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This Talk ...

Overview of recent progress on analytical/quantitative
treatment of behavioural finance in asset allocation

Highlight major challenges, and solutions

Demonstrate that the solutions lead to new problems in both
finance and mathematics
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Expected Utility Theory

Expected Utility Theory (EUT): To evaluate gambles (random
variables, lotteries) and form preference

Foundation laid by von Neumann and Morgenstern (1947)

Axiomatic approach: completeness, transivity, continuity and
independence

Risk preference representable by expectation of utility function
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Human Judgement Implied by Expected Utility Theory

EUT: Dominant model for decision making under uncertainty,
including financial asset allocation

Basic tenets of human judgement implied by EUT in the
context of asset allocation:

Frame of problem: Investors’ preference is independent of
how problem is stated (described, or framed)
Source of satisfaction: Investors evaluate assets according to
final wealth
Attitude towards risk: Investors are always risk averse
(concave utility)
Beliefs about future: Investors are able or willing to
objectively evaluate probabilities of future returns
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Frame Independence

Frame: the form used to describe a decision problem
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Frame Independence

Frame: the form used to describe a decision problem

Frame independence: form is irrelevant to behaviour and final
solution
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Frame: the form used to describe a decision problem

Frame independence: form is irrelevant to behaviour and final
solution

People can see through all the different ways a problem might
be described

Xunyu Zhou Behavioural Portfolio Choice



Frame Independence

Frame: the form used to describe a decision problem

Frame independence: form is irrelevant to behaviour and final
solution

People can see through all the different ways a problem might
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Frame independence: the foundation of neoclassical
economics/finance
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Frame Independence

Frame: the form used to describe a decision problem

Frame independence: form is irrelevant to behaviour and final
solution

People can see through all the different ways a problem might
be described

Frame independence: the foundation of neoclassical
economics/finance

Merton Miller: “If you transfer a dollar from your right pocket
to your left pocket, you are no wealthier. Franco (Modigliani)
and I proved that rigorously”
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My Parking Ticket

I got a parking ticket in HK
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I got a parking ticket in HK

The penalty charge notice (PCN) read:
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My Parking Ticket

I got a parking ticket in HK

The penalty charge notice (PCN) read:

A penalty HK$350 is now payable and must be paid in 14 days
If you pay after 14 days there is a surcharge of an additional
HK$350

Xunyu Zhou Behavioural Portfolio Choice



My Parking Ticket

I got a parking ticket in HK

The penalty charge notice (PCN) read:

A penalty HK$350 is now payable and must be paid in 14 days
If you pay after 14 days there is a surcharge of an additional
HK$350

I paid reluctantly ... on the 14th day

Xunyu Zhou Behavioural Portfolio Choice



My Parking Ticket

I got a parking ticket in HK

The penalty charge notice (PCN) read:

A penalty HK$350 is now payable and must be paid in 14 days
If you pay after 14 days there is a surcharge of an additional
HK$350

I paid reluctantly ... on the 14th day

I got a parking ticket (again), this time in UK

Xunyu Zhou Behavioural Portfolio Choice



My Parking Ticket

I got a parking ticket in HK

The penalty charge notice (PCN) read:

A penalty HK$350 is now payable and must be paid in 14 days
If you pay after 14 days there is a surcharge of an additional
HK$350

I paid reluctantly ... on the 14th day

I got a parking ticket (again), this time in UK

The PCN in UK said:
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My Parking Ticket

I got a parking ticket in HK

The penalty charge notice (PCN) read:

A penalty HK$350 is now payable and must be paid in 14 days
If you pay after 14 days there is a surcharge of an additional
HK$350

I paid reluctantly ... on the 14th day

I got a parking ticket (again), this time in UK

The PCN in UK said:

A penalty £70 is now payable and must be paid in 28 days
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My Parking Ticket

I got a parking ticket in HK

The penalty charge notice (PCN) read:

A penalty HK$350 is now payable and must be paid in 14 days
If you pay after 14 days there is a surcharge of an additional
HK$350

I paid reluctantly ... on the 14th day

I got a parking ticket (again), this time in UK

The PCN in UK said:

A penalty £70 is now payable and must be paid in 28 days
But ... if you pay in 14 days there is a discount of 50% to £35
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My Parking Ticket

I got a parking ticket in HK

The penalty charge notice (PCN) read:

A penalty HK$350 is now payable and must be paid in 14 days
If you pay after 14 days there is a surcharge of an additional
HK$350

I paid reluctantly ... on the 14th day

I got a parking ticket (again), this time in UK

The PCN in UK said:

A penalty £70 is now payable and must be paid in 28 days
But ... if you pay in 14 days there is a discount of 50% to £35

I paid immediately ...
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My Parking Ticket

I got a parking ticket in HK

The penalty charge notice (PCN) read:

A penalty HK$350 is now payable and must be paid in 14 days
If you pay after 14 days there is a surcharge of an additional
HK$350

I paid reluctantly ... on the 14th day

I got a parking ticket (again), this time in UK

The PCN in UK said:

A penalty £70 is now payable and must be paid in 28 days
But ... if you pay in 14 days there is a discount of 50% to £35

I paid immediately ... filled with gratitude and joy
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A Trivial Game ...

Choose between
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A Trivial Game ...

Choose between

A: 75% chance to lose $7,600, 25% chance to gain $2,400
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A Trivial Game ...

Choose between

A: 75% chance to lose $7,600, 25% chance to gain $2,400
B: 75% chance to lose $7,500, 25% chance to gain $2,500

“B = A+ $100 > A”
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A Trivial Game ...

Choose between

A: 75% chance to lose $7,600, 25% chance to gain $2,400
B: 75% chance to lose $7,500, 25% chance to gain $2,500

“B = A+ $100 > A”

Decompose A into
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A Trivial Game ...

Choose between

A: 75% chance to lose $7,600, 25% chance to gain $2,400
B: 75% chance to lose $7,500, 25% chance to gain $2,500

“B = A+ $100 > A”

Decompose A into

A1: gain $2,400 for sure

Xunyu Zhou Behavioural Portfolio Choice



A Trivial Game ...

Choose between

A: 75% chance to lose $7,600, 25% chance to gain $2,400
B: 75% chance to lose $7,500, 25% chance to gain $2,500

“B = A+ $100 > A”

Decompose A into

A1: gain $2,400 for sure
A2: 75% chance to lose $10,000, 25% chance to lose nothing
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A Trivial Game ...

Choose between

A: 75% chance to lose $7,600, 25% chance to gain $2,400
B: 75% chance to lose $7,500, 25% chance to gain $2,500

“B = A+ $100 > A”

Decompose A into

A1: gain $2,400 for sure
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A Trivial Game ...

Choose between

A: 75% chance to lose $7,600, 25% chance to gain $2,400
B: 75% chance to lose $7,500, 25% chance to gain $2,500

“B = A+ $100 > A”

Decompose A into

A1: gain $2,400 for sure
A2: 75% chance to lose $10,000, 25% chance to lose nothing

Decompose B into

B1: 25% chance to gain $10,000, 75% chance to gain nothing
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A Trivial Game ...

Choose between

A: 75% chance to lose $7,600, 25% chance to gain $2,400
B: 75% chance to lose $7,500, 25% chance to gain $2,500

“B = A+ $100 > A”

Decompose A into

A1: gain $2,400 for sure
A2: 75% chance to lose $10,000, 25% chance to lose nothing

Decompose B into

B1: 25% chance to gain $10,000, 75% chance to gain nothing
B2: lose $7,500 for sure
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... Turned to A Paradox

Choose between
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Choose between

A1: gain $2,400 for sure
B1: 25% chance to gain $10,000, 75% chance to gain nothing
A1 was more popular
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... Turned to A Paradox

Choose between

A1: gain $2,400 for sure
B1: 25% chance to gain $10,000, 75% chance to gain nothing
A1 was more popular

Choose between

A2: 75% chance to lose $10,000, 25% chance to lose nothing
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... Turned to A Paradox

Choose between

A1: gain $2,400 for sure
B1: 25% chance to gain $10,000, 75% chance to gain nothing
A1 was more popular
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A2: 75% chance to lose $10,000, 25% chance to lose nothing
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... Turned to A Paradox

Choose between

A1: gain $2,400 for sure
B1: 25% chance to gain $10,000, 75% chance to gain nothing
A1 was more popular

Choose between

A2: 75% chance to lose $10,000, 25% chance to lose nothing
B2: lose $7,500 for sure
A2 was more popular

“A ≡ A1 +A2 > B1 +B2 ≡ B”!
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Loss Aversion: Losses Matter More

Paul Samuelson (1963): Choose between
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Loss Aversion: Losses Matter More

Paul Samuelson (1963): Choose between

A: Win $10,000 with 50% chance and lose $5,000 with 50%
chance
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Loss Aversion: Losses Matter More

Paul Samuelson (1963): Choose between

A: Win $10,000 with 50% chance and lose $5,000 with 50%
chance

B: Don’t take this bet
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Loss Aversion: Losses Matter More

Paul Samuelson (1963): Choose between

A: Win $10,000 with 50% chance and lose $5,000 with 50%
chance

B: Don’t take this bet

B was more popular
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Loss Aversion: Losses Matter More

Paul Samuelson (1963): Choose between

A: Win $10,000 with 50% chance and lose $5,000 with 50%
chance

B: Don’t take this bet

B was more popular

Loss aversion: pain from a loss is more than joy from a gain
of the same magnitude
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Probability Distortion (Weighting): Lottery Ticket and

Insurance

Choose between
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Probability Distortion (Weighting): Lottery Ticket and

Insurance

Choose between

A: Win $5,000 with 0.1% chance
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Probability Distortion (Weighting): Lottery Ticket and

Insurance

Choose between

A: Win $5,000 with 0.1% chance
B: Win $5 with 100% chance
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Probability Distortion (Weighting): Lottery Ticket and

Insurance

Choose between

A: Win $5,000 with 0.1% chance
B: Win $5 with 100% chance
A was more popular
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Probability Distortion (Weighting): Lottery Ticket and

Insurance

Choose between

A: Win $5,000 with 0.1% chance
B: Win $5 with 100% chance
A was more popular

Choose between

Xunyu Zhou Behavioural Portfolio Choice



Probability Distortion (Weighting): Lottery Ticket and

Insurance

Choose between

A: Win $5,000 with 0.1% chance
B: Win $5 with 100% chance
A was more popular

Choose between

A: Lose $5,000 with 0.1% chance
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Probability Distortion (Weighting): Lottery Ticket and

Insurance

Choose between

A: Win $5,000 with 0.1% chance
B: Win $5 with 100% chance
A was more popular

Choose between

A: Lose $5,000 with 0.1% chance
B: Lose $5 with 100% chance
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Probability Distortion (Weighting): Lottery Ticket and

Insurance

Choose between

A: Win $5,000 with 0.1% chance
B: Win $5 with 100% chance
A was more popular

Choose between

A: Lose $5,000 with 0.1% chance
B: Lose $5 with 100% chance
This time: B was more popular
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EUT Turned Upside Down

Frame of problem: Investors’ preference may be dependent
of how problem is framed

Source of satisfaction: Investors do not always evaluate
assets according to final wealth

Attitude towards risk: Investors are not always risk averse

Beliefs about future: Investors are unable or sometimes
unwilling to objectively evaluate probabilities of future returns
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Cumulative Prospect Theory (CPT)

Reference point (Kahneman and Tversky 1979) or
customary wealth (Markowitz 1952) - choice of reference
point is part of the framing
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Cumulative Prospect Theory (CPT)

Reference point (Kahneman and Tversky 1979) or
customary wealth (Markowitz 1952) - choice of reference
point is part of the framing

S-shaped utility function (risk-averse on gains, risk-seeking
on losses), steeper on losses than on gains (loss aversion)
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Cumulative Prospect Theory (CPT)

Reference point (Kahneman and Tversky 1979) or
customary wealth (Markowitz 1952) - choice of reference
point is part of the framing

S-shaped utility function (risk-averse on gains, risk-seeking
on losses), steeper on losses than on gains (loss aversion)

Probability distortions
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Cumulative Prospect Theory (CPT)

Reference point (Kahneman and Tversky 1979) or
customary wealth (Markowitz 1952) - choice of reference
point is part of the framing

S-shaped utility function (risk-averse on gains, risk-seeking
on losses), steeper on losses than on gains (loss aversion)

Probability distortions

Backbone of behavioral economics/finance theory
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Probability Distortion Function
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Behavioural Portfolio Choice à la Prospect Theory

Max
X

∫∞
0 w+ (P (u+ ((X −B)+) > x)) dx

−
∫∞
0 w− (P (u− ((X −B)−) > x)) dx

Subject to E[ρX] = x0
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Max
X

∫∞
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where

B: reference point in wealth (possibly random)
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Behavioural Portfolio Choice à la Prospect Theory

Max
X

∫∞
0 w+ (P (u+ ((X −B)+) > x)) dx

−
∫∞
0 w− (P (u− ((X −B)−) > x)) dx

Subject to E[ρX] = x0

where

B: reference point in wealth (possibly random)

X: terminal payoff

w± : [0, 1] → [0, 1] probability distortions

Xunyu Zhou Behavioural Portfolio Choice



Behavioural Portfolio Choice à la Prospect Theory

Max
X

∫∞
0 w+ (P (u+ ((X −B)+) > x)) dx

−
∫∞
0 w− (P (u− ((X −B)−) > x)) dx

Subject to E[ρX] = x0

where

B: reference point in wealth (possibly random)

X: terminal payoff

w± : [0, 1] → [0, 1] probability distortions

u+(x)1x≥0 − u−(x)1x<0: overall utility function
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Behavioural Portfolio Choice à la Prospect Theory

Max
X

∫∞
0 w+ (P (u+ ((X −B)+) > x)) dx

−
∫∞
0 w− (P (u− ((X −B)−) > x)) dx

Subject to E[ρX] = x0

where

B: reference point in wealth (possibly random)

X: terminal payoff

w± : [0, 1] → [0, 1] probability distortions

u+(x)1x≥0 − u−(x)1x<0: overall utility function

ρ: pricing kernel with CDF F (·)
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Behavioural Portfolio Choice à la Prospect Theory

Max
X

∫∞
0 w+ (P (u+ ((X −B)+) > x)) dx

−
∫∞
0 w− (P (u− ((X −B)−) > x)) dx

Subject to E[ρX] = x0

where

B: reference point in wealth (possibly random)

X: terminal payoff

w± : [0, 1] → [0, 1] probability distortions

u+(x)1x≥0 − u−(x)1x<0: overall utility function

ρ: pricing kernel with CDF F (·)

x0: initial budget
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Behavioural Portfolio Choice à la Prospect Theory

Max
X

∫∞
0 w+ (P (u+ ((X −B)+) > x)) dx

−
∫∞
0 w− (P (u− ((X −B)−) > x)) dx

Subject to E[ρX] = x0

where

B: reference point in wealth (possibly random)

X: terminal payoff

w± : [0, 1] → [0, 1] probability distortions

u+(x)1x≥0 − u−(x)1x<0: overall utility function

ρ: pricing kernel with CDF F (·)

x0: initial budget

Berkelaar, Kouwenberg and Post (2004), Jin and Zhou (2008)
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Mathematical Challenges

Expected utility: stochastic control/HJB, martingale/convex
duality
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Mathematical Challenges

Expected utility: stochastic control/HJB, martingale/convex
duality

Prospect model: ???
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Expected utility: stochastic control/HJB, martingale/convex
duality

Prospect model: ???

Nonconcave in X : convex duality fails
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Mathematical Challenges

Expected utility: stochastic control/HJB, martingale/convex
duality

Prospect model: ???

Nonconcave in X : convex duality fails
Nonlinear expectation with Choquet integration:
time-consistency or HJB fails
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Our Model (Again)

Max
X

∫∞
0 w+ (P (u+ ((X −B)+) > x)) dx

−
∫∞
0 w− (P (u− ((X −B)−) > x)) dx

Subject to E[ρX] = x0
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Deriving Optimal Solution: Divide and Conquer

We do “divide and conquer”
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Deriving Optimal Solution: Divide and Conquer

We do “divide and conquer”

Step 1: divide into two problems: one concerns the gain part
of X and the other the loss part of X
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Deriving Optimal Solution: Divide and Conquer

We do “divide and conquer”

Step 1: divide into two problems: one concerns the gain part
of X and the other the loss part of X

Step 2: combine them together via solving another problem
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Deriving Optimal Solution: Divide and Conquer

We do “divide and conquer”

Step 1: divide into two problems: one concerns the gain part
of X and the other the loss part of X

Step 2: combine them together via solving another problem

Gain Part Problem (GPP): A problem with parameters (A, x+):

Maximize V+(X) =
∫ +∞
0 w+(P{u+(X) > y})dy

subject to







E[ρX] = x+,

X ≥ 0, a.s.,
X = 0, a.s. on AC ,

(1)

where x+ ≥ (x0 − E[ρB])+ (≥ 0) and A ∈ FT with P (A) ≤ 1

Define its optimal value to be v+(A, x+)
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Divide and Conquer (Cont’d)

Loss Part Problem (LPP): A problem with parameters (A, x+):

Minimise V−(X) =
∫ +∞
0 w−(P{u−(X) > y})dy

subject to















E[ρX] = x+ − x0 + E[ρB],
X ≥ 0, a.s.,
X = 0, a.s. on A,

X is bounded a.s.,

(2)

where x+ ≥ (x0 − E[ρB])+ and A ∈ FT with P (A) ≤ 1

Define its optimal value to be v−(A, x+)
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Divide and Conquer (Cont’d)

Loss Part Problem (LPP): A problem with parameters (A, x+):

Minimise V−(X) =
∫ +∞
0 w−(P{u−(X) > y})dy

subject to















E[ρX] = x+ − x0 + E[ρB],
X ≥ 0, a.s.,
X = 0, a.s. on A,

X is bounded a.s.,

(2)

where x+ ≥ (x0 − E[ρB])+ and A ∈ FT with P (A) ≤ 1

Define its optimal value to be v−(A, x+)

Then, in Step 2 we solve

Maximize v+(A, x+)− v−(A, x+)

subject to







A ∈ FT , x+ ≥ (x0 −E[ρB])+,
x+ = 0 when P (A) = 0,
x+ = x0 − E[ρB] when P (A) = 1.

(3)
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Yes It Works

Theorem

Given X∗, define A∗ := {ω : X∗ ≥ 0} and x∗+ := E[ρ(X∗)+].
Then X∗ is optimal for the behavioural problem iff (A∗, x∗+) are
optimal for Problem (3) and (X∗)+ and (X∗)− are respectively
optimal for Problems (1) and (2) with parameters (A∗, x∗+).
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Solution Flow

Solve GPP for any parameter (A, x+), getting optimal
solution X+(A, x+) and optimal value v+(A, x+)
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Solution Flow

Solve GPP for any parameter (A, x+), getting optimal
solution X+(A, x+) and optimal value v+(A, x+)

Solve LPP for any parameter (A, x+), getting optimal
solution X−(A, x+) and optimal value v−(A, x+)
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Solution Flow

Solve GPP for any parameter (A, x+), getting optimal
solution X+(A, x+) and optimal value v+(A, x+)

Solve LPP for any parameter (A, x+), getting optimal
solution X−(A, x+) and optimal value v−(A, x+)

Solve Step 2 problem and get optimal (A∗, x∗+)
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Solution Flow

Solve GPP for any parameter (A, x+), getting optimal
solution X+(A, x+) and optimal value v+(A, x+)

Solve LPP for any parameter (A, x+), getting optimal
solution X−(A, x+) and optimal value v−(A, x+)

Solve Step 2 problem and get optimal (A∗, x∗+)

Then X+(A
∗, x∗+)−X−(A

∗, x∗+) solves the behavioral model
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Simplification

Recall Step 2 problem

v+(A, x+)− v−(A, x+)

optimisation over a set of random events A: hard to handle
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Simplification

Recall Step 2 problem

v+(A, x+)− v−(A, x+)

optimisation over a set of random events A: hard to handle

Theorem

For any feasible pair (A, x+) of Problem (3), there exists c ∈ [ρ, ρ̄]
such that Ā := {ω : ρ ≤ c} satisfies

v+(Ā, x+)− v−(Ā, x+) ≥ v+(A, x+)− v−(A, x+). (4)
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Simplification

Recall Step 2 problem

v+(A, x+)− v−(A, x+)

optimisation over a set of random events A: hard to handle

Theorem

For any feasible pair (A, x+) of Problem (3), there exists c ∈ [ρ, ρ̄]
such that Ā := {ω : ρ ≤ c} satisfies

v+(Ā, x+)− v−(Ā, x+) ≥ v+(A, x+)− v−(A, x+). (4)

Use v+(c, x+) and v−(c, x+) to denote v+({ω : ρ ≤ c}, x+)
and v−({ω : ρ ≤ c}, x+) respectively
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Simplification (Cont’d)

Problem (3) is equivalent to

Maximize v+(c, x+)− v−(c, x+)

subject to







ρ ≤ c ≤ ρ̄, x+ ≥ x+0 ,

x+ = 0 when c = ρ,

x+ = x0 when c = ρ̄.

(5)

Xunyu Zhou Behavioural Portfolio Choice



Choquet Maximisation and Beyond

GPP specialises a general maximisation problem involving Choquet
integral:

Maximise
X

C(X) :=
∫ +∞
0 w(P (u(X) > y))dy

subject to E[ρX] = a, X ≥ 0,
(6)

where a ≥ 0, w(·) : [0, 1] 7→ [0, 1] non-decreasing, differentiable
with w(0) = 0, w(1) = 1, and u(·) strictly concave, strictly
increasing, twice differentiable with u(0) = 0, u′(0) = +∞,
u′(+∞) = 0
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Quantile Formulation

C(X) =
∫ +∞
0 w(P (u(X) > y))dy is non-concave/non-convex

in X due to probability distortion
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Quantile Formulation

C(X) =
∫ +∞
0 w(P (u(X) > y))dy is non-concave/non-convex

in X due to probability distortion

Way out: change decision variable of Problem (6) from
random variable X to its quantile function G(·)

This transformation recovers the concavity (in terms of G(·))
for (6)

Two key properties of Problem (6) exploited

law-invariance of C(X) (namely C(X) = C(Y ) if X ∼ Y )

Xunyu Zhou Behavioural Portfolio Choice



Quantile Formulation

C(X) =
∫ +∞
0 w(P (u(X) > y))dy is non-concave/non-convex

in X due to probability distortion

Way out: change decision variable of Problem (6) from
random variable X to its quantile function G(·)

This transformation recovers the concavity (in terms of G(·))
for (6)

Two key properties of Problem (6) exploited

law-invariance of C(X) (namely C(X) = C(Y ) if X ∼ Y )
monotonicity of supremium value with respect to initial wealth
a
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Rewriting C(X)

C(X) =
∫ +∞
0 w(P (u(X) > y))dy

=
∫ +∞
0 u(x)d[−w(1 − FX(x))]

=
∫ +∞
0 u(x)w′(1− FX(x))dFX (x)

=
∫ 1
0 u(G(z))w′(1− z)dz

= E[u(G(Z))w′(1− Z)],

(7)

where Z ∼ U(0, 1) and G = F−1
X (quantile function)

We change decision variable from X (r.v.) to G (quantile)
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Rewriting C(X)

C(X) =
∫ +∞
0 w(P (u(X) > y))dy

=
∫ +∞
0 u(x)d[−w(1 − FX(x))]

=
∫ +∞
0 u(x)w′(1− FX(x))dFX (x)

=
∫ 1
0 u(G(z))w′(1− z)dz

= E[u(G(Z))w′(1− Z)],

(7)

where Z ∼ U(0, 1) and G = F−1
X (quantile function)

We change decision variable from X (r.v.) to G (quantile)

... by which we recover linear expectation and concavity (if
u(·) is concave)!
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Budget Constraint

Express E [ρX] = a in terms of quantiles
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Budget Constraint

Express E [ρX] = a in terms of quantiles

Difficulty: E [ρX] is not law-invariant

Way out: think duality (performance vs. cost)

One may substitute X in preference measures by any r.v. Y –
so long as the distribution remains unchanged

... which one is the cheapest?

Consider minY∼X E [ρY ]

Unique optimal Y = G(Z) where Z := 1− Fρ(ρ) ∼ U(0, 1)
and G is quantile of X, provided that ρ has no atom (Dybvig
1988, Jin and Zhou 2008)
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Budget Constraint

Express E [ρX] = a in terms of quantiles

Difficulty: E [ρX] is not law-invariant

Way out: think duality (performance vs. cost)

One may substitute X in preference measures by any r.v. Y –
so long as the distribution remains unchanged

... which one is the cheapest?

Consider minY∼X E [ρY ]

Unique optimal Y = G(Z) where Z := 1− Fρ(ρ) ∼ U(0, 1)
and G is quantile of X, provided that ρ has no atom (Dybvig
1988, Jin and Zhou 2008)

Hence

E[ρX] = a ⇔ E
[

F−1
ρ (1− Z)G(Z)

]

= a

⇔

∫ 1

0
F−1
ρ (1− z)G(z)dz = a
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Choquet Maximisation Rewritten

Rewrite Problem (6) as follows

Maximise
G(·)

C̃(G(·)) =
∫ 1
0 u(G(z))w′(1− z)dz

subject to
∫ 1
0 F−1

ρ (1− z)G(z)dz = a, G(·) ∈ G, G(0+) ≥ 0.
(8)

Solvable by Lagrange if one ignores constraint G(·) ∈ G
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Accommodating G(·) ∈ G can be technically tricky
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Choquet Maximisation Rewritten

Rewrite Problem (6) as follows

Maximise
G(·)

C̃(G(·)) =
∫ 1
0 u(G(z))w′(1− z)dz

subject to
∫ 1
0 F−1

ρ (1− z)G(z)dz = a, G(·) ∈ G, G(0+) ≥ 0.
(8)

Solvable by Lagrange if one ignores constraint G(·) ∈ G

Accommodating G(·) ∈ G can be technically tricky

If G∗(·) is optimal then X∗ = G∗(1− Fρ(ρ)): optimal
terminal cash flow is anti-comonotonic w.r.t. pricing kernel ρ
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Quantile Formulation: History

Portfolio selection models
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Convex/concave distortion: Schied (2004, 2005), Dana
(2005), Carlier and Dana (2005)
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Quantile Formulation: History

Portfolio selection models

Convex/concave distortion: Schied (2004, 2005), Dana
(2005), Carlier and Dana (2005)

S-shaped distortion: Jin and Zhou (2008)
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Quantile Formulation: History

Portfolio selection models

Convex/concave distortion: Schied (2004, 2005), Dana
(2005), Carlier and Dana (2005)

S-shaped distortion: Jin and Zhou (2008)

A general framework developed in He and Zhou (2009) for
possibly non-concave utility function and non-convex/concave
distortions
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Also Covers...

Goal achieving (Browne 1999, 2000; He and Zhou 2009)

Yaari’s model (He and Zhou 2009)

SP/A model (He and Zhou 2010)

Mean-risk model with coherent risk measure (He, Jin and
Zhou 2010)

Markowitz problem with probability distortions (Bi, Zhong and
Zhou 2010)

“Distorted” optimal stopping (Xu and Zhou 2010)

Insurance contract with rank dependent utility (Bernard, He,
Yan and Zhou 2010)
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Choquet Minimization: Combinatorial Optimisation in

Function Spaces

LPP specialises a general Choquet minimisation problem:

Minimise
X

C(X) :=
∫ +∞
0 w(P (u(X) > y))dy

subject to E[ρX] = a, X ≥ 0,
(9)

where a ≥ 0, w(·) : [0, 1] 7→ [0, 1] non-decreasing, differentiable
with w(0) = 0, w(1) = 1, and u(·) strictly increasing, concave,
strictly concave at 0, with u(0) = 0
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Quantile Formulation

Minimise
G(·)

C̃(G(·)) =
∫ 1
0 u(G(z))w′(1− z)dz

subject to
∫ 1
0 F−1

ρ (z)G(z)dz = a, G(·) ∈ G, G(0+) ≥ 0.

To minimise a concave functional: wrong direction!
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the gain counterpart
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the gain counterpart
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Quantile Formulation

Minimise
G(·)

C̃(G(·)) =
∫ 1
0 u(G(z))w′(1− z)dz

subject to
∫ 1
0 F−1

ρ (z)G(z)dz = a, G(·) ∈ G, G(0+) ≥ 0.

To minimise a concave functional: wrong direction!

... which originates from S-shaped utility function

Solution must have a very different structure compared with
the gain counterpart

Lagrange fails

Solution should be a “corner point solution”: essentially a
combinatorial optimisation in an infinite dimensional space
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Characterising Corner Point Solutions

Proposition

The optimal solution to (9), if it exists, must be in the form
G∗(z) = q(b)1(b,1)(z), z ∈ [0, 1), with some b ∈ [0, 1) and
q(b) := a

E[ρ1{Fρ(ρ)>b}]
. Moreover, in this case, the optimal solution

is X∗ = G∗(Fρ(ρ)).

One only needs to find an optimal number b ∈ [0, 1)
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Characterising Corner Point Solutions

Proposition

The optimal solution to (9), if it exists, must be in the form
G∗(z) = q(b)1(b,1)(z), z ∈ [0, 1), with some b ∈ [0, 1) and
q(b) := a

E[ρ1{Fρ(ρ)>b}]
. Moreover, in this case, the optimal solution

is X∗ = G∗(Fρ(ρ)).

One only needs to find an optimal number b ∈ [0, 1)

... which motivates introduction of the following problem

Minimise
b

f(b) :=
∫ 1
0 u(G(z))w′(1− z)dz

subject to G(·) = a
E[ρ1{Fρ(ρ)>b}]

1(b,1](·), 0 ≤ b < 1.
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Solving Loss Part Problem

Theorem

Problem (9) admits an optimal solution if and only if the following
problem

min
0≤c<ρ̄

u

(

a

E[ρ1{ρ>c}]

)

w(P (ρ > c))

admits an optimal solution c∗, in which case the optimal solution
to (9) is X∗ = a

E[ρ1{ρ>c∗}]
1ρ>c∗ .
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Jin and Zhou’s Solution

Consider a mathematical programme in (c, x+):

Maximise E
[

u+

(

(u′
+)

−1
(

λ(c,x+)ρ
w′

+
(F (ρ))

))

w′
+(F (ρ))1ρ≤c

]

−u−(
x+−(x0−E[ρB])

E[ρ1ρ>c]
)w−(1− F (c))

subject to

{

ρ ≤ c ≤ ρ̄, x+ ≥ (x0 − E[ρB])+,
x+ = 0 when c = ρ, x+ = x0 − E[ρB] when c = ρ̄,

where λ(c, x+) satisfies E
[

(u′+)
−1( λ(c,x+)ρ

w′
+(F (ρ)))ρ1ρ≤c

]

= x+
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Jin and Zhou’s Solution

Consider a mathematical programme in (c, x+):

Maximise E
[

u+

(

(u′
+)

−1
(

λ(c,x+)ρ
w′

+
(F (ρ))

))

w′
+(F (ρ))1ρ≤c

]

−u−(
x+−(x0−E[ρB])

E[ρ1ρ>c]
)w−(1− F (c))

subject to

{

ρ ≤ c ≤ ρ̄, x+ ≥ (x0 − E[ρB])+,
x+ = 0 when c = ρ, x+ = x0 − E[ρB] when c = ρ̄,

where λ(c, x+) satisfies E
[

(u′+)
−1( λ(c,x+)ρ

w′
+(F (ρ)))ρ1ρ≤c

]

= x+

Optimal solution (Jin and Zhou 2008) (under mild technical
conditions)

X∗ =

[

(u′
+)

−1

(

λρ

w′
+(F (ρ))

)

+B

]

1ρ≤c∗−

[

x∗
+ − (x0 − E[ρB])

E[ρ1ρ>c∗ ]
−B

]

1ρ>c∗
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Interpretations, Implications, and Applications

X∗ =

[

(u′
+)

−1

(

λρ

w′
+(F (ρ))

)

+B

]

1ρ≤c∗−

[

x∗
+ − (x0 − E[ρB])

E[ρ1ρ>c∗ ]
−B

]

1ρ>c∗
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]

1ρ>c∗

Future world divided by “good” states (where you have gains) and
“bad” ones (losses), completely determined by whether ρ ≤ c∗ or
ρ > c∗
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Future world divided by “good” states (where you have gains) and
“bad” ones (losses), completely determined by whether ρ ≤ c∗ or
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while accepting a loss on the bad

The strategy must entail a leverage on stocks if the agent starts
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Interpretations, Implications, and Applications

X∗ =

[

(u′
+)

−1

(

λρ

w′
+(F (ρ))

)

+B

]

1ρ≤c∗−

[

x∗
+ − (x0 − E[ρB])

E[ρ1ρ>c∗ ]
−B

]

1ρ>c∗

Future world divided by “good” states (where you have gains) and
“bad” ones (losses), completely determined by whether ρ ≤ c∗ or
ρ > c∗

Optimal strategy is a gambling policy, betting on the good states
while accepting a loss on the bad

The strategy must entail a leverage on stocks if the agent starts
with a loss situation (due to higher reference point)

Magnitude of potential losses is known a priori, which depend on
reference point

“Principal guaranteed fund”

“Minimum compensation and bonus scheme” in HR management
(Chang and Zhou 2010, Chang, Cvitanic, Zhou 2010)
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Quantifying Greed

We quantify greed via the reference point
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We quantify greed via the reference point

We show via asymptotic analysis that

Leverage level goes to infinity as greed grows to infinity
Potential losses go to infinity as greed grows to infinity
Probability of having gains converges to a fixed, positive

value as greed grows to infinity (which explains why a
sufficiently greedy behavioural agent, despite the risk of
catastrophic losses, is still willing to gamble)
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Quantifying Greed

We quantify greed via the reference point

We show via asymptotic analysis that

Leverage level goes to infinity as greed grows to infinity
Potential losses go to infinity as greed grows to infinity
Probability of having gains converges to a fixed, positive

value as greed grows to infinity (which explains why a
sufficiently greedy behavioural agent, despite the risk of
catastrophic losses, is still willing to gamble)

Jin and Zhou (2009)
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A Model with Loss Control

Now that both leverage and potential losses grow to infinity
as greed expands to infinity
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A Model with Loss Control

Now that both leverage and potential losses grow to infinity
as greed expands to infinity

... which suggests, from loss-control or regulatory perspective,
a model with a priori bound on potential losses

It would (indirectly) limit leverage and hence magnitude of
greed

The new model formulated and solved (Jin, Zhang, Zhou
2009)

Maximize V (X −B)

subject to







E[ρX] = x0
X ≥ B − L

X is an FT − random variable
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Quantifying Hope and Fear

A portfolio choice problem in continuous time featuring hope,
fear and aspiration
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Via the quantile formulation, we have solved this model
completely

Extreme fear prevents agent from taking too much risks and
he has to secure a positive payoff level
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Quantifying Hope and Fear

A portfolio choice problem in continuous time featuring hope,
fear and aspiration

Hope and fear are present simultaneously, captured by a
reverse S-shaped distortion function

Hope and fear are measured via curvatures of probability
distortions at lower and higher ends respectively

Via the quantile formulation, we have solved this model
completely

Extreme fear prevents agent from taking too much risks and
he has to secure a positive payoff level

The hope is reflected by the gambling nature of the strategy
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Quantifying Behavioural Finance

“Quantifying behavioural finance” leads to new problems in
mathematics and finance
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“Quantifying behavioural finance” leads to new problems in
mathematics and finance

But ... is it justified: to rationally account for irrationalities?

Irrational behaviours are by no means random or arbitrary

“misguided behaviors ... are systematic and predictable –
making us predictably irrational” (Dan Ariely, Predictably
Irrational, Ariely 2008)
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“Quantifying behavioural finance” leads to new problems in
mathematics and finance

But ... is it justified: to rationally account for irrationalities?

Irrational behaviours are by no means random or arbitrary

“misguided behaviors ... are systematic and predictable –
making us predictably irrational” (Dan Ariely, Predictably
Irrational, Ariely 2008)

Various particular CPT values functions and probability
weighting functions used to examine and investigate the
consistent inconsistencies and the predictable unpredictabilities

These functions are dramatically different from those in a
neoclassical model to systematically capture certain aspects of
irrationalities such as risk-seeking, and hope and fear
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Quantifying Behavioural Finance (Cont’d)

Tversky and Kahneman (1992): “a parametric specification
for CPT is needed to provide a ‘parsimonious’ description of
the the data”

We use CPT and specific value functions as the carrier for
exploring the “predictable irrationalities”

Quantifying behavioural finance: research is in its infancy, yet
potential is unlimited – or so we believe

Xunyu Zhou Behavioural Portfolio Choice



Collaborators and Papers

Hanqing Jin (Oxford), Xuedong He (Columbia), Zuoquan Xu (HK
Poly), Jaksa Cvitanic (CalTech), Hualei Chang (Goldman Sachs),
Yifei Zhong (Oxford), Song Zhang (Peking U), Junna Bi (Nankai),
Carol Bernard (Waterloo), Jia-an Yan (CAS), Thaleia
Zariphoupoulou (Oxford/UT Austin)

H. Jin and X. Zhou, “Behavioral portfolio selection in continuous
time”, Mathematical Finance, Vol. 18 (2008), pp. 385-426.

X. He and X. Zhou,“An analytical treatment of portfolio choice
under prospect theory”, to appear in Management Science.

X. He and X. Zhou, “Portfolio choice via quantiles”, to appear in
Mathematical Finance.

H. Jin and X. Zhou, “Greed, leverage, and potential losses: A
prospect theory perspective”, to appear in Mathematical Finance.

Xunyu Zhou Behavioural Portfolio Choice



Thank You!

http://people.maths.ox.ac.uk/ zhouxy/article.htm
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