data .
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Numerical results: Unpinned case

64.00F
16.00—
&
< J N/AT -versus - system size for
3 o0l different values of A
for free and fixed BCs.
rop, 3 | L |
6 e m6 1024 0%
N
1000 ]
10;
il 1A
« oif K - Versus - A
: ko~ 1/X1/2 at small X .
0.01 B
F k~1/X\atlarge \ .
0.001 HH0‘.‘01 = ‘l‘)‘l ‘1 .
A
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Unpinned case: discussion

@ « is independent of BCs for all A > 0 . Diffusive heat transport.

@ Need large N to reach the correct asymptotic diffusive limit.
Effective mean free path £ ~ 1/ .
To see diffusion of the low frequency ballistic modes, one needs N ReorNR 1/

Heuristic argument for small A behaviour:

@ In absence of noise, localization length £, ~ 1/w? .
@ Hence all modes with ¢, < Zorw > A!/2 stay localized.

@ The low frequency modes 0 < w < A'/2 become diffusive with mean free paths ~ 1/
thus resulting in a conductivity:

1 1
1/2
NS~ S }

Thus k — oo as A — 0 unlike conjecture of Rich/Visscher.
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Summary and open questions

Refn: Dhar, Venkateshan, Lebowitz, PRE 83, 021108 (2011)

@ Analytically tractable model to study effect of interactions in disordered harmonic systems .
@ Mapping to model of self-consistent reservoirs and exact bounds for GK conductivity .

@ For pinned case exact proof of insulator - conductor transition for arbitrarily small value of A.
Different from many-body localization in quantum systems .

@ For A — 0, k ~ A (pinned case), x ~ 1/A1/2 (unpinned case) .
Rigorous proof ?

@ NESS: Deviation from Gaussian measure. Does this vanish in the thermodynamic limit ?

Other Questions:

@ Heat conduction in disordered harmonic crystals in higher dimensions: effect of noisy
dynamics.

@ Equivalent quantum dynamics.

@ Heat conduction in disordered harmonic chains with momentum-conserving noisy dynamics.
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