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Physical picture

Situation

1. Molecule in a periodic optical potential Ṽ (x).

2. Molecule interacts with a sparse ideal gas of light particles.

Characteristics of the model

I Classical, stochastic, dimension one.

I Mass ratio of gas particle/molecule is m
M = λ ¿ 1.

I Periodic potential Ṽ (x) = λV ( x
λ) ≥ 0 has period λa.

Goal: Study behavior of the molecule in the Brownian limit.



A linear Boltzmann equation

Position-momentum coordinate vector (Xt ,Pt) evolves as a
Markovian process with density Pt(x , p) obeying

d

dt
Pt(x , p) = −λ

p

m

∂Pt

∂x
(x , p) +

dV

dx
(
x

λ
)
∂Pt

∂p
(x , p)

+

∫

R
dp′

(
Jλ(p, p′) Pt(x , p′)− Jλ(p′, p) Pt(x , p)

)

Jλ(p, p′)=Jump rate from momentum p′ to momentum p.

Jλ(p, p′) =
η(1 + λ)

2m

∣∣p − p′
∣∣e
− β

2m

(
λ−1

2
p′+ 1+λ

2
p
)2

(2πm
β )

1
2

β=inverse temperature,
λ = m

M mass ratio,
η =density of gas



Normalizing parameters
Setting m = β = a = 1 and stretching the spatial variable λx → x .
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Jλ(p, p′)=Jump rate from momentum p′ to momentum p.
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Defines a λ-dependent Markovian dynamics on

S = T× R, T = [0, 1).

The λ = 0 case is frictionless:

j(p − p′) = J0(p, p′) =
η

2
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∣∣e
− 1
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p−p′

)2

(2π)
1
2

.



Our quantities of interest

Momentum process Pt is a sum of a jump term and a force term

Pt = P0 + Jt + Dt , where

I Jt is the sum of momentum jumps due to collisions.

I Dt =
∫ t
0 dr dV

dx (Xr ) is the total drift in momentum due to the
forcing.

We study the momentum and total drift in momentum on time
scales ∝ λ−1:

P
(λ)
t = λ

1
2 P t

λ
and D

(λ)
t = λκD t

λ
, κ =

1

4
.



First result: Brownian limit

Assumptions: supx∈T
∣∣dV

dx (x)
∣∣ < ∞ and the distribution for

(X0, P0) is some µ not depending on λ.

Theorem (Clark, Dubois)

There is convergence in law over interval t ∈ [0, T ]

λ
1
2 D t

λ

L−−→ 0 and λ
1
2 P t

λ

L−−→ pt ,

where pt is the Ornstein-Uhlenbeck process:

dpt = −γptdt +
(2mγ

β

) 1
2 dBt , p0 = 0

for

γ = 8η(
2

πmβ
)

1
2 , Bt is a standard brownian motion.



Invariant state and typical momentum

The effective Hamiltonian is

H(x , p) =
1

2
p2+V (x), ( p is effectively a vel.),

and the equilibrium state P(λ)
∞ : T× R→ R+ is

P(λ)
∞ (x , p) =

e−λ H(x ,p)

Nλ
.

1. Typical energy H(x , p) ∼ λ−1

2. Typical momentum has |p| ∼ λ−
1
2 , since supx∈T V (x) < ∞.

Lesson 1: Typically, only a small fraction of the energy will be in
the potential energy.
Lesson 2: Typically, the particle is passing through the period cells
quickly.



Potential acts weakly–usually
Between collisions, the force dV

dx (x) drives the momentum

Pfin − Pint =

∫ tfin

tint

dr
dV

dx
(Xr ).

For |Pint| large enough,

∣∣Pfin − Pint

∣∣ ≤
∣∣∣|Pint| −

√
P2

int + 2Vint − 2Vfin

∣∣∣ ≤ 2 supx V (x)

|Pint| ,

|Pint| ∼ λ−
1
2 =⇒

∣∣∣
∫ tfin

tint

dr
dV

dx
(Xr )

∣∣∣ = O(λ
1
2 ).

Rough intuitive implication: Non-negligible contributions to

Dt =

∫ t

0
dr

dV

dx
(Xr ), t ∈ [0,

T

λ
]

occur over intervals when |Pr | ¿ λ−
1
2 (typical momentum) .



Returns to low momentum

If the rescaled momentum Pr for r ∈ [0, T
λ ] converges to a process

of diffusion type, then that suggests...

... Pr will spend a time on the order of λ−
1
2 in a finite

neighborhood [−L, L] of the origin over the interval [0, T
λ ]

Thus scale considerations alone do not motivate that

λ
1
2

∫ t
λ

0 dr dV
dx (Xr ) → 0, since there may be a (mysterious) bias.



Returns to low momentum, cont.

We also ”need a zero”:
∫

S
dxdpP(λ)

∞ (x , p)
dV

dx
(x) = 0.

If there is enough ergodicity, then we expect there to be central
limit-type cancellation so that typically

∫ t
λ

0
dr

dV

dx
(Xr ) = O(λ−

1
4 ).

Picture: Over an interval t ∈ [0, T
λ ]:

I There will be ’long’ time intervals over which |Pt | >> 1 and

λ
1
4

∫ t
0 dr dV

dx (Xr ) does not fluctuate much.

I The dominant contributions to λ
1
4

∫ t
0 dr dV

dx (Xr ) will occur at
infrequent intervals of time for |Pt | = O(1).



Local time process

For pt , the local time l
(a)
t is the occupation time density at a ∈ R

over the interval [0, t] .

Formally,

l
(a)
t =

∫ t

0
dr δ

(
pr − a

)
and satisfies

∫

R
da l

(a)
t = t.

For a = 0 we just write lt .

The Tanaka formula gives:

lt = |pt |+ 1

2

∫ t

0
dr |pr | − B̃t , p0 = 0,

where B̃t =
∫ t
0 S(pr )dBr and S : R→ {+,−} is the sign function.



Main theorem

Let

I pt be the Ornstein-Uhlenbeck processes

I lt be the local time at zero of pr over r ∈ [0, t].

I B′t be a copy of standard Brownian motion independent of pt

Theorem (Clark, Dubois)

There is convergence in law over interval t ∈ [0, T ]

(
λ

1
2 P t

λ
, λ

1
4 D t

λ

) L−−→ (
pt , υ

1
2 B′lt

)
,

for a υ > 0.



Formal expression for the diffusion constant

Very formally, the diffusion constant is

υ = 2

∫

T×R
dxdp R(

dV

dx
)(x , p)

dV

dx
(x),

where R =
∫∞
0 dr erL is the reduced resolvent of the generator L

L(F )(x , p) = p
∂F

∂x
(x , p)− dV

dx
(x)

∂F

∂x
(x , p)

+

∫

R
dp′

(
j(p − p′) F (x , p′)− j(p′ − p) F (x , p)

)
.

j(p − p′) = lim
λ→0

Jλ(p, p′) =
1

2

∣∣p − p′
∣∣e
− 1

8

(
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)2
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1
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Comparison with another class of limit theorems
There are many results on models similar to the following:

I Null-recurrent Markov process Yt , with state space S
invariant measure µ.

I Additive functional At =
∫ t
0 dr f (Yr ) with

∫
S f dµ = 0.

I Some characterization of the recurrence, e.g. for ε ¿ 1

Rε(x) = Ex

[ ∫ ∞

0
ds e−ε sg(Ys)

]
∼ ε−α

∫

S
dµ g

for 0 < α < 1 and g > 0, g ∈ L1(µ).

Then prove limit laws

λ
α
2 A t

λ

L−−→ D
1
2 Bτt ,

where τt is a Mittag-Leffler process of exponent α and B is an
independent Brownian motion.

Note: When α = 1
2 , then τt has the same distribution as the local

time `t at zero for a standard Brownian motion.



Comparison with other limit theorems, cont.

These limit laws satisfy a scale invariance

Bτat
d
= a

α
2 Bτt since τat

d
= aατt ,

whereas our limiting law has no scale invariance

Blat
d
6= aβBlt , for any β,

since the process lt comes from an Ornstein-Uhlenbeck process.

Most related articles:

1. A. Touati: Théorèmes limites... , (Unpublished), (1988).

2. R. Höpfner, E. Löcherbach: Limit Theorems... (2003).

3. E. Löcherbach, D. Loukianova: On Nummelin split..., (2007).



Some comments on approach
One of the fundamental ideas comes from (A. Touati, 88’).

Construct a martingale close to
∫ t
0 dr dV

dx (Xr ) by adding some
artificial structure to the process st = (Xt ,Pt) .

Construct a process s̃t = (st , εt) ∈ T× R× {0, 1} .

1. Let τn = e1 + · · · en for a sequence em of independent
exponential random variables with mean 1. Construct chain
sn = sτn .

2. Extend the state space of chain (sn) to T× R× {0, 1} via
Nummelin splitting. This requires picking function
0 ≤ h(s) < 1, and probability measure ν on T× R

Tλ(ds, s ′) ≥ dν(s)h(s ′), s, s ′ ∈ T× R.

The set T× R× 1 is identified as the atom.

3. Use the chain s̃n to construct a split (non-Markovian) process
s̃t ∈ T× R× {0, 1} .



Some comments, cont.

The recipe for constructing the extended transition rates T̃λ in
terms of the transition rates Tλ for the orignal chain sn = sτn

T̃λ(ds2, ε2; s1, ε1) =





1−h(s2)
1−h(s1)

(Tλ − ν × h
)
(ds2, s1) ε1 = ε2 = 0,

h(s2)
1−h(s1)

(Tλ − ν × h
)
(ds2, s1) ε1 = 1− ε2 = 0,(

1− h(s2)
)
ν(ds2) ε1 = 1− ε2 = 1,

h(s2)ν(ds2) ε1 = ε2 = 1.

The component εt ∈ {0, 1} in the slit process s̃t = (Xt , Pt , εt) does
not change between times τn and τn+1.

The statistics for s̃t for t ∈ (τn, τn+1) agrees with the original
processes conditioned on sτn and sτn+1 .

The marginal for the first component of s̃t = (st , εt) has the same
law as the original process.



Some comments, cont.

Let Rn be the sequence of return times to the atom a for the split
process s̃t .

Let Nt be the number of returns up to time t.

∫ t

0
dr

dV

dx
(Xr ) =

Nt−1∑

n=1

∫ Rn+1

Rn

dr
dV

dx
(Xr ) + ( Boundary terms ).

∫

T×R
dxdpP(λ)

∞ (x , p)
dV

dx
(x) = 0 =⇒ Ẽ(λ)

a

[ ∫ Rn+1

Rn

dr
dV

dx
(Xr )

]
= 0.

The predictable quadratic variation for the martingale∑Nt−1
n=1

∫ Rn+1

Rn
dr dV

dx (Xr ) is σλ

∫ t
0 dr h(sr ) for

σλ := E(λ)
a

[( ∫ Rn+1

Rn

dr
dV

dx
(Xr )

)2]
−→ υ∫

T×R ds h(s)
.



Some comments, cont.
Touati’s idea has been applied in a limit theorem recently in
Löcherbach, Loukianova: (2007).

A different process splitting argument was developed in
Höpfner, Löcherbach (2003).

Another part of the argument involves showing that as λ → 0, then

λ
1
2

∫ t
λ

0 dr h(sr )∫
T×R ds h(s)

L−−→ lt .

To prove

(
λ

1
4

∫ t
λ

0
dr

dV

dx
(Xr ),

λ
1
2

∫ t
λ

0 dr h(sr )∫
T×R ds h(s)

)
L−−→ (

B′lt , lt
)

involves showing an asymptotic independence seen in the limiting
quantities B′ and lt . We adopt arguments from Höpfner,
Löcherbach (2003).



Last remark

Current techniques improves some of those in

J. Clark, C. Maes: Diffusive behavior for randomly kicked...,
Comm. Math. Phys. (2011),

where a similar model (degenerate λ = 0) was studied, but an
extra torus-reflection symmetry V (x) = V (Rx) was assumed in
order to use a time-reversal symmetry argument to show that the
forcing is negligible.


