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Fourier’s Law

For small ∆T = TL − TR and system size L :

Fourier′s law implies : J ∼ κ
∆T
L

The thermal conductivity κ is expected to be an intrinsic material property.

Fourier’s law is not generally valid in low-dimensional systems . κ depends on
system size L.

Necessary and sufficient conditions for validity of Fourier’s law ?
Role of anharmonicity, disorder and dimensionality.

Bonetto, Lebowitz, Rey-Bellet, Math. Phys. (2000) .

Lepri, Livi, Politi, Phys. Rep. (2003) .
Dhar , Adv. Phys. (2008) .
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Disordered Harmonic systems: Results in 1D

TL TR

Exact expression for nonequilibrium heat current [“Landauer-like” formula for phonons.]
In classical case:

J =
kB∆T

2π

Z ∞

0
dωT (ω) ,

where T (ω) is the phonon transmission function.

[Casher and Lebowitz (1971), Rubin and Greer (1971), Dhar and Roy (2006)].

Anderson localization implies: T (ω) ∼ e−L/`(ω) with `(ω) ∼ 1/ω2 for ω → 0 .
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Disordered Harmonic systems: 1D

Hence frequencies ω
<∼ L−1/2 “do not see” the randomness and can carry current.

These are the ballistic modes.

Hence J ∼
R L−1/2

0 T (ω)dω.

Form of T (ω) (at small ω) depends on boundary conditions.

Fixed BC: T (ω) ∼ ω2 J ∼ 1/L3/2

Free BC: T (ω) ∼ ω0 J ∼ 1/L1/2

If all sites are pinned then low frequency modes are cut off. Hence we get:

Pinned case : J ∼ e−L/` .

Matsuda, Ishii, Rubin/Greer, Casher/Lebowitz, Dhar.
Exact results: Verheggen (1979), Ajanki / Huveneers (2010).
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One dimensional disordered harmonic chain

Almost all normal modes of the chain are localized and their amplitude at
the boundaries is exponentially small (in L) leading to transmission
decaying exponentially.

Low frequency modes are extended and transmit energy.

No Fourier’s law: Strong boundary condition dependence.

Heat insulator in pinned case.
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One-dimensional systems with nonintegrable interactions

Momentum conserving system: FPU - model
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Momentum non-conserving system: φ4 - model
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Simulations:

Momentum conserving: κ ∼ L1/3 ( L2/5 , L1/2 ? ) .

Momentum nonconserving (pinned case): κ ∼ L0
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Systems with non-integrable Hamiltonian dynamics

Theory

Momentum conserving:

MC ( Lepri, Livi, Politi, Delfini ) κ ∼ L1/3, L1/2 ( odd, even )

RG ( Narayan, Ramaswamy ) κ ∼ L1/3 ( universal )

Kinetic theory ( Pereverzev, Lukkarinen, Spohn ) κ ∼ L2/5. ( even )

Momentum nonconserving (pinned case): κ ∼ L0 .

Long wavelength modes lead to slow decay of current-current correlations
and hence to anomalous transport.

Value of current depends on BCs, but exponents do not.

(RRI) July 2010 8 / 29



Effect of interaction on localization (Numerical results)

(A) Disordered FPU model (Dhar and Saito)

H =
X

`=1,N
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(B) Disordered φ4 model (Dhar and Lebowitz)
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{m`} = [m −∆, m + ∆].

Disorder → ∆ Anharmonicity → λ.

Simulations:

Case (A) λ = 0 : κ ∼ L1/2 , L−1/2 λ > 0 : κ ∼ L1/3 .

Case (B) λ = 0 : κ ∼ e−cL , λ > 0 : κ ∼ L0 .
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Numerical results: Pinned case

Dhar/Lebowitz (2008)
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a = 1/2 [ a = 4 – Flach etal (2011) ]
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Effect of interactions on localization

Many-body localization — In the λ−∆ plane, is there a conductor-insulator
transition ?

Transport mechanism: Destruction of localization ?, Hopping of energy
between localized states ?

Small λ behaviour of κ(λ) .

Look at analytically tractable models to address these questions.
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Stochastic models of heat conduction

MOTIVATION

Analytically tractable.

Physical relevance: one hopes that they effectively mimic anharmonicity and environmental
degrees of freedom.

Purely Stochastic dynamics (Local energy conservation)

Kipnis-Marchioro-Presutti model for heat conduction in harmonic oscillator chain .

Creutz model for heat conduction in Ising model .

Hamiltonian + Stochastic dynamics

Self-Consistent Reservoirs (Momentum Non-conserving)
( Bolsterli, Rich, Visscher )

Local momentum exchange dynamics (Both momentum conserving and non-conserving)
( Basile, Bernardin, Olla )
( Delfini, Lepri, Livi, Politi, Mejia-Monasterio )
( Bernardin )
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Self-consistent reservoirs

.............

TL T
R

T’3 T’N−1T’N1 2T’ T’

m1q̈1 = −Φ1mqm + [ −γq̇1 + (2γTL)
1/2η1(t) ] + [ −γ′1q̇1 + (2γ′1T ′1)

1/2ζ1(t) ]

m`q̈` = −Φ`,mqm + [ −γ′`q̇` + (2γ′`T ′`)
1/2ζ`(t) ] ` = 2, ..., N − 1 ,

mN q̇N = −ΦNmqm + [ −γq̇N + (2γTR)1/2ηN(t) ] + [ −γ′N q̇N + (2γ′NT ′N)1/2ζN(t) ] .

Self-consistency condition: Zero net current into side reservoirs.˙
p2

`/m`

¸
= T ′` , ` = 1, 2, . . . , N.
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Self-consistent reservoirs

Model introduced by Bolsterli, Rich, Visscher (1970):
“Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs”

Ordered harmonic chain: solved exactly by Bonetto, Lebowitz and Lukkarinen (2004).
Fourier’s law satisfied and κ is finite.

Disordered harmonic chain: numerically studied by Rich and Visscher.

Finite conductivity, independent of boundary conditions.

CONJECTURE: In the limit of vanishing coupling to side reservoirs,
the conductivity κ→ a finite value.

NOTE: In absence of side-reservoirs:
κ→∞ free BCs.

κ→ 0 fixed BCs.

Momentum non-conserving. Energy conserved, on average.
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Stochastic models with local momentum/energy conservation

Momentum and energy conserving models
Basile,Bernardin,Olla: 3-particle collisions

p`−1 + p` + p`+1 = constant

p2
`−1 + p2

` + p2
`+1 = constant.

Delfini, Lepri, Livi, Politi, Mejia-Monasterio: 2 particle collisions

p` ↔ p`+1 .

Ordered harmonic chain: κ ∼ L1/2 .
[numerical and analytical results]

Energy conserving (Momentum non-conserving)
Bernardin: 2-particle collisions

p2
` + p2

`+1 = constant.

Present study: Momentum flip model

p` ↔ −p` .

Ordered and disordered harmonic chain: κ ∼ L0 .
[numerical and analytical results]
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Definition of model studied by us
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ko = 0: Unpinned case Free BC ( k ′ = 0 ), Fixed BC ( k ′ > 0 )

ko > 0: Pinned case .

The system’s time evolution has:

1 A deterministic part described by the Hamiltonian above.

2 A momentum flipping noise at all sites: transition p` → −p` occurs with a rate λ.

3 Particles at the boundaries ` = 1 and ` = N which are attached to Langevin heat
baths at temperatures TL and TR respectively.
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Thermal conductivity

Non-equilibrium definition:

κ = lim
L→∞

〈J〉 L
∆T

J = Current density .

From Green-Kubo formulation:

κGK = lim
z→0

lim
L→∞

1
LT 2

Z ∞

0
dt e−zt 〈J (0)J (t)〉 .

J = Total current .
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Master equation for time evolution

Let x = (q1, q2, ..., qN , p1, p2, ..., pN) = (x1, x2, ....x2N)

P(x , t): phase-space probabilty distribution .

Master equation:

∂P(x)

∂t
=

X
`,m

â`,mxm
∂P
∂x`

+
X
`,m

d̂`,m

2
∂2P

∂x`∂xm
+ λ

X
`

[ P(...,−p`, ...)− P(..., p`, ...) ] ,

where â =

„
0 −M̂−1

Φ̂ M̂−1Γ̂−1

«
d̂ =

„
0 0
0 2T̂ Γ̂

«
.

T̂`,` = TLδ`,1 + TRδ`,N

Γ̂`,` = γ(δ`,1 + δl,N)

(RRI) July 2010 18 / 29



Equations for pair-correlations

Define pair-correlation matrix:

ĉ =

„
û ẑ

ẑT v̂

«
, where û`,m = 〈q`qm〉 , v̂`,m = 〈p`pm〉 , ẑ`,m = 〈q`pm〉 .

Closed equation of motion for ĉ:

dĉ
dt

= −âĉ − ĉâT + d̂ +

„
dĉ
dt

«
col

.

Term from flip dynamics is given by:„
dĉ
dt

«
col

= −2λ

„
0 ẑ

ẑT 2(v̂ − v̂D)

«
, where [v̂D ]`,` = v̂`,` = 〈 p2

` 〉 .

In steady state dĉ/dt = 0 gives:

âĉ + ĉâT −
„

dĉ
dt

«
col

= d̂

With γ′` = 2 λ m` and 〈 p2
`/m` 〉 = T ′` , the above equations are identical to

the correlation equations for model with self-consistent reservoirs.
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Pair-correlations in NESS

Steady state current given by J = k 〈 x` v`+1 〉. Exact solution available for ordered case –
BLL (2004).

Closed equations for correlation in all orders. However NON-GAUSSIAN unlike
self-consistent reservoir model .

N2 + N(N + 1) linear equations for same number of unknown variables . Accurate numerical
solution possible for disordered case and both steady state current and temperature profiles
can be obtained.
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Green-Kubo conductivity

No Langevin baths for end-particles, periodic BCs. Master equation is:

∂P(x)

∂t
= LP(x) ,

where L = A + λS ,

AP(x) =
NX

`=1

"
−

p`

m`

∂P(x)

∂q`
+

NX
m=1

Φ`,mqm
∂P(x)

∂p`

#
Hamiltonian part ,

SP(x) =
X

`

[ P(...,−p`, ...)− P(..., p`, ...) ] Stochastic part .

The Green-Kubo thermal conductivity κGK is:

κGK = lim
z→0

lim
N→∞

1
NT 2

Z ∞

0
dt e−zt 〈J (0)J (t)〉

= lim
z→0

lim
N→∞

1
NT 2

〈 J (z − L)−1 J 〉 .
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Green-Kubo conductivity

The total current which is carried entirely by the Hamiltonian part can be written in the following
form:

J =
k
2

NX
`=1

p`

m`
(q`+1 − q`−1)

With this and the forms of A and S it follows:

AJPeq =
X
`,j

Φ`,j qj

m`
(q`+1 − q`−1)Peq

and SJPeq = −2JPeq .

Ordered case: AJPeq = 0 .
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Green-Kubo conductivity

Ordered case (exact expression for κ).

κGK = lim
z→0

lim
N→∞

1
T 2N

Z
dx J

1
z + 2λ

J Peq = lim
N→∞

〈J 2〉
2λT 2N

.

κGK =
kD

8λm
, where D =

4k
2k + ko + [(ko)(4k + ko)]1/2

.

Same as result for κ for self-consistent reservoirs.– BLL (2004)

Disordered case (lower and upper bounds):

kD

8λ[m](1 + k [1/m]−1/[m]

4λ2D
)
≤ [κGK ] ≤

kD
8λ

»
1
m

–

– Bernardin (2008)
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Numerical results

Motivations:

Bounds show that κGK finite for any finite lambda. For λ → 0 — κLB ∼ λ, κUB ∼ 1/λ.
Not clear what happens at λ → 0.

Comparing κ (from NESS) with κGK .
——————————————————————————–

Apply temperature difference ∆T and compute J for different system sizes. Use two methods:

—- From numerical solution of steady state equations for pair-correlations .

—- Direct non-equilibrium simulations .

Plot κN = JN/∆T and check if this saturates for large N . Hence obtain κ.

Study two different cases

(i) Unpinned system with fixed and free BCs .

(ii) Pinned system .
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Numerical results: Pinned case
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Pinned case: discusion

Heuristic argument for small λ behaviour .

For λ = 0, all phonon modes are localized within length-scales `L ∼ k
ko

` m
∆

´2
.

For small λ, mean free path of phonons ` ∼ 1/λ.

Since ` >> `L, localized states are not destroyed completely.

There is diffusion of energy between the localized states with a diffusion
constant ∼ `2

Lλ. Hence:

κ ∼
k2m4

k2
o ∆4

λ .

This is consistent with numerical data .
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Numerical results: Unpinned case
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Unpinned case: discussion

κ is independent of BCs for all λ > 0 . Diffusive heat transport.

Need large N to reach the correct asymptotic diffusive limit.
Effective mean free path ` ∼ 1/λ .
To see diffusion of the low frequency ballistic modes, one needs N >∼ ` or N >∼ 1/λ.

Heuristic argument for small λ behaviour:

In absence of noise, localization length `L ∼ 1/ω2 .

Hence all modes with `L < ` or ω > λ1/2 stay localized.

The low frequency modes 0 < ω < λ1/2 become diffusive with mean free paths ∼ 1/λ
thus resulting in a conductivity:

κ ∼ λ1/2 ×
1
λ
∼

1
λ1/2

.

Thus κ →∞ as λ → 0 unlike conjecture of Rich/Visscher.
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Summary and open questions

Refn: Dhar, Venkateshan, Lebowitz, PRE 83, 021108 (2011)

Analytically tractable model to study effect of interactions in disordered harmonic systems .

Mapping to model of self-consistent reservoirs and exact bounds for GK conductivity .

For pinned case exact proof of insulator - conductor transition for arbitrarily small value of λ.
Different from many-body localization in quantum systems .

For λ → 0 , κ ∼ λ (pinned case), κ ∼ 1/λ1/2 (unpinned case) .
Rigorous proof ?

NESS: Deviation from Gaussian measure. Does this vanish in the thermodynamic limit ?

Other Questions:

Heat conduction in disordered harmonic crystals in higher dimensions: effect of noisy
dynamics.

Equivalent quantum dynamics.

Heat conduction in disordered harmonic chains with momentum-conserving noisy dynamics.
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