Brownian particle in a periodic potential

Jeremy Clark

Joint work with Loïc Dubois

Mathematics department University of Helsinki

April 5, 2011

Table of Contents

Overview

Physical picture
The model

Results

Brownian limit
Main theorem
Comparison with a class of limit theorems

Comments

Nummelin splitting to get a martingale

Physical picture

Situation

- 1. Molecule in a periodic optical potential $\tilde{V}(x)$.
- 2. Molecule interacts with a sparse ideal gas of light particles.

Characteristics of the model

- Classical, stochastic, dimension one.
- ▶ Mass ratio of gas particle/molecule is $\frac{m}{M} = \lambda \ll 1$.
- ▶ Periodic potential $\tilde{V}(x) = \lambda V(\frac{x}{\lambda}) \ge 0$ has period λa .

Goal: Study behavior of the molecule in the Brownian limit.

A linear Boltzmann equation

Position-momentum coordinate vector (X_t, P_t) evolves as a Markovian process with density $P_t(x, p)$ obeying

$$\begin{split} \frac{d}{dt}\mathsf{P}_{t}(x,p) &= -\lambda \frac{p}{m} \frac{\partial \mathsf{P}_{t}}{\partial x}(x,p) + \frac{dV}{dx} \left(\frac{x}{\lambda}\right) \frac{\partial \mathsf{P}_{t}}{\partial p}(x,p) \\ &+ \int_{\mathbb{R}} dp' \left(\mathcal{J}_{\lambda}(p,p') \, \mathsf{P}_{t}(x,p') - \mathcal{J}_{\lambda}(p',p) \, \mathsf{P}_{t}(x,p) \right) \end{split}$$

 $\mathcal{J}_{\lambda}(p,p')$ =Jump rate from momentum p' to momentum p.

$$\mathcal{J}_{\lambda}(p,p') = \frac{\eta(1+\lambda)}{2m} |p-p'| \frac{e^{-\frac{\beta}{2m} \left(\frac{\lambda-1}{2}p' + \frac{1+\lambda}{2}p\right)^2}}{(2\pi \frac{m}{\beta})^{\frac{1}{2}}}$$

 $\beta=$ inverse temperature, $\lambda=\frac{m}{M}$ mass ratio, $\eta=$ density of gas

Normalizing parameters

Setting $m = \beta = a = 1$ and stretching the spatial variable $\lambda x \to x$.

$$\frac{d}{dt} P_{t}(x, p) = -p \frac{\partial P_{t}}{\partial x}(x, p) + \frac{dV}{dx}(x) \frac{\partial P_{t}}{\partial p}(x, p)
+ \int_{\mathbb{R}} dp' \left(\mathcal{J}_{\lambda}(p, p') P_{t}(x, p') - \mathcal{J}_{\lambda}(p', p) P_{t}(x, p) \right)$$

 $\mathcal{J}_{\lambda}(p,p')$ =Jump rate from momentum p' to momentum p.

$$\mathcal{J}_{\lambda}(p,p')=rac{\eta(1+\lambda)}{2}ig|p-p'ig|rac{e^{-rac{1}{2}ig(rac{\lambda-1}{2}p'+rac{1+\lambda}{2}pig)^2}}{(2\pi)^{rac{1}{2}}}.$$

Defines a λ -dependent Markovian dynamics on

$$\mathcal{S}=\mathbb{T} imes\mathbb{R}, \qquad \qquad \mathbb{T}=[0,1).$$

The $\lambda = 0$ case is frictionless:

$$j(p-p') = \mathcal{J}_0(p,p') = \frac{\eta}{2} |p-p'| \frac{e^{-\frac{1}{8}(p-p')^2}}{(2\pi)^{\frac{1}{2}}}.$$

Our quantities of interest

Momentum process P_t is a sum of a jump term and a force term

$$P_t = P_0 + J_t + D_t$$
, where

- $ightharpoonup J_t$ is the sum of momentum jumps due to collisions.
- ▶ $D_t = \int_0^t dr \, \frac{dV}{dx}(X_r)$ is the total drift in momentum due to the forcing.

We study the momentum and total drift in momentum on time scales $\propto \lambda^{-1}$:

$$P_t^{(\lambda)} = \lambda^{\frac{1}{2}} P_{\frac{t}{\lambda}}$$
 and $D_t^{(\lambda)} = \lambda^{\kappa} D_{\frac{t}{\lambda}}, \quad \kappa = \frac{1}{4}.$

First result: Brownian limit

Assumptions: $\sup_{x \in \mathbb{T}} \left| \frac{dV}{dx}(x) \right| < \infty$ and the distribution for (X_0, P_0) is some μ not depending on λ .

Theorem (Clark, Dubois)

There is convergence in law over interval $t \in [0, T]$

$$\lambda^{\frac{1}{2}}D_{\frac{t}{\lambda}} \quad \xrightarrow{\quad \mathfrak{L} \quad} \quad 0 \qquad \text{and} \qquad \lambda^{\frac{1}{2}}P_{\frac{t}{\lambda}} \quad \xrightarrow{\quad \mathfrak{L} \quad} \quad \mathfrak{p}_t,$$

where \mathfrak{p}_t is the Ornstein-Uhlenbeck process:

$$d\mathfrak{p}_t = -\gamma \mathfrak{p}_t dt + \left(\frac{2m\gamma}{\beta}\right)^{\frac{1}{2}} d\mathbf{B}_t, \qquad \mathfrak{p}_0 = 0$$

for

$$\gamma = 8\eta (\frac{2}{\pi m \beta})^{\frac{1}{2}}, \quad \mathbf{B}_t$$
 is a standard brownian motion.

Invariant state and typical momentum

The effective Hamiltonian is

$$H(x,p) = \frac{1}{2}p^2 + V(x),$$
 (p is effectively a vel.),

and the equilibrium state $\mathcal{P}_{\infty}^{(\lambda)}: \mathbb{T} \times \mathbb{R} \to \mathbb{R}^+$ is

$$\mathcal{P}_{\infty}^{(\lambda)}(x,p) = \frac{e^{-\lambda H(x,p)}}{N_{\lambda}}.$$

- 1. Typical energy $H(x, p) \sim \lambda^{-1}$
- 2. Typical momentum has $|p| \sim \lambda^{-\frac{1}{2}}$, since $\sup_{x \in \mathbb{T}} V(x) < \infty$.

Lesson 1: Typically, only a small fraction of the energy will be in the potential energy.

Lesson 2: Typically, the particle is passing through the period cells quickly.

Potential acts weakly-usually

Between collisions, the force $\frac{dV}{dx}(x)$ drives the momentum

$$P_{\text{fin}} - P_{\text{int}} = \int_{t_{\text{int}}}^{t_{\text{fin}}} dr \, \frac{dV}{dx}(X_r).$$

For $|P_{int}|$ large enough,

$$\left|P_{\mathsf{fin}} - P_{\mathsf{int}}\right| \leq \left|\left|P_{\mathsf{int}}\right| - \sqrt{P_{\mathsf{int}}^2 + 2V_{\mathsf{int}} - 2V_{\mathsf{fin}}}\right| \leq \frac{2\sup_{x} V(x)}{\left|P_{\mathsf{int}}\right|},$$

$$|P_{\mathsf{int}}| \sim \lambda^{-\frac{1}{2}} \implies \left| \int_{1}^{t_{\mathsf{fin}}} dr \, \frac{dV}{dx}(X_r) \right| = O(\lambda^{\frac{1}{2}}).$$

Rough intuitive implication: Non-negligible contributions to

$$D_t = \int_0^t dr \frac{dV}{dx}(X_r), \qquad t \in [0, \frac{T}{\lambda}]$$

occur over intervals when $|P_r| \ll \lambda^{-\frac{1}{2}}$ (typical momentum) .

Returns to low momentum

If the rescaled momentum P_r for $r \in [0, \frac{T}{\lambda}]$ converges to a process of diffusion type, then that suggests...

... P_r will spend a time on the order of $\lambda^{-\frac{1}{2}}$ in a finite neighborhood [-L,L] of the origin over the interval $[0,\frac{T}{\lambda}]$

Thus scale considerations alone do not motivate that $\lambda^{\frac{1}{2}} \int_0^{\frac{t}{\lambda}} dr \, \frac{dV}{dx}(X_r) \to 0$, since there may be a (mysterious) bias.

Returns to low momentum, cont.

We also "need a zero":

$$\int_{S} dx dp \, \mathcal{P}_{\infty}^{(\lambda)}(x,p) \frac{dV}{dx}(x) = 0.$$

If there is enough ergodicity, then we expect there to be central limit-type cancellation so that typically

$$\int_0^{\frac{t}{\lambda}} dr \, \frac{dV}{dx}(X_r) = O(\lambda^{-\frac{1}{4}}).$$

Picture: Over an interval $t \in [0, \frac{T}{\lambda}]$:

- ▶ There will be 'long' time intervals over which $|P_t| >> 1$ and $\lambda^{\frac{1}{4}} \int_0^t dr \, \frac{dV}{dx}(X_r)$ does not fluctuate much.
- ▶ The dominant contributions to $\lambda^{\frac{1}{4}} \int_0^t dr \, \frac{dV}{dx}(X_r)$ will occur at infrequent intervals of time for $|P_t| = O(1)$.

Local time process

For \mathfrak{p}_t , the local time $\mathfrak{l}_t^{(a)}$ is the occupation time density at $a \in \mathbb{R}$ over the interval [0,t].

Formally,

$$\mathfrak{l}_t^{(a)} = \int_0^t dr \, \delta ig(\mathfrak{p}_r - a ig) \quad ext{and satisfies} \quad \int_{\mathbb{R}} da \, \mathfrak{l}_t^{(a)} = t.$$

For a = 0 we just write l_t .

The Tanaka formula gives:

$$\mathfrak{l}_t = |\mathfrak{p}_t| + \frac{1}{2} \int_0^t dr |\mathfrak{p}_r| - \tilde{\mathbf{B}}_t, \qquad \mathfrak{p}_0 = 0,$$

where $\tilde{\mathbf{B}}_t = \int_0^t S(\mathfrak{p}_r) d\mathbf{B}_r$ and $S: \mathbb{R} \to \{+, -\}$ is the sign function.

Main theorem

Let

- \triangleright p_t be the Ornstein-Uhlenbeck processes
- ▶ l_t be the local time at zero of p_r over $r \in [0, t]$.
- $ightharpoonup \mathbf{B}_t'$ be a copy of standard Brownian motion independent of \mathfrak{p}_t

Theorem (Clark, Dubois)

There is convergence in law over interval $t \in [0, T]$

$$\big(\lambda^{\frac{1}{2}}P_{\frac{t}{\lambda}},\,\lambda^{\frac{1}{4}}D_{\frac{t}{\lambda}}\big) \quad \xrightarrow{\mathfrak{L}} \quad \big(\mathfrak{p}_t,\,\upsilon^{\frac{1}{2}}\mathbf{B}'_{\mathfrak{l}_t}\big),$$

for a v > 0.

Formal expression for the diffusion constant

Very formally, the diffusion constant is

$$v = 2 \int_{\mathbb{T} \times \mathbb{D}} dx dp \, \Re(\frac{dV}{dx})(x, p) \frac{dV}{dx}(x),$$

where $\mathfrak{R}=\int_0^\infty dr\,e^{r\mathcal{L}}$ is the reduced resolvent of the generator \mathcal{L}

$$\mathcal{L}(F)(x,p) = p \frac{\partial F}{\partial x}(x,p) - \frac{dV}{dx}(x) \frac{\partial F}{\partial x}(x,p) + \int_{\mathbb{R}} dp' \left(j(p-p') F(x,p') - j(p'-p) F(x,p) \right).$$

$$j(p-p')=\lim_{\lambda o 0}\mathcal{J}_{\lambda}(p,p')=rac{1}{2}ig|p-p'ig|rac{e^{-rac{1}{8}ig(p-p'ig)^2}}{(2\pi)^{rac{1}{2}}}$$

Comparison with another class of limit theorems

There are many results on models similar to the following:

- Null-recurrent Markov process Y_t , with state space S invariant measure μ .
- Additive functional $A_t = \int_0^t dr \, f(Y_r)$ with $\int_S f \, d\mu = 0$.
- lacktriangle Some characterization of the recurrence, e.g. for $\epsilon\ll 1$

$$\mathfrak{R}_{\epsilon}(x) = \mathbb{E}_{\mathbf{x}}\Big[\int_{0}^{\infty} ds \, \mathrm{e}^{-\epsilon \, s} g(Y_{s})\Big] \sim \epsilon^{-lpha} \int_{S} d\mu \, g$$

for $0 < \alpha < 1$ and g > 0, $g \in L^1(\mu)$.

Then prove limit laws

$$\lambda^{\frac{\alpha}{2}} A_{\frac{t}{2}} \quad \stackrel{\mathfrak{L}}{\longrightarrow} \quad D^{\frac{1}{2}} \mathbf{B}_{\tau_t},$$

where τ_t is a Mittag-Leffler process of exponent α and ${\bf B}$ is an independent Brownian motion.

Note: When $\alpha = \frac{1}{2}$, then τ_t has the same distribution as the local time ℓ_t at zero for a standard Brownian motion.

Comparison with other limit theorems, cont.

These limit laws satisfy a scale invariance

$$\mathbf{B}_{\tau_{at}} \quad \stackrel{d}{=} \quad a^{\frac{\alpha}{2}} \mathbf{B}_{\tau_t} \quad \text{since} \quad \tau_{at} \quad \stackrel{d}{=} \quad a^{\alpha} \tau_t,$$

whereas our limiting law has no scale invariance

$$\mathbf{B}_{\mathfrak{l}_{at}} \quad \stackrel{d}{\neq} \quad a^{\beta} \mathbf{B}_{\mathfrak{l}_{t}}, \qquad \text{for any } \beta,$$

since the process l_t comes from an Ornstein-Uhlenbeck process.

Most related articles:

- 1. A. Touati: *Théorèmes limites...*, (Unpublished), (1988).
- 2. R. Höpfner, E. Löcherbach: Limit Theorems... (2003).
- 3. E. Löcherbach, D. Loukianova: On Nummelin split..., (2007).

Some comments on approach

One of the fundamental ideas comes from (A. Touati, 88').

Construct a martingale close to $\int_0^t dr \, \frac{dV}{dx}(X_r)$ by adding some artificial structure to the process $\mathbf{s}_t = (X_t, P_t)$.

Construct a process $\mathbf{\tilde{s}}_t = (\mathbf{s}_t, \epsilon_t) \in \mathbb{T} \times \mathbb{R} \times \{0, 1\}$.

- 1. Let $\tau_n = e_1 + \cdots e_n$ for a sequence e_m of independent exponential random variables with mean 1. Construct chain $s_n = \mathbf{s}_{\tau_n}$.
- 2. Extend the state space of chain (s_n) to $\mathbb{T} \times \mathbb{R} \times \{0,1\}$ via Nummelin splitting. This requires picking function $0 \le h(s) < 1$, and probability measure ν on $\mathbb{T} \times \mathbb{R}$

$$\mathcal{T}_{\lambda}(ds,s') \geq d\nu(s)h(s'), \qquad s,s' \in \mathbb{T} \times \mathbb{R}.$$

The set $\mathbb{T} \times \mathbb{R} \times 1$ is identified as the atom.

3. Use the chain \tilde{s}_n to construct a split (non-Markovian) process $\tilde{\mathbf{s}}_t \in \mathbb{T} \times \mathbb{R} \times \{0,1\}$.

Some comments, cont.

The recipe for constructing the extended transition rates \tilde{T}_{λ} in terms of the transition rates T_{λ} for the original chain $s_n = \mathbf{s}_{\tau_n}$

$$\tilde{\mathcal{T}}_{\lambda}\big(\textit{ds}_2, \epsilon_2; \mathsf{s}_1, \epsilon_1\big) = \left\{ \begin{array}{ll} \frac{1 - h(\mathsf{s}_2)}{1 - h(\mathsf{s}_1)} \big(\mathcal{T}_{\lambda} - \nu \times h\big) \big(\textit{ds}_2, \mathsf{s}_1\big) & \epsilon_1 = \epsilon_2 = 0, \\ \frac{h(\mathsf{s}_2)}{1 - h(\mathsf{s}_1)} \big(\mathcal{T}_{\lambda} - \nu \times h\big) \big(\textit{ds}_2, \mathsf{s}_1\big) & \epsilon_1 = 1 - \epsilon_2 = 0, \\ \big(1 - h(\mathsf{s}_2)\big) \nu \big(\textit{ds}_2\big) & \epsilon_1 = 1 - \epsilon_2 = 1, \\ h(\mathsf{s}_2) \nu \big(\textit{ds}_2\big) & \epsilon_1 = \epsilon_2 = 1. \end{array} \right.$$

The component $\epsilon_t \in \{0,1\}$ in the slit process $\tilde{\mathbf{s}}_t = (X_t, P_t, \epsilon_t)$ does not change between times τ_n and τ_{n+1} .

The statistics for \tilde{s}_t for $t \in (\tau_n, \tau_{n+1})$ agrees with the original processes conditioned on s_{τ_n} and $s_{\tau_{n+1}}$.

The marginal for the first component of $\tilde{\mathbf{s}}_t = (\mathbf{s}_t, \epsilon_t)$ has the same law as the original process.

Some comments, cont.

Let R_n be the sequence of return times to the atom \mathbf{a} for the split process $\tilde{\mathbf{s}}_t$.

Let N_t be the number of returns up to time t.

$$\int_0^t dr \, \frac{dV}{dx}(X_r) = \sum_{n=1}^{N_t-1} \int_{R_n}^{R_{n+1}} dr \, \frac{dV}{dx}(X_r) + (\text{ Boundary terms }).$$

$$\int_{\mathbb{T}\times\mathbb{R}} dx dp \, \mathcal{P}_{\infty}^{(\lambda)}(x,p) \frac{dV}{dx}(x) = 0 \implies \tilde{\mathbb{E}}_{\mathbf{a}}^{(\lambda)} \Big[\int_{R_n}^{R_{n+1}} dr \, \frac{dV}{dx}(X_r) \Big] = 0.$$

The predictable quadratic variation for the martingale $\sum_{n=1}^{\mathbf{N}_t-1} \int_{R_n}^{R_{n+1}} dr \, \frac{dV}{dx}(X_r)$ is $\sigma_{\lambda} \int_0^t dr \, h(\mathbf{s}_r)$ for

$$\sigma_{\lambda} := \mathbb{E}_{\mathbf{a}}^{(\lambda)} \Big[\Big(\int_{R_n}^{R_{n+1}} dr \, \frac{dV}{dx} (X_r) \Big)^2 \Big] \longrightarrow \frac{\upsilon}{\int_{\mathbb{T} \times \mathbb{R}} ds \, h(s)}.$$

Some comments, cont.

Touati's idea has been applied in a limit theorem recently in Löcherbach, Loukianova: (2007).

A different process splitting argument was developed in Höpfner, Löcherbach (2003).

Another part of the argument involves showing that as $\lambda \to 0$, then

$$\frac{\lambda^{\frac{1}{2}} \int_0^{\frac{t}{\lambda}} dr \, h(\mathbf{s}_r)}{\int_{\mathbb{T} \times \mathbb{R}} ds \, h(s)} \qquad \stackrel{\mathfrak{L}}{\longrightarrow} \qquad \mathfrak{l}_t.$$

To prove

$$\left(\lambda^{\frac{1}{4}} \int_{0}^{\frac{t}{\lambda}} dr \, \frac{dV}{dx}(X_{r}), \, \frac{\lambda^{\frac{1}{2}} \int_{0}^{\frac{t}{\lambda}} dr \, h(\mathbf{s}_{r})}{\int_{\mathbb{T}_{X} \setminus \mathbb{D}} ds \, h(s)}\right) \qquad \stackrel{\mathfrak{L}}{\longrightarrow} \qquad \left(\mathbf{B}'_{\mathfrak{l}_{t}}, \mathfrak{l}_{t}\right)$$

involves showing an asymptotic independence seen in the limiting quantities \mathbf{B}' and \mathfrak{l}_t . We adopt arguments from Höpfner, Löcherbach (2003).

Last remark

Current techniques improves some of those in

J. Clark, C. Maes: *Diffusive behavior for randomly kicked...*, Comm. Math. Phys. (2011),

where a similar model (degenerate $\lambda=0$) was studied, but an extra torus-reflection symmetry V(x)=V(Rx) was assumed in order to use a time-reversal symmetry argument to show that the forcing is negligible.