Heat conduction in disordered harmonic lattices with energy conserving noise

Abhishek Dhar K. Venkateshan Joel Lebowitz

Raman Research Institute

Fields Institute, Toronto, Canada April 2011

Outline

• Introduction: Heat conduction in 1*D* systems.

- Disordered harmonic chains
- Ordered anharmonic chains
- Disordered anharmonic chains: effect of interactions on localization.
- Stochastic models of heat conduction.
- Analytically tractable model to study effects of interactions on localization .
 - Exact results.
 - Numerical results.
- Discussion.

Fourier's Law

For small $\Delta T = T_L - T_R$ and system size *L* :

Fourier's law implies : $J \sim \kappa \frac{\Delta T}{L}$

The thermal conductivity κ is expected to be an <u>intrinsic</u> material property.

- Fourier's law is not generally valid in low-dimensional systems . κ depends on system size L.
- Necessary and sufficient conditions for validity of Fourier's law ? Role of anharmonicity, disorder and dimensionality.

Bonetto, Lebowitz, Rey-Bellet, Math. Phys. (2000) .

Lepri, Livi, Politi, Phys. Rep. (2003). Dhar, Adv. Phys. (2008).

Exact expression for nonequilibrium heat current ["Landauer-like" formula for phonons.] In classical case:

$$J = rac{k_{B}\Delta T}{2\pi}\int_{0}^{\infty}d\omega T(\omega) \ ,$$

where $T(\omega)$ is the phonon transmission function.

[Casher and Lebowitz (1971), Rubin and Greer (1971), Dhar and Roy (2006)].

And erson localization implies: $T(\omega) \sim e^{-L/\ell(\omega)}$ with $\ell(\omega) \sim 1/\omega^2$ for $\omega \to 0$.

Disordered Harmonic systems: 1D

Hence frequencies $\omega \lesssim L^{-1/2}$ "do not see" the randomness and can carry current. These are the ballistic modes.

Hence
$$J \sim \int_0^{L^{-1/2}} T(\omega) d\omega$$
.

Form of $T(\omega)$ (at small ω) depends on boundary conditions.

Fixed BC:
$$T(\omega) \sim \omega^2$$
 $J \sim 1/L^{3/2}$ Free BC: $T(\omega) \sim \omega^0$ $J \sim 1/L^{1/2}$

If all sites are pinned then low frequency modes are cut off. Hence we get:

Pinned case :
$$J \sim e^{-L/\ell}$$
 .

Matsuda, Ishii, Rubin/Greer, Casher/Lebowitz, Dhar. Exact results: Verheggen (1979), Ajanki / Huveneers (2010).

- Almost all normal modes of the chain are localized and their amplitude at the boundaries is exponentially small (in *L*) leading to transmission decaying exponentially.
- Low frequency modes are extended and transmit energy.
- No Fourier's law: Strong boundary condition dependence.
- Heat insulator in pinned case.

Momentum conserving system: FPU - model

$$H = \sum_{\ell=1}^{N} \frac{p_{\ell}^2}{2m} + \sum_{\ell=1}^{N+1} \left[k_2 \frac{(q_{\ell} - q_{\ell-1})^2}{2} + k_3 \frac{(q_{\ell} - q_{\ell-1})^3}{3} + \lambda \frac{(q_{\ell} - q_{\ell-1})^4}{4} \right]$$

Momentum non-conserving system: ϕ^4 - model

$$H = \sum_{\ell=1}^{N} \left[\frac{p_{\ell}^2}{2m} + k_0 \frac{q_{\ell}^2}{2} \right] + \sum_{\ell=1,N+1} k_2 \frac{(q_{\ell} - q_{\ell-1})^2}{2} + \sum_{\ell=1}^{N} \lambda \frac{q_{\ell}^4}{4}$$

Simulations:

• Momentum conserving: $\kappa \sim L^{1/3}$ ($L^{2/5}$, $L^{1/2}$?).

• Momentum nonconserving (pinned case): $\kappa \sim L^0$

Theory

• Momentum conserving:

MC (Lepri, Livi, Politi, Delfini) $\kappa \sim L^{1/3}, L^{1/2}$ (odd, even)

RG (Narayan, Ramaswamy) $\kappa \sim L^{1/3}$ (universal)

Kinetic theory (Pereverzev, Lukkarinen, Spohn) $\kappa \sim L^{2/5}$. (even)

- Momentum nonconserving (pinned case): $\kappa \sim L^0$.
- Long wavelength modes lead to slow decay of current-current correlations and hence to anomalous transport.
- Value of current depends on BCs, but exponents do not.

Effect of interaction on localization (Numerical results)

(A) Disordered FPU model (Dhar and Saito)

$$H = \sum_{\ell=1,N} \frac{p_{\ell}^2}{2m_{\ell}} + \sum_{\ell=1,N+1} k \frac{(q_{\ell} - q_{\ell-1})^2}{2} + \lambda \frac{(q_{\ell} - q_{\ell-1})^4}{4}$$

(B) Disordered ϕ^4 model (Dhar and Lebowitz)

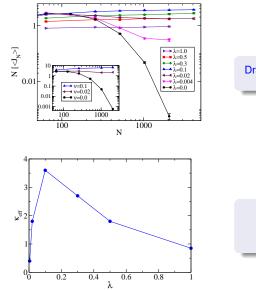
$$H = \sum_{\ell=1,N} \left[\frac{p_{\ell}^2}{2m_{\ell}} + k_0 \frac{q_{\ell}^2}{2} \right] + \sum_{\ell=1,N+1} k \frac{(q_{\ell} - q_{\ell-1})^2}{2} + \sum_{\ell=1,N} \lambda \frac{q_{\ell}^4}{4}$$

 $\{m_\ell\}=[m-\Delta,m+\Delta].$

 $\mathsf{Disorder} \to \Delta \qquad \mathsf{Anharmonicity} \to \lambda.$

Numerical results: Pinned case

Dhar/Lebowitz (2008)



Dramatic transition: $e^{-cN/\ell} \rightarrow \frac{1}{N}$ for small amount of interaction.

$$\kappa \sim (\lambda T)^a$$

a = 1/2 [a = 4 – Flach *etal* (2011)]

(RRI)

Effect of interactions on localization

- Many-body localization In the $\lambda \Delta$ plane, is there a conductor-insulator transition ?
- Transport mechanism: Destruction of localization ?, Hopping of energy between localized states ?
- Small λ behaviour of $\kappa(\lambda)$.

Look at analytically tractable models to address these questions.

MOTIVATION

- Analytically tractable.
- Physical relevance: one hopes that they effectively mimic anharmonicity and environmental degrees of freedom.

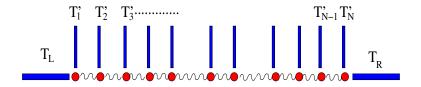
Purely Stochastic dynamics (Local energy conservation)

- Kipnis-Marchioro-Presutti model for heat conduction in harmonic oscillator chain .
- Creutz model for heat conduction in Ising model .

Hamiltonian + Stochastic dynamics

- Self-Consistent Reservoirs (Momentum Non-conserving) (Bolsterli, Rich, Visscher)
- Local momentum exchange dynamics (Both momentum conserving and non-conserving) (Basile, Bernardin, Olla) (Delfini, Lepri, Livi, Politi, Mejia-Monasterio) (Bernardin)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



$$\begin{split} m_{1}\ddot{q}_{1} &= -\Phi_{1m}q_{m} + \left[-\gamma\dot{q}_{1} + (2\gamma T_{L})^{1/2}\eta_{1}(t) \right] + \left[-\gamma_{1}'\dot{q}_{1} + (2\gamma_{1}'T_{1}')^{1/2}\zeta_{1}(t) \right] \\ m_{\ell}\ddot{q}_{\ell} &= -\Phi_{\ell,m}q_{m} + \left[-\gamma_{\ell}'\dot{q}_{\ell} + (2\gamma_{\ell}'T_{\ell}')^{1/2}\zeta_{\ell}(t) \right] \quad \ell = 2, ..., N-1 , \\ m_{N}\dot{q}_{N} &= -\Phi_{Nm}q_{m} + \left[-\gamma\dot{q}_{N} + (2\gamma T_{R})^{1/2}\eta_{N}(t) \right] + \left[-\gamma_{N}'\dot{q}_{N} + (2\gamma_{N}'T_{N}')^{1/2}\zeta_{N}(t) \right]. \end{split}$$

Self-consistency condition: Zero net current into side reservoirs.

$$\langle p_{\ell}^2/m_{\ell} \rangle = T_{\ell}', \quad \ell = 1, 2, \dots, N.$$

- Model introduced by Bolsterli, Rich, Visscher (1970): "Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs"
- <u>Ordered harmonic chain</u>: solved exactly by Bonetto, Lebowitz and Lukkarinen (2004). Fourier's law satisfied and κ is finite.
- Disordered harmonic chain: numerically studied by Rich and Visscher.
 - Finite conductivity, independent of boundary conditions.
 - CONJECTURE: In the limit of vanishing coupling to side reservoirs, the conductivity $\kappa \rightarrow$ a finite value.

NOTE: In absence of side-reservoirs:

- $\kappa \to \infty$ free BCs.
- $\kappa \rightarrow 0$ fixed BCs.
- Momentum non-conserving. Energy conserved, on average.

Momentum and energy conserving models

Basile, Bernardin, Olla: 3-particle collisions

 $p_{\ell-1} + p_{\ell} + p_{\ell+1} = \text{constant}$

$$p_{\ell-1}^2 + p_{\ell}^2 + p_{\ell+1}^2 = \text{ constant.}$$

• Delfini, Lepri, Livi, Politi, Mejia-Monasterio: 2 particle collisions

 $p_{\ell} \leftrightarrow p_{\ell+1}$.

• Ordered harmonic chain: $\kappa \sim L^{1/2}$. [numerical and analytical results]

Energy conserving (Momentum non-conserving)

Bernardin: 2-particle collisions

 $p_{\ell}^2 + p_{\ell+1}^2 = \text{constant.}$

Present study: Momentum flip model

 $\mathcal{D}_{\ell} \leftrightarrow -\mathcal{D}_{\ell}$.

• Ordered and disordered harmonic chain: $\kappa \sim L^0$. [numerical and analytical results]

$$\begin{split} H &= \sum_{\ell=1,N} \left[\frac{p_{\ell}^2}{2m_{\ell}} + k_0 \frac{q_{\ell}^2}{2} \right] + \sum_{\ell=2,N} k \frac{(q_{\ell} - q_{\ell-1})^2}{2} + k' \left[\frac{q_1^2}{2} + \frac{q_N^2}{2} \right] \\ &= \frac{1}{2} \left[p \hat{M}^{-1} p + q \hat{\Phi} q \right] \,, \end{split}$$

 $k_o=0$: Unpinned case Free BC (k'=0), Fixed BC (k'>0) $k_o>0$: Pinned case .

The system's time evolution has:

- A deterministic part described by the Hamiltonian above.
- **2** A momentum flipping noise at all sites: transition $p_{\ell} \rightarrow -p_{\ell}$ occurs with a rate λ .
- **③** Particles at the boundaries $\ell = 1$ and $\ell = N$ which are attached to Langevin heat baths at temperatures T_L and T_R respectively.

• Non-equilibrium definition:

$$\kappa = \lim_{L \to \infty} \frac{\langle J \rangle L}{\Delta T}$$
$$J = \text{Current density}$$

• From Green-Kubo formulation:

$$\kappa_{GK} = \lim_{z \to 0} \lim_{L \to \infty} \frac{1}{LT^2} \int_0^\infty dt \ e^{-zt} \left\langle \mathcal{J}(0) \mathcal{J}(t) \right\rangle.$$

$$\mathcal{J} = \text{Total current}.$$

Master equation for time evolution

Let
$$x = (q_1, q_2, ..., q_N, p_1, p_2, ..., p_N) = (x_1, x_2, ..., x_{2N})$$

P(x, t): phase-space probability distribution .

Master equation:

$$\frac{\partial P(x)}{\partial t} = \sum_{\ell,m} \hat{a}_{\ell,m} x_m \frac{\partial P}{\partial x_{\ell}} + \sum_{\ell,m} \frac{\hat{d}_{\ell,m}}{2} \frac{\partial^2 P}{\partial x_{\ell} \partial x_m} + \lambda \sum_{\ell} [P(..., -p_{\ell}, ...) - P(..., p_{\ell}, ...)],$$
where $\hat{a} = \begin{pmatrix} 0 & -\hat{M}^{-1} \\ \hat{\Phi} & \hat{M}^{-1}\hat{\Gamma}^{-1} \end{pmatrix}$ $\hat{d} = \begin{pmatrix} 0 & 0 \\ 0 & 2\hat{T}\hat{\Gamma} \end{pmatrix}.$
 $\hat{T}_{\ell,\ell} = T_L \delta_{\ell,1} + T_R \delta_{\ell,N}$

$$\hat{\Gamma}_{\ell,\ell} = \gamma(\delta_{\ell,1} + \delta_{I,N})$$

Equations for pair-correlations

Define pair-correlation matrix:

$$\hat{c} = \begin{pmatrix} \hat{u} & \hat{z} \\ \hat{z}^{T} & \hat{v} \end{pmatrix}, \text{ where } \hat{u}_{\ell,m} = \langle q_{\ell}q_{m} \rangle, \hat{v}_{\ell,m} = \langle p_{\ell}p_{m} \rangle, \hat{z}_{\ell,m} = \langle q_{\ell}p_{m} \rangle.$$

Closed equation of motion for \hat{c} :

$$\frac{d\hat{c}}{dt} = -\hat{a}\hat{c} - \hat{c}\hat{a}^T + \hat{d} + \left(\frac{d\hat{c}}{dt}\right)_{col}.$$

Term from flip dynamics is given by:

$$\left(\frac{d\hat{c}}{dt}\right)_{col} = -2\lambda \left(\begin{array}{cc} 0 & \hat{z} \\ \hat{z}^T & 2(\hat{v} - \hat{v}_D) \end{array}\right) , \text{ where } [\hat{v}_D]_{\ell,\ell} = \hat{v}_{\ell,\ell} = \langle p_\ell^2 \rangle .$$

In steady state $d\hat{c}/dt = 0$ gives:

$$\hat{a}\hat{c}+\hat{c}\hat{a}^{T}-\left(rac{d\hat{c}}{dt}
ight)_{col}=\hat{d}$$

With $\gamma'_{\ell} = 2 \lambda m_{\ell}$ and $\langle p_{\ell}^2/m_{\ell} \rangle = T'_{\ell}$, the above equations are identical to the correlation equations for model with self-consistent reservoirs.

- Steady state current given by $J = k \langle x_{\ell} v_{\ell+1} \rangle$. Exact solution available for ordered case BLL (2004).
- Closed equations for correlation in all orders. However NON-GAUSSIAN unlike self-consistent reservoir model.
- $N^2 + N(N + 1)$ linear equations for same number of unknown variables . Accurate numerical solution possible for disordered case and both steady state current and temperature profiles can be obtained.

Green-Kubo conductivity

No Langevin baths for end-particles, periodic BCs. Master equation is:

$$\begin{aligned} \frac{\partial P(x)}{\partial t} &= LP(x) ,\\ \text{where } L &= A + \lambda S ,\\ AP(x) &= \sum_{\ell=1}^{N} \left[-\frac{p_{\ell}}{m_{\ell}} \frac{\partial P(x)}{\partial q_{\ell}} + \sum_{m=1}^{N} \Phi_{\ell,m} q_m \frac{\partial P(x)}{\partial p_{\ell}} \right] & \text{Hamiltonian part },\\ SP(x) &= \sum_{\ell} \left[P(..., -p_{\ell}, ...) - P(..., p_{\ell}, ...) \right] & \text{Stochastic part.} \end{aligned}$$

The Green-Kubo thermal conductivity κ_{GK} is:

$$\kappa_{GK} = \lim_{z \to 0} \lim_{N \to \infty} \frac{1}{NT^2} \int_0^\infty dt \ e^{-zt} \left\langle \mathcal{J}(0) \mathcal{J}(t) \right\rangle$$
$$= \lim_{z \to 0} \lim_{N \to \infty} \frac{1}{NT^2} \left\langle \mathcal{J}(z-L)^{-1} \mathcal{J} \right\rangle.$$

Green-Kubo conductivity

The total current which is carried entirely by the Hamiltonian part can be written in the following form:

$$\mathcal{J} = \frac{k}{2} \sum_{\ell=1}^{N} \frac{p_{\ell}}{m_{\ell}} (q_{\ell+1} - q_{\ell-1})$$

With this and the forms of *A* and *S* it follows:

$$\begin{split} \mathcal{AJP}_{\theta q} &= \sum_{\ell,j} \frac{\Phi_{\ell,j} q_j}{m_\ell} (q_{\ell+1} - q_{\ell-1}) \mathcal{P}_{\theta q} \\ \text{and} \quad \mathcal{SJP}_{\theta q} &= -2\mathcal{JP}_{\theta q} \;. \end{split}$$

Ordered case: $A\mathcal{J}P_{eq} = 0$.

Ordered case (exact expression for κ).

$$\kappa_{GK} = \lim_{z \to 0} \lim_{N \to \infty} \frac{1}{T^2 N} \int dx \, \mathcal{J} \frac{1}{z + 2\lambda} \, \mathcal{J} \, P_{\theta q} = \lim_{N \to \infty} \frac{\langle \mathcal{J}^2 \rangle}{2\lambda T^2 N} \, .$$

$$\kappa_{GK} = \frac{kD}{8\lambda m} \, , \qquad \text{where} \quad D = \frac{4k}{2k + k_0 + [(k_0)(4k + k_0)]^{1/2}} \, .$$

Same as result for κ for self-consistent reservoirs.– BLL (2004)

Disordered case (lower and upper bounds):

$$\frac{kD}{8\lambda[m](1+k\frac{[1/m]-1/[m]}{4\lambda^2 D})} \leq [\kappa_{GK}] \leq \frac{kD}{8\lambda} \left[\frac{1}{m}\right]$$

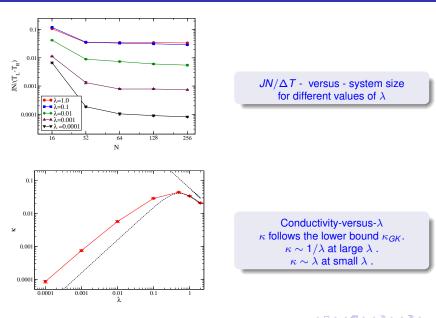
- Bernardin (2008)

Motivations:

- Bounds show that κ_{GK} finite for any finite lambda. For $\lambda \to 0 \kappa_{LB} \sim \lambda$, $\kappa_{UB} \sim 1/\lambda$. Not clear what happens at $\lambda \to 0$.
- Comparing κ (from NESS) with κ_{GK} .
- Apply temperature difference ΔT and compute J for different system sizes. Use two methods:
 - --- From numerical solution of steady state equations for pair-correlations .
 - --- Direct non-equilibrium simulations .
- Plot $\kappa_N = JN/\Delta T$ and check if this saturates for large N. Hence obtain κ .
- Study two different cases
 - (i) Unpinned system with fixed and free BCs .
 - (ii) Pinned system .

< ロト < 同ト < ヨト < ヨト

Numerical results: Pinned case



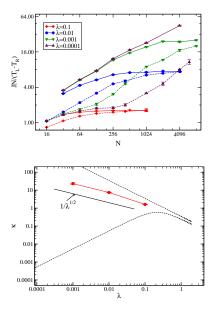
Heuristic argument for small λ behaviour .

- For $\lambda = 0$, all phonon modes are localized within length-scales $\ell_L \sim \frac{k}{k_0} \left(\frac{m}{\Delta}\right)^2$.
- For small λ, mean free path of phonons ℓ ~ 1/λ.
 Since ℓ >> ℓ_L, localized states are not destroyed completely.
- There is diffusion of energy between the localized states with a diffusion constant $\sim \ell_I^2 \lambda$. Hence:

$$\kappa \sim rac{k^2 m^4}{k_o^2 \Delta^4} \; \lambda \; .$$

This is consistent with numerical data .

Numerical results: Unpinned case



 $J N/\Delta T$ - versus - system size for different values of λ for free and fixed BCs.

$$\begin{split} \kappa &\text{-versus - }\lambda \\ \kappa &\sim 1/\lambda^{1/2} \text{ at small }\lambda \ , \\ \kappa &\sim 1/\lambda \text{ at large }\lambda \ , \end{split}$$

- κ is independent of BCs for all $\lambda > 0$. Diffusive heat transport.
- Need large *N* to reach the correct asymptotic diffusive limit. Effective mean free path $\ell \sim 1/\lambda$.

To see diffusion of the low frequency ballistic modes, one needs $N \gtrsim \ell$ or $N \gtrsim 1/\lambda$.

Heuristic argument for small λ behaviour:

- In absence of noise, localization length $\ell_L \sim 1/\omega^2$.
- Hence all modes with $\ell_L < \ell$ or $\omega > \lambda^{1/2}$ stay localized.
- The low frequency modes $0 < \omega < \lambda^{1/2}$ become diffusive with mean free paths $\sim 1/\lambda$ thus resulting in a conductivity:

$$\kappa \sim \lambda^{1/2} imes rac{1}{\lambda} \sim rac{1}{\lambda^{1/2}} \; .$$

Thus $\kappa \to \infty$ as $\lambda \to 0$ unlike conjecture of Rich/Visscher.

Refn: Dhar, Venkateshan, Lebowitz, PRE 83, 021108 (2011)

- Analytically tractable model to study effect of interactions in disordered harmonic systems .
- Mapping to model of self-consistent reservoirs and exact bounds for GK conductivity .
- For pinned case exact proof of insulator conductor transition for arbitrarily small value of λ. Different from many-body localization in quantum systems.
- For $\lambda \to 0$, $\kappa \sim \lambda$ (pinned case), $\kappa \sim 1/\lambda^{1/2}$ (unpinned case). Rigorous proof ?
- NESS: Deviation from Gaussian measure. Does this vanish in the thermodynamic limit ?

Other Questions:

- Heat conduction in disordered harmonic crystals in higher dimensions: effect of noisy dynamics.
- Equivalent quantum dynamics.
- Heat conduction in disordered harmonic chains with momentum-conserving noisy dynamics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <