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The Literature

1 Standard option pricing literature:(Black-Scholes, Merton, Heston, Bates, CW)

Starting point: Initial stock price level and financing.

Assumptions: Stock price and instantaneous return volatility dynamics

Implications: The level and shape of the implied volatility surface
(across strike and maturity); risk exposures...

Calibration: Parameters governing the price/volatility dynamics and the
initial volatility level can be calibrated to a finite number of option
observations. The calibrated model can be used to construct the whole
implied volatility surface.

2 Market models of implied volatilities:(Avellaneda & Zhu, Ledoit & Santa-Clara, ...)

Starting point: Initial option implied volatility level (on a single option
or over the whole surface)
Assumptions: The martingale component of the implied volatility
dynamics.
Implications: The drift of the implied volatility dynamics; prices on
exotic contracts; risk exposures...
Calibration: ?
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A new approach in constructing implied volatility surfaces

somewhere in between the two existing approaches:

Starting point: Initial stock price level and financing.

Assumptions: Stock price and option implied volatility dynamics (both drift
and diffusion), instead of instantaneous return volatility dynamics.

Implications: The level and shape of the implied volatility surface (across
strike and maturity) at a given date.

Calibration:

Parameters governing the implied volatility dynamics and the initial
instantaneous volatility level (but not dynamics) can be calibrated to a
finite number of vanilla option implied volatility observations.

The calibrated model can be used to construct the whole implied
volatility surface.

Calibration does not go through option price calculation. It is directly
from implied volatility dynamics to implied volatility surface.

100 times faster than calibrating standard option pricing models of
similar complexities.
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Why so entrenched in implied volatility?

Implied volatility is calculated from the Black-Merton-Scholes (BMS) model.

The fact that practitioners use the BMS model to quote options does not
mean they agree with the BMS assumptions.

Why so entrenched in implied volatility?

1 Informational: It is much easier to gauge/express views in terms of
implied volatility than in terms of option prices.

IV is unitless; option prices are not — units are not views.

IV does not depend on intrinsic value; option prices do — intrinsic has
no informational value.

IV has the normal return distribution (BMS model) as a benchmark.
⇒ Deviation from a flat line (across strike) reveals return deviation
from normality.
⇒ A higher IV for OTM puts (low strikes) than for OTM calls (high
strikes) says that the left tail is heavier than the right tail.
⇒ Higher IVs for OTM options than for ATM options suggests fatter
tails (leptokurtosis).
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Why so entrenched in implied volatility?

1 Informational:
2 No arbitrage constraints:

Merton (1973): model-free bounds based on no-arb. arguments:
Type I: No-arbitrage between options and the underlying and cash:

call/put prices ≥ intrinsic;
call prices ≤ (dividend discounted) stock price;
put prices ≤ (present value of the) strike price;
put-call parity.

Type II: No-arbitrage between options of different strikes and maturities:
bull, bear, calendar, and butterfly spreads ≥ 0.

Hodges (1996): These bounds can be expressed in implied volatilities.
Type I: Implied volatility is positive.

⇒If market makers quote options in terms of an implied volatility surface,
most Type I no-arbitrage conditions are automatically guaranteed.

3 Technological: In the absence of options order flow, IV surface does not
need to be updated as frequently as option prices.

This paper: Through assumptions on IV dynamics, we obtain tighter
no-arbitrage constraints on the shape of the implied volatility surface.
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Implied volatility dynamics and no-arbitrage conditions

Zero rates for notational clarity.

Diffusion stock price dynamics: dSt/St = stdWt .

The dynamics of the instantaneous return volatility (st) is left unspecified.

For each option struck at K and expiring at T , its implied volatility It(K ,T )
follows a continuous process,

dIt(K ,T ) = µtdt + ωtdZt , for all K > 0 and T > t.

µt (drift) and ωt (volvol) can depend on K and T .
One Brownian motion Zt drives the whole implied volatility surface.
Correlation between implied volatility and return ρtdt = E[dWtdZt ].

It(K ,T ) > 0 guarantees no dynamic arbitrage between any option (K ,T )
and the underlying stock (and cash).

We further require that no dynamic arbitrage (NDA) be allowed between
any option at (K ,T ) and a basis option at (K0,T0) and the stock.
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From NDA to the fundamental PDE

NDA: No dynamic arbitrage is allowed between any option at (K ,T ) and a basis
option at (K0,T0) and the stock.

Let Pt(K ,T ) denote the option value, which we can represent in the
Black-Merton-Scholes formula B(·): Pt(K ,T ) = B(St , It(K ,T ), t).

NDA implies that we can hedge away the risk in Pt(K ,T ) by using the
stock and the basis option, such that

E [dPt(K ,T )− BSstStdWt − BσωtdZt ] = 0, for t ∈ [0,T0 ∧ T )

The fundamental PDE:

−Bt = µtBσ +
s2
t

2
S2

t BSS + ρtωtstStBSσ +
ω2

t

2
Bσσ.

The PDE defines a linear relation between the theta (Bt) of the option and
its vega (Bσ), dollar gamma (S2

t BSS), dollar vanna (StBSσ), and volga
(Bσσ).

We christen the class of implied volatility surfaces defined by the
fundamental PDE as the Vega-Gamma-Vanna-Volga (VGVV) model.
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From the PDE to an algebraic equation

From the PDE,

−Bt = µtBσ +
s2
t

2
S2

t BSS + ρtωtstStBSσ +
ω2

t

2
Bσσ.

Plug in the partial derivatives of the BMS formula:

Bt = −σ
2

2 S2BSS , Bσ = στS2BSS ,
SBσS = −d2

√
τS2BSS , Bσσ = d1d2τS

2BSS .

The PDE reduces to an algebraic equation for It(K ,T ),

I 2
t

2
− µt Itτ −

[
s2
t

2
− ρtωtst

√
τd2 +

ω2
t

2
d1d2τ

]
= 0.

If (µt , ωt) do not depend on It(K ,T ), we can solve the whole implied
volatility surface as the solution to a quadratic equation.

GVV (by Arslan, Eid, Khoury, and Roth from DB): µt = 0, ωt independent.
⇒ I 2

t is quadratic in d2.
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Representing implied volatility as a function of
standardized moneyness and term (z , τ)

We rewrite the implied volatility surface as a function of standardized
moneyness and term, vt(z , τ) ≡ It(K ,T )

Term τ = T − t,

Standardized moneyness zt =
ln(K/St)+

1
2 I 2τ

I
√
τ

= −d2.

The algebraic equation for vt(z , τ) becomes,

v2
t (z , τ)

2
− [µtτ −

ω2
t

2
zτ

3
2 ]vt(z , τ)−

[
s2
t

2
+ ρtωtstz

√
τ +

ω2
t

2
τz2

]
= 0.

If (µt , ωt) do not depend on vt(z , τ), we can solve the whole implied
volatility surface as the solution to a quadratic equation.
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Implied volatility surface v(z , τ) under
square-root volatility dynamics

Square-root implied variance dynamics (SRV):
dI 2

t = κ
[
θ − I 2

t

]
dt + 2we−η(T−t)ItdZt ,

The implied volatility surface v(z , τ) solves the quadratic equation:

(1 + κτ) v2
t (z , τ) +

(
w2e−2ηττ 3/2z

)
vt (z , τ)

−
[(
κθ − w2e−2ητ

)
τ + s2

t + 2ρwste
−ητ√τz + w2e−2ηττz2

]
= 0.

In the limit of τ = 0 or τ =∞, the implied volatility is flat in z :
v2
t (z , 0) = s2

t , v
2
t (z ,∞) = θ.

ATM implied volatility (z = 0) term structure:

a2
t (τ) =

(
κθ − w2e−2ητ

)
τ + s2

t

(1 + κτ)
,

only a function of µt = 1
2

(
(κθ−w2e−2ητ)

It(K ,T ) − κt It(K ,T )

)
.
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Representing implied volatility as a function of
log relative strike and term (k , τ)

We rewrite the implied volatility surface as a function of log relative strike
and term, Ît(k , τ) ≡ It(K ,T )

Term τ = T − t,
Log relative strike kt = ln(K/St).
OTC Equity index option implied volatilities are quoted as such.

The algebraic equation for Ît(k , τ) becomes,

s2
t

2 −
Î 2
t (k,τ)

2 + [µt Ît(k , τ) + ρtωtst

2 Ît(k, τ)]τ

+ ρtωtst

Ît(k,τ)
k − ω2

t

8 Î 2
t (k , τ)τ 2 +

ω2
t

2Î 2
t (k,τ)

k2 = 0.

The equation looks messier (a fourth-order polynomial if (µt , ωt) are
constants), but ...
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Implied variance surface Î 2
t (k , τ) under

lognormal volatility dynamics

Log-normal implied variance dynamics (LNV):
dI 2

t (K ,T ) = κ[θ − I 2
t (K ,T )]dt + 2we−η(T−t)I 2

t (K ,T )dZt .

Implied variance surface (Î 2
t (k , τ)) solves the quadratic equation:

w2

4 e−2ηττ 2 Î 4
t (k, τ) +

[
1 + κτ + w2e−2ηττ − ρstwe−ηττ

]
Î 2
t (k, τ)

−
[
s2
t + κθτ + 2ρstwe−ητk + w2e−2ητk2

]
= 0.

In the limit of τ = 0, the implied variance is quadratic in log relative
strike k: Î 2

t (k, 0) = w2k2 + 2ρstwk + s2
t .

ATM implied variance (z = 0) term structure:

a2
t (τ) =

κθτ + s2
t

1 + (κ+ w2e−2ητ ) τ
.

only a function of µt = 1
2

(
κθ

It(K ,T ) −
(
κ+ w2e−2ητ

)
It(K ,T )

)
.
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Comparing LNV to SVI

Roger Lee’s moment conditions:

γ± ≡ lim
k→±∞

Î 2(k , τ)τ

|k |
∈ [0, 2], p± =

1

2

(
1
√
γ±
−
√
γ±

2

)2

,

where p+ ≡ sup{p+ : E[S1+p+

T ] <∞} and p− ≡ sup{p− : E[S
−p−
T ] <∞}

Jim Gatheral’s SVI (“stochastic-volatility inspired”):

Î 2(k, τ) = a + b
[
ρ(k + m) +

√
(k + m)2 + σ2

]
.

The asymptotes: γ+ = bτ(1 + ρ), γ− = bτ(1− ρ).

Heston approximation: b = 2
τ

√
(2κ−ρw)2+w2(1−ρ2)−(2κ−ρw)

w(1−ρ2) ,m = ρθκτ
w .

LNV (“log-normal implied variance”) can be solved as

Î 2(k, τ) = a +
2

τ

√
(k +

ρst
we−ητ

)2 + c .

The asymptotes: γ± = 2.
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Recap: Two tractable implied volatility dynamics

Mean-reverting square root or log-normal implied variance dynamics
(SRV and LNV).

Six potentially time-varying coefficients (κt , θt ,wt , ηt , ρt , st).

Given time-t values on the six coefficients, the whole implied volatility
surface at time t can be solved as the solution to quadratic equations.

Benchmark: Heston (1993) assumes mean-reverting square-root dynamics
on the instantaneous variance rate (s2

t ).

Five coefficients (κt , θt ,wt , ρt , st).

Given values on the five coefficients, the implied volatility surface can
be computed as follows:

Derive analytical solution for the return characteristic function.

Perform numerical integration to obtain option values (quadrature or
FFT).

Solve the implied volatility from the option value.

About 100 times slower, and not as accurate.
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A fast and robust approach for dynamic calibration

Treat the six or five coefficients as the state vector Xt .

Assume that the state vector propagates like a random walk:
Xt = Xt−1 +

√
Σxεt

Transform the coefficients so that the state Xt can take values on the
whole real line.

Assume diagonal matrix for Σx .

Assume that all implied volatilities are observed with errors,
yt = h(Xt) +

√
Σyet .

h(·) denote the model value (quadratic solution for SRV and LNV,
complicated numerical calculation for Heston).

For SRV and LNV, take logs on implied volatilities for yt . For Heston,
define yt as vega weighted out-of-the-money option value.

Assume IID error, Σy = σ2
e In.

The set-up introduces 6-7 auxiliary parameters (Σx , σ
2
e ) controlling the

relative update speed of the coefficients.
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Unscented Kalman filter

Given the auxiliary parameters, the implied volatility surface can be fitted
quickly via unscented Kalman filter:

X t = X̂t−1, V x,t = V̂x,t−1 + Σx ,

χt,0 = X t , χt,i = X t ±
√

(k + δ)(V x,t)j ,

y t =
∑2k

i=0 wiζt,i , V y ,t =
∑2k

i=0 wi [ζt,i − y t ] [ζt,i − y t ]> + Σy ,

V xy ,t =
∑2k

i=0 wi

[
χt,i − X t

]
[ζt,i − y t ]> ,Kt = V xy ,t

(
V y ,t

)−1
,

X̂t = X t + Kt (yt − y t) , V̂x,t = V x,t − KtV y ,tK
>
t .

The whole sample (573 weeks) of implied volatility surfaces can be fitted in
less than a second (versus about 1 minute for Heston).

Choose the auxiliary parameters to minimize the sum of squared pricing
errors:

∑N
t=1(yt − ŷt)>(yt − ŷt).
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Application to OTC currency option implied volatilities

JPYUSD GBPUSD
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OTC currency options are quoted in

Delta-neutral straddle (ATMV): (call + put) with zero delta ⇒ d1 = 0.

25-delta Risk reversal (RR): IV 25c − IV 25p

25-delta butterfly spread (BF): (IV 25c + IV 25p)/2− ATMV

10-delta risk reversals and butterfly spreads.

ATMV, RR, and BF measure the level, slope (skew), and curvature
(kurtosis) of the IV smile (return distribution).
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Time variation in currency option volatility levels

JPYUSD GBPUSD
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The three lines are at one month (solid lines), three months (dashed lines), and
five years (dashdotted lines).

Implied volatilities across different maturities (from one month to 5 years)
vary together and at similar levels.
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Time variation in currency return skewness and kurtosis

JPYUSD GBPUSD
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Before 2001, long-term implied volatilities do not smile.

Now, they smile, smirk, and are constantly switching into different faces.
Long-term smile more than short term.
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Pricing performance comparison on currency options

Weekly from January 8, 1997 to December 26, 2007, 573 weeks.

5 delta × 11 maturities from 1 month to 5 years, 31,515 options.

Average performance:

JPYUSD GBPUSD

SRV LNV Heston SRV LNV Heston

RMSE 0.41 0.37 0.37 0.13 0.12 0.14
R2 98.1 98.4 98.3 98.7 98.8 98.6

Auto 0.80 0.80 0.86 0.75 0.76 0.78

RMSE root mean squared pricing error in IV volatility points.
Auto autocorrelation of pricing errors in IV.

All three models perform reasonably well.

LNV is the best of the three for both currency pairs.
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Application to OTC SPX option implied volatilities

SPX option implied volatilities over the same sample period.

5 moneyness levels at 80, 90, 100, 110, 120 percent of spot.

8 maturities from 1 month to 5 years, 30,120 options.
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When measured against a standardized moneyness measure

d = ln(K/100)/(IV
√
τ), the skew defined as, SKt,T =

IVt,T (80%)−IVt,T (120%)
|dt,T (80%)−dt,T (120%)| ,

does not flatten as maturity increases.
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Time variation in SPX volatilities and skews
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Upward sloping term structure most of the time, except during crisis.

Heavily negatively skewed all the time; more so at longer term.
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Pricing performance comparison on SPX options

SRV LNV Heston

RMSE 0.78 0.66 1.12
R2 98.9 99.3 95.0

Auto 0.80 0.72 0.85
Seconds 1 1 100

RMSE root mean squared pricing
error in IV volatility points.

Auto autocorrelation of pricing
errors in IV.

Compared to Heston, the LNV
model

generates half the root
mean squared error,

explains 5% more variation,

generates errors with lower
serial correlation,

can be calibrated 100 times
faster.
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Concluding remarks

Options traders are deeply entrenched in BMS implied volatilities,
and for good reasons.

Directly modeling implied volatility dynamics and generating direct
implications on the implied volatility surface shape are both attractive ideas.

“Market models of implied volatilities” try to do the former while taking the
latter as given.

The latter (the shape of the implied volatility surface) can put severe
(but many times unknown) constraints on what the former (implied
volatility dynamics) can be, or vice versa.

We directly model the implied volatility dynamics, and we derive the
dynamic-no-arbitrage implication on the shape of the implied volatility
surface.

The two (dynamics and surface shapes) are guaranteed to be
consistent.
Market deviations from model implications can serve as relative trading
opportunities.
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Promise and future research

Our new approach generates very promising results.

Two models with extreme simplicity: The whole implied volatility
surface becomes solutions to quadratic equations — 6th grade math.

Great performance on both currency options and equity index options.

100 times faster than standard option pricing models, ideal for
automated options market making.

Many open questions remain, for future research.

The PDE guarantees dynamic no-arbitrage between any option and a
basis option under a single-factor continuous implied volatility
dynamics. It remains open on how to guarantee (static) no-arbitrage
among many options across different strikes and maturities.

Establish the link between the assumed implied volatility dynamics to
the dynamics of the instantaneous return variance rate.

Analyze the implications of multi-factor, potentially discontinuous,
stock price and/or implied volatility dynamics.
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