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Introduction

It has been numerically observed that one dimensional chains of
coupled oscillators conserving momentum display anomalous energy
diffusion ( [Dhar], [Lepri et al.]).

The nature and the exponents corresponding to this anomalous
diffusion are unknown. Theoretical and numerical studies are
controversial. Universality or dependance on the interaction potential?

We will discuss here a simple system of coupled differential equations
which have similar behaviors.
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The models

Let V : R→ [0,+∞) be a smooth potential and consider the set of
coupled differential equations

dηx(t) =
[
V ′(ηx+1(t))− V ′(ηx−1(t))

]
dt, ηx ∈ R, x ∈ Z

We interpret it as a fluctuating interface. The energy
∑

x V (ηx) and
the volume

∑
x ηx are conserved by the dynamics:

d

dt
V (ηx(t)) = −∇

[
jex−1,x(t)

]
,

d

dt
ηx = −∇

[
jvx−1,x(t)

]
with the associated instantaneous currents

jex ,x+1 = −V ′(ηx)V ′(ηx+1), jvx ,x+1 = −
[
V ′(ηx+1) + V ′(ηx)

]
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The models: examples

Harmonic potential: V (η) = η2. The dynamics is linear and
solvable by Fourier transform:

d η̂

dt
(t, k) = iω(k) η̂(t, k), η̂(t, k) =

∑
x∈Z

ηx(t) e2iπkx .

where ω(k) = −2 sin(2πk).

The energy of the kth mode Ek(t) =
1

4π
|η̂(t, k)|2 = Ek(0) is

conserved by the time evolution.

The 0th mode η̂(t, 0) = η̂(0, 0) is conserved (volume conservation).

The total energy current Je =
∑

x∈Z jex ,x+1 takes the simple form

Je =

∫
T

vg(k)Ek dk, vg(k) = ω′(k) = −4π cos(2πk).
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The models: examples

Harmonic potential: V (η) = η2.

Exponential potential: V (η) = e−η + η − 1. The system is
completely integrable and known as the Kac-Van-Moerbecke (KVM)
system. It is related to the Toda lattice, i.e. chain of oscillators with
exponential interactions, which is also completely integrable.

Cubic,quartic potentials...: V (η) = η2 + αη3 + βη4.
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Equilibrium measures and thermodynamic relations

Every product probability measure µβ,λ, β > 0, λ ∈ R,

dµβ,λ(η) =
∏
x∈Z

Z (β, λ)−1 exp {−βV (ηx)− ληx}

is invariant for the dynamics.

Let e(β, λ) = µβ,λ(V (η0)) and v(β, λ) := µβ,λ(η0) be the averaged
energy and volume. Under suitable conditions, there is a one-to-one
correspondence between the chemical potentials (β, λ) and the
conserved quantities (e, v) through the thermodynamic entropy; we
write β := β(e, v), λ := λ(e, v).
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Hyperbolic Scaling

We consider the closed system of length N with periodic boundary
conditions, i.e. x ∈ TN , TN the discrete torus of length N.
Take macroscopic energy-volume profiles
(e0, v0) : [0, 1)→ (0,+∞)× R. Let (β0, λ0) be the corresponding
chemical potentials.
Start the system with the initial local Gibbs equilibrium state:

dµN
β0,λ0

(η) =
∏

x∈TN

exp {−β0(x/N)V (ηx)− λ0(x/N)ηx}
Z (β0(x/N), λ0(x/N))

dηx ,

We expect that at time tN the system is close to a local Gibbs
equilibrium state associated to macroscopic energy-volume profiles
(et , vt), ie.

η(tN) ∼Law

∏
x∈TN

exp {−βt(x/N)V (ηx)− λt(x/N)ηx}
Z (βt(x/N), λt(x/N))

dηx ,

with (βt , λt) the chemical potentials associated to (et , vt).
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Hyperbolic Scaling

Let τ := τ(e, v) = λ(e, v)/β(e, v). If the picture above is correct then
the macroscopic profiles shall satisfy{

∂te− ∂qτ
2 = 0,

∂tv− 2∂qτ = 0.

This is an hyperbolic system of two conservation laws. Even starting
from smooth initial conditions, solutions develop shocks, and weak
(there are a lot) solutions have to be considered.The relevant criterion
to decide what is the right (i.e. physical) solution is not fully
understood for systems of n conservation laws as soon as n ≥ 2. The
situation is more understood for n = 2 but very far to be complete.

In the sequel we restrict us to the (small but macroscopic) time
interval where a smooth solution exists.
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Hyperbolic Scaling

In the smooth regime, deriving a system of conservation laws from a
deterministic dynamics is a challenging open question.

The main obstacle to solve this question is to show that the infinite
dynamics is ergodic in a suitable sense.

Definition

We say that the infinite volume dynamics {ηx(t) ; x ∈ Z, t ≥ 0} is ergodic
if the only time and space invariant probability measures ν on RZ with
finite entropy density are mixtures of {µβ,λ, β > 0, λ ∈ R}.
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Hyperbolic Scaling

We introduce the empirical energy and empirical volume (q ∈ [0, 1))(
EN(t, q)
VN(t, q)

)
=

1

N

∑
x∈TN

1[ x/N,(x+1)/N )(q)

(
V (ηx(tN))
ηx(tN)

)
.

Following ideas developed in [Olla-Varadhan-Yau’93], we have

Proposition

If the infinite volume dynamics is ergodic then the empirical energy and
the empirical volume converges, in the smooth regime, to the system of
conservation laws {
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Ergodicity

We are not able to show that the dynamics is ergodic for any choice
of the potential. But we have the following theorem (weak form of
ergodicity)

Theorem (B.-Stoltz’11)

The only time-space invariant probability measures with finite entropy
density and exchangeable are mixtures of the equilibrium measures {µβ,λ}.

The proof relies on arguments developed in [Fritz-Funaki-Lebowitz’94] in
the context of chains of anharmonic oscillators.
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Stochastic energy-volume conserving dynamics

To recover the exchangeability property that we cannot prove for the
deterministic dynamics we add a stochastic noise which conserves
energy and volume.

The stochastic dynamics η̂(t) evolves as the deterministic dynamics
but at random independent Poissonian times of intensity γ > 0, η̂x is
exchanged with η̂x+1.

The generator L is given by

(Lf )(η̂) =
∑
x∈Z

(
V ′(η̂x+1)− V ′(η̂x−1)

)
(∂ηx f )(η̂)

+ γ
∑
x∈Z

[
f (η̂x ,x+1)− f (η̂)

]

The dynamics η̂ conserves the energy and the volume.
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Hyperbolic Scaling II

Theorem (B.-Stoltz ’11)

The stochastic energy-volume conserving dynamics {η̂(t)} is ergodic. In
the hyperbolic time scaling, the empirical energy and empirical volume
converges (in the smooth regime), to{

∂te− ∂qτ
2 = 0,

∂tv− 2∂qτ = 0.

Observe that the noise does not affect the form of the hydrodynamic
equations.
The derivation beyond the shocks is considerably more difficult (cf.
[Fritz-Tóth’ 04], not applicable here).
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Sub diffusive/ Diffusive scaling

The next step consists to look at the fluctuations of the conserved
quantities. We consider the infinite system starting from an
equilibrium measure µβ,λ corresponding to averaged energy-volume
(e, v).

If the system has normal fluctuations, it means that after having
subtracted the transport term appearing in the hydrodynamic
equations, the fluctuations field in a box of size N evolves in a time
scale of order tN2.

If we have a super diffusive behavior, it evolves in a time scale of
order tN1+α, α < 1.

A more tractable quantity than the fluctuations field is the diffusivity
Dβ,λ(t).
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Diffusivity

Some notations:

ξx − ξ̄ =

(
V (ηx)− µβ,λ(V (ηx))

ηx − µβ,λ(ηx)

)
, Jx ,x+1 =

(
jex ,x+1

jvx ,x+1

)
,

J(ξ̄) = µβ,λ(Jx ,x+1), (DJ)(ξ̄) = Differential matrix of J

The normalized current is

Ĵx ,x+1 = Jx ,x+1 − J(ξ̄)− (DJ)(ξ̄)
(
ξx − ξ̄

)
.
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Diffusivity

Dβ,λ(t)

= lim
N→∞

1

(2N + 1)t

〈∑
|x|≤N

∫ t

0

Ĵx,x+1(s) ds

∑
|x|≤N

∫ t

0

Ĵx,x+1(s) ds

∗〉
β,λ

A diffusive (resp. super diffusive) behavior corresponds to Dβ,λ(t) of order 1
(resp. tα, 1 ≥ α > 0). The case α = 1 corresponds to a ballistic transport.

Proposition

If V (r) = r 2 (harmonic) or V (r) = e−r + r − 1 (KVM system) then the transport
is ballistic, in the sense that

Dβ,λ(t) ≥ cλ,βt
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Diffusivity

Theorem (B., Stoltz’11)

Consider the stochastic energy-volume conserving model η̂(t) with
harmonic potential. Then, the diffusivity is of order

√
t (it can be

explicitly computed), i.e. the system is super diffusive.

The proof relies on arguments developed in [Basile-B.-Olla ’06] for chain
of oscillators with energy-momentum conserving noise.
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Numerical simulations

Numerical simulations of the diffusivity D(t) are quite difficult. The
study of normal/abnormal diffusion is more efficient by using a
non-equilibrium setting with thermostats.

We consider a system of size N(∼ 65000) that we couple at the
boundaries with Langevin baths fixing the value of the energies
e` 6= er .

Existence and uniqueness of a stationary state 〈·〉ss,γ can be proved
([Eckmann, Hairer, Pillet, Rey-Bellet,...]), for the deterministic
(γ = 0) and for the stochastic model (γ > 0).

We are interested in the dependance with respect to N of the
averaged energy flux 〈jex ,x+1〉ss,γ . A diffusive behavior corresponds to

〈jex ,x+1〉ss,γ ∼ N−1; a super diffusive behavior to

〈jex ,x+1〉ss,γ ∼ N−1+α, 0 < α ≤ 1.
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Numerical simulations: V (r) = r 2
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Numerical simulations: V (r) = r 2 + r 4
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Numerical simulations: V (r) = r 2 + r 3 + r 4 /
V (r) = r 2 + r 4
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Numerical simulations: V (r) = e−r + r − 1
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Comments on the numerical simulations

The exponent α such that 〈jex ,x+1〉ss,γ ∼ N−1+α, 0 < α ≤ 1, seems to
depend on γ.

More surprising is the fact that α increase with γ.

A similar behavior has been observed for chains of oscillators
perturbed by an energy-momentum conserving noise [Basile et al. ’07,
Iacobucci et al. ’10].
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Anharmonic case

For momentum conserving anharmonic chains of oscillators, there
does not exist any proof of anomalous conductivity.

Even with a momentum conserving noise, we didn’t succeed to prove
superdiffusivity (only upper bounds).

This system is simpler (more symmetries). We are able to show, for a
very particular choice of the potential, that the system is super
diffusive.

C. Bernardin (CNRS, Ens Lyon) Anomalous diffusion April, 2011 24 / 27



Anharmonic case

For momentum conserving anharmonic chains of oscillators, there
does not exist any proof of anomalous conductivity.

Even with a momentum conserving noise, we didn’t succeed to prove
superdiffusivity (only upper bounds).

This system is simpler (more symmetries). We are able to show, for a
very particular choice of the potential, that the system is super
diffusive.

C. Bernardin (CNRS, Ens Lyon) Anomalous diffusion April, 2011 24 / 27



Anharmonic case

For momentum conserving anharmonic chains of oscillators, there
does not exist any proof of anomalous conductivity.

Even with a momentum conserving noise, we didn’t succeed to prove
superdiffusivity (only upper bounds).

This system is simpler (more symmetries). We are able to show, for a
very particular choice of the potential, that the system is super
diffusive.

C. Bernardin (CNRS, Ens Lyon) Anomalous diffusion April, 2011 24 / 27



Anharmonic case

For momentum conserving anharmonic chains of oscillators, there
does not exist any proof of anomalous conductivity.

Even with a momentum conserving noise, we didn’t succeed to prove
superdiffusivity (only upper bounds).

This system is simpler (more symmetries).

We are able to show, for a
very particular choice of the potential, that the system is super
diffusive.

C. Bernardin (CNRS, Ens Lyon) Anomalous diffusion April, 2011 24 / 27



Anharmonic case

For momentum conserving anharmonic chains of oscillators, there
does not exist any proof of anomalous conductivity.

Even with a momentum conserving noise, we didn’t succeed to prove
superdiffusivity (only upper bounds).

This system is simpler (more symmetries). We are able to show, for a
very particular choice of the potential, that the system is super
diffusive.

C. Bernardin (CNRS, Ens Lyon) Anomalous diffusion April, 2011 24 / 27



The stochastic KVM system

Consider the stochastic energy-volume conserving model with
V (r) = e−r + r − 1.

Theorem (B., P. Gonçalves ’11, work in progress)

For any γ > 0, the diffusivity Dλ,β(t) is at least of order t1/4 and at most
of order t1/2, i.e. it is super diffusive. Moreover, until time scaling tN4/3,
energy fluctuations are trivial.

Observe that in this case, the system of conservation laws is{
∂te− ∂q(v− e)2 = 0,

∂tv− 2∂q(v− e) = 0.

Hence, (e− v + 1) evolves according to the autonomous Burgers
equation.
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Future work/Open questions

Hydrodynamic limits (for the stochastic dynamics) beyond the
appearance of the shocks. Systems of two conservation laws are more
understood than systems of three conservation laws (anharmonic
chains of oscillators).

Consider the deterministic system with a quartic or cubic potential.
Compute, by using [Lukkarinen-Spohn’08] approach, the value of the
divergence exponent of the diffusivity.

For the conserving stochastic model, prove the superdiffusive behavior
for a general class of potentials.

For the conserving stochastic model, prove that the divergence
exponent depends (or not depends) on γ.

Randomness can also be introduced in the model:

mxdηx = V ′(ηx+1)− V ′(ηx−1)

What is the effect of the randomness on the transport properties? Is
it a normal conductor as soon as V is anharmonic?
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Hamiltonian description

Consider the variables px = η2x and qx − qx−1 = η2x−1.

The equations of motion can be rewritten as

dri =
(

V ′(pi )− V ′(pi−1)
)

dt,

dpi =
(

V ′(qi+1 − qi )− V ′(qi − qi−1)
)

dt.

Correspond to the Hamiltonian:

H(q, p) =
∑

i

V (qi − qi−1) +
∑

i

V (pi ),
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