Constructing Markov Processes with Dependent Jumps by Multivariate Subordination: Applications to Multi-Name Credit-Equity Modeling

Fields Institute

(Fields Quantitative Finance Seminar)

Rafael Mendoza-Arriaga
McCombs School of Business

Joint work with: Vadim Linetsky

Introduction

- We develop a new class of multi-name unified credit-equity models that jointly model the stock prices of multiple firms, as well as their default events,

Introduction

- We develop a new class of multi-name unified credit-equity models that jointly model the stock prices of multiple firms, as well as their default events,
- We construct a multi-dimensional Markov semimartingale by applying a multivariate subordination of jump-to-default extended constant elasticity of variance (JDCEV) diffusions.

Introduction

- We develop a new class of multi-name unified credit-equity models that jointly model the stock prices of multiple firms, as well as their default events,
- We construct a multi-dimensional Markov semimartingale by applying a multivariate subordination of jump-to-default extended constant elasticity of variance (JDCEV) diffusions.
- Each of the stock prices experiences state-dependent jumps with the leverage effect (arrival rates of large jumps increase as the stock price falls), including the possibility of a jump to zero (jump to default).

Introduction

- We develop a new class of multi-name unified credit-equity models that jointly model the stock prices of multiple firms, as well as their default events,
- We construct a multi-dimensional Markov semimartingale by applying a multivariate subordination of jump-to-default extended constant elasticity of variance (JDCEV) diffusions.
- Each of the stock prices experiences state-dependent jumps with the leverage effect (arrival rates of large jumps increase as the stock price falls), including the possibility of a jump to zero (jump to default).
- Some of the jumps are idiosyncratic to each firm, while some are either common to all firms (systematic), or common to a subgroup of firms.

Introduction

- We develop a new class of multi-name unified credit-equity models that jointly model the stock prices of multiple firms, as well as their default events,
- We construct a multi-dimensional Markov semimartingale by applying a multivariate subordination of jump-to-default extended constant elasticity of variance (JDCEV) diffusions.
- Each of the stock prices experiences state-dependent jumps with the leverage effect (arrival rates of large jumps increase as the stock price falls), including the possibility of a jump to zero (jump to default).
- Some of the jumps are idiosyncratic to each firm, while some are either common to all firms (systematic), or common to a subgroup of firms.
- For the two-firm case, we obtain analytical solutions for credit derivatives and equity derivatives, such as basket options, in terms of eigenfunction expansions associated with the relevant subordinated semigroups.

Unifying Credit-Equity Models

The Jump to Default Extended Diffusions (JDED)

Before moving on to use time changes to construct models with jumps, we review the Jump-to-Default Extended Diffusion framework (JDED)

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
\begin{array}{r}
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\
0, & \zeta \leq t\end{cases} \\
(\zeta \text { default time })
\end{array}
$$

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\ 0, & \zeta \leq t\end{cases}
$$

(ζ default time)

Stock Price

Model the pre-default stock dynamics under an EMM \mathbb{Q} as:

$$
d \tilde{S}_{t}=\left[\mu+k\left(\tilde{S}_{t}\right)\right] \tilde{S}_{t} d t+\sigma\left(\tilde{S}_{t}\right) \tilde{S}_{t} d B_{t}
$$

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\ 0, & \zeta \leq t\end{cases}
$$

(ζ default time)

Stock Price

Model the pre-default stock dynamics under an EMM \mathbb{Q} as:

$$
d \tilde{S}_{t}=[\underbrace{\mu}+k\left(\tilde{S}_{t}\right)] \tilde{S}_{t} d t+\sigma\left(\tilde{S}_{t}\right) \tilde{S}_{t} d B_{t}
$$

$\Rightarrow \mu=r-q$. Drift: short rate r minus the dividend yield q

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\ 0, & \zeta \leq t\end{cases}
$$

(ζ default time)

Stock Price

Model the pre-default stock dynamics under an EMM \mathbb{Q} as:

$$
d \tilde{S}_{t}=\left[\mu+k\left(\tilde{S}_{t}\right)\right] \tilde{S}_{t} d t+\underbrace{\sigma\left(\tilde{S}_{t}\right)} \tilde{S}_{t} d B_{t}
$$

$\Rightarrow \sigma(S)$. State dependent volatility

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\ 0, & \zeta \leq t\end{cases}
$$

(ζ default time)

Stock Price

Model the pre-default stock dynamics under an EMM \mathbb{Q} as:

$$
d \tilde{S}_{t}=[\mu+\underbrace{k\left(\tilde{S}_{t}\right)}] \tilde{S}_{t} d t+\sigma\left(\tilde{S}_{t}\right) \tilde{S}_{t} d B_{t}
$$

$\Rightarrow k(S)$. State dependent default intensity

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\ 0, & \zeta \leq t\end{cases}
$$

(ζ default time)

Stock Price

Model the pre-default stock dynamics under an EMM \mathbb{Q} as:

$$
d \tilde{S}_{t}=[\mu+\underbrace{k\left(\tilde{S}_{t}\right)}] \tilde{S}_{t} d t+\sigma\left(\tilde{S}_{t}\right) \tilde{S}_{t} d B_{t}
$$

$\Rightarrow k(S)$. State dependent default intensity

- Compensates for the jump-to-default and ensures the discounted martingale property

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
\begin{aligned}
& S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\
0, & \zeta \leq t\end{cases} \\
&(\zeta \text { default time })
\end{aligned}
$$

If the diffusion \tilde{S}_{t} can hit zero:

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
\begin{aligned}
& S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\
0, & \zeta \leq t\end{cases} \\
&(\zeta \text { default time })
\end{aligned}
$$

Stock Price

If the diffusion \tilde{S}_{t} can hit zero:
\Rightarrow Bankruptcy at the first hitting time of zero,

$$
\tau_{0}=\inf \left\{t: \tilde{S}_{t}=0\right\}
$$

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
\begin{array}{r}
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\
0, & \zeta \leq t\end{cases} \\
(\zeta \text { default time })
\end{array}
$$

Stock Price

Prior to τ_{0} default could also arrive by a jump-to-default $\tilde{\zeta}$ with default intensity $k(\tilde{S})$,

$$
\tilde{\zeta}=\inf \left\{t \in\left[0, \tau_{0}\right]: \int_{0}^{t} k\left(\tilde{S}_{u}\right) \geq e\right\}, \quad e \approx \operatorname{Exp}(1)
$$

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
\begin{array}{r}
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\
0, & \zeta \leq t\end{cases} \\
(\zeta \text { default time })
\end{array}
$$

Stock Price

Prior to τ_{0} default could also arrive by a jump-to-default $\tilde{\zeta}$ with default intensity $k(\tilde{S})$,

$$
\tilde{\zeta}=\inf \left\{t \in\left[0, \tau_{0}\right]: \int_{0}^{t} k\left(\tilde{S}_{u}\right) \geq e\right\}, \quad e \approx \operatorname{Exp}(1)
$$

\Rightarrow At time $\tilde{\zeta}$ the stock price S_{t} jumps to zero and the firm defaults on its debt

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
\begin{array}{r}
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\
0, & \zeta \leq t\end{cases} \\
(\zeta \text { default time })
\end{array}
$$

Stock Price

The default time ζ is the earliest of:

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
\begin{array}{r}
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\
0, & \zeta \leq t\end{cases} \\
(\zeta \text { default time })
\end{array}
$$

Stock Price

The default time ζ is the earliest of:
(1) The stock hits level zero by diffusion: τ_{0}

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
\begin{array}{r}
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\
0, & \zeta \leq t\end{cases} \\
(\zeta \text { default time })
\end{array}
$$

Stock Price

The default time ζ is the earliest of:
(1) The stock hits level zero by diffusion: τ_{0}
(2) The stock jumps to zero from a positive value:

Jump to Default Extended Diffusions (JDED)

Defaultable Stock Price

$$
\begin{array}{r}
S_{t}= \begin{cases}\tilde{S}_{t}, & \zeta>t \\
0, & \zeta \leq t\end{cases} \\
(\zeta \text { default time })
\end{array}
$$

Stock Price

The default time ζ is the earliest of:
(1) The stock hits level zero by diffusion: τ_{0}
(2) The stock jumps to zero from a positive value:

$$
\zeta=\min \left(\tilde{\zeta}, \tau_{0}\right)
$$

Time-Changed Process $S_{t}=X_{\mathcal{T}_{t}}$

Time Changed Process Construction

$$
S_{t}=X_{\mathcal{T}_{t}}
$$

X_{t} is a background process (e.g. JDED)
\mathcal{T}_{t} is a random clock process independent of X_{t}

Time-Changed Process $S_{t}=X_{\mathcal{T}_{t}}$

Time Changed Process Construction

$$
S_{t}=X_{\mathcal{T}_{t}}
$$

X_{t} is a background process (e.g. JDED)
\mathcal{T}_{t} is a random clock process independent of X_{t}

Random Clock $\left\{\mathcal{T}_{t}, t \geq 0\right\}$

Non-decreasing RCLL process starting at $\mathcal{T}_{0}=0$ and $\mathbb{E}\left[\mathcal{T}_{t}\right]<\infty$.
We are interested in T.C. with analytically tractable Laplace Transform (LT):

$$
\mathcal{L}(t, \lambda)=\mathbb{E}\left[e^{-\lambda \mathcal{T}_{t}}\right]<\infty
$$

Lévy Subordinators with L.T. $\mathcal{L}(t, \lambda)=e^{-\phi(\lambda) t} \Rightarrow$ induce jumps

Examples of Lévy Subordinators

Three Parameter Lévy measure:

$$
\nu(d s)=C s^{-Y-1} e^{-\eta s} d s
$$

$$
\text { where } \quad C>0, \quad \eta>0, \quad Y<1
$$

- C changes the time scale of the process (simultaneously modifies the intensity of jumps of all sizes)
- Y controls the small size jumps
- η defines the decay rate of big jumps

Examples of Lévy Subordinators

Three Parameter Lévy measure:

$$
\begin{aligned}
\nu(d s) & =C s^{-Y-1} e^{-\eta s} d s \\
\text { where } \quad C & >0, \eta>0, \quad Y<1
\end{aligned}
$$

- C changes the time scale of the process (simultaneously modifies the intensity of jumps of all sizes)
- Y controls the small size jumps
- η defines the decay rate of big jumps

Lévy-Khintchine formula

$$
\begin{gathered}
\mathcal{L}(t, \lambda)=e^{-\phi(\lambda) t} \\
\text { where } \quad \phi(\lambda)= \begin{cases}\gamma \lambda-C \Gamma(-Y)\left[(\lambda+\eta)^{Y}-\eta^{Y}\right], & Y \neq 0 \\
\gamma \lambda+C \ln (1+\lambda / \eta), & Y=0\end{cases}
\end{gathered}
$$

Time-Changed Process

- $T_{t} C P P$ with exp. arrival rate $=1 / 3($ per year) and exp. Jump size $=2$ (yrs)
- The Time Changed Process is constructed by subordinating a JDCEV process with T_{t} as:

$$
S_{T t}=X\left(T_{t}\right)
$$

Time-Changed Process

- $T_{t} C P P$ with exp. arrival rate $=1 / 3($ per year) and exp. Jump size $=2$ (yrs)
- The Time Changed Process is constructed by subordinating a JDCEV process with T_{t} as:

$$
S_{T t}=X\left(T_{t}\right)
$$

Time-Changed Process

- $T_{t} C P P$ with exp. arrival rate $=1 / 3($ per year) and exp. Jump size $=2$ (yrs)
- The Time Changed Process is constructed by subordinating a JDCEV process with T_{t} as:

$$
S_{T t}=X\left(T_{t}\right)
$$

t (yrs)

Time-Changed Process

We kill the background process at:

$$
\zeta=\min \left(\zeta^{*}, \tau_{0}\right)
$$

- How about default for the Time-Changed process?

Time-Changed Process

We kill the background process at:

$$
\zeta=\min \left(\zeta^{*}, \tau_{0}\right)
$$

- How about default for the Time-Changed process?

$$
\tau_{D}=\inf \left\{t: T_{t} \geq \zeta\right\}
$$

Time-Changed Process

t (yrs)

We kill the background process at:

$$
\zeta=\min \left(\zeta^{*}, \tau_{0}\right)
$$

- How about default for the Time-Changed process?

$$
\tau_{D}=\inf \left\{t: T_{t} \geq \zeta\right\}
$$

In this case right after the jump time!

Time-Changed Process

Multiple Firms --- The trivial case!

Take two firms subordinated with the same subordinator T_{t} :

- $S_{t}^{1}=X^{1}\left(T_{t}\right)$ firm 1.
- $S^{2}{ }_{t}=X^{2}\left(T_{t}\right)$ firm 2.

Time-Changed Process

Multiple Firms --- The trivial case!

Take two firms subordinated with the same subordinator T_{t} :

- $S_{t}^{1}=X^{1}\left(T_{t}\right)$ firm 1.
- $S^{2}{ }_{t}=X^{2}\left(T_{t}\right)$ firm 2.

Time-Changed Process

Time-Changed Process

Multiple Firms --- The trivial case!

How about default?

Time-Changed Process

Multiple Firms --- The trivial case!

How about default?

- $\tau_{D}{ }^{1}=\inf \left\{t: T_{t} \geq \zeta^{1}\right\}$
- $\tau_{D}{ }^{2}=\inf \left\{t: T_{t} \geq \zeta^{2}\right\}$

Time-Changed Process

t (yrs)

Multiple Firms - The Not-So-Trivial case

- Consider two firms, now running in two different random clocks

$$
\begin{array}{lc}
S_{t}^{1}=X^{1}\left(\mathcal{T}_{t}^{1}\right) & \text { firm 1 } \\
S_{t}^{2}=X^{2}\left(\mathcal{T}_{t}^{2}\right) & \text { firm } 2
\end{array}
$$

where $\mathcal{T}_{t}^{i} i=1,2$; are dependent (correlated) subordinators.

Multiple Firms - The Not-So-Trivial case

- Consider two firms, now running in two different random clocks

$$
\begin{array}{ll}
S_{t}^{1}=X^{1}\left(\mathcal{T}_{t}^{1}\right) & \text { firm 1 } \\
S_{t}^{2}=X^{2}\left(\mathcal{T}_{t}^{2}\right) & \text { firm } 2
\end{array}
$$

where $\mathcal{T}_{t}^{i} i=1,2$; are dependent (correlated) subordinators.

- Note: although it is feasible to visualize it, it requires much more creativity! (and many slides!)

Multiple Firms - The Not-So-Trivial case

- Consider two firms, now running in two different random clocks

$$
\begin{array}{ll}
S_{t}^{1}=X^{1}\left(\mathcal{T}_{t}^{1}\right) & \text { firm 1 } \\
S_{t}^{2}=X^{2}\left(\mathcal{T}_{t}^{2}\right) & \text { firm } 2
\end{array}
$$

where $\mathcal{T}_{t}^{i} i=1,2$; are dependent (correlated) subordinators.

- Note: although it is feasible to visualize it, it requires much more creativity! (and many slides!)
- Why is this not so trivial?

Multiple Firms - The Not-So-Trivial case

- Consider two firms, now running in two different random clocks

$$
\begin{array}{lc}
S_{t}^{1}=X^{1}\left(\mathcal{T}_{t}^{1}\right) & \text { firm 1 } \\
S_{t}^{2}=X^{2}\left(\mathcal{T}_{t}^{2}\right) & \text { firm } 2
\end{array}
$$

where $\mathcal{T}_{t}^{i} i=1,2$; are dependent (correlated) subordinators.

- Note: although it is feasible to visualize it, it requires much more creativity! (and many slides!)
- Why is this not so trivial?
- When we use a single subordinator \mathcal{T}_{t} all we require to model n firms is an n dimensional Markov process,

$$
\left(S_{t}^{1}, S_{t}^{2}, \ldots, S_{t}^{n}\right)=\left(X^{1}\left(\mathcal{T}_{t}\right), X^{2}\left(\mathcal{T}_{t}\right), \ldots, X^{n}\left(\mathcal{T}_{t}\right)\right)=\mathbf{X}_{\mathcal{T}_{t}}
$$

In this case, the all coordinates of the "vector" jump together at the same time and for the same time length!

Multiple Firms - The Not-So-Trivial case

- Consider two firms, now running in two different random clocks

$$
\begin{array}{lc}
S_{t}^{1}=X^{1}\left(\mathcal{T}_{t}^{1}\right) & \text { firm 1 } \\
S_{t}^{2}=X^{2}\left(\mathcal{T}_{t}^{2}\right) & \text { firm } 2
\end{array}
$$

where $\mathcal{T}_{t}^{i} i=1,2$; are dependent (correlated) subordinators.

- Note: although it is feasible to visualize it, it requires much more creativity! (and many slides!)
- Why is this not so trivial?
- When we use a single subordinator \mathcal{T}_{t} all we require to model n firms is an n dimensional Markov process,

$$
\left(S_{t}^{1}, S_{t}^{2}, \ldots, S_{t}^{n}\right)=\left(X^{1}\left(\mathcal{T}_{t}\right), X^{2}\left(\mathcal{T}_{t}\right), \ldots, X^{n}\left(\mathcal{T}_{t}\right)\right)=\mathbf{X}_{\mathcal{T}_{t}}
$$

In this case, the all coordinates of the "vector" jump together at the same time and for the same time length!

- When we use an n-dimensional subordinator $\mathcal{T}_{t}=\left(\mathcal{T}_{t}^{1}, \mathcal{T}_{t}^{2}, \ldots, \mathcal{T}_{t}^{n}\right)$ we require an n-parameter Markov process,

$$
\left(S_{t}^{1}, S_{t}^{2}, \ldots, S_{t}^{n}\right)=\left(X^{1}\left(\mathcal{T}_{t}^{1}\right), X^{2}\left(\mathcal{T}_{t}^{2}\right), \ldots, X^{n}\left(\mathcal{T}_{t}^{3}\right)\right)=\mathbf{X}_{\left(\mathcal{T}_{t}^{1}, \mathcal{T}_{t}^{2}, \ldots, \mathcal{T}_{t}^{n}\right)}
$$

In this case, only some coordinates of the vector may jump together and, if they do, they may jump for different time lengths!

Multiple Firms - The Not-So-Trivial case

- Consider two firms, now running in two different random clocks

$$
\begin{array}{ll}
S_{t}^{1}=X^{1}\left(\mathcal{T}_{t}^{1}\right) & \text { firm 1 } \\
S_{t}^{2}=X^{2}\left(\mathcal{T}_{t}^{2}\right) & \text { firm } 2
\end{array}
$$

where $\mathcal{T}_{t}^{i} i=1,2$; are dependent (correlated) subordinators.

- Note: although it is feasible to visualize it, it requires much more creativity! (and many slides!)
- Why is this not so trivial?
- When we use a single subordinator \mathcal{T}_{t} all we require to model n firms is an n dimensional Markov process,

$$
\left(S_{t}^{1}, S_{t}^{2}, \ldots, S_{t}^{n}\right)=\left(X^{1}\left(\mathcal{T}_{t}\right), X^{2}\left(\mathcal{T}_{t}\right), \ldots, X^{n}\left(\mathcal{T}_{t}\right)\right)=\mathbf{X}_{\mathcal{T}_{t}}
$$

In this case, the all coordinates of the "vector" jump together at the same time and for the same time length!

- When we use an n-dimensional subordinator $\mathcal{T}_{t}=\left(\mathcal{T}_{t}^{1}, \mathcal{T}_{t}^{2}, \ldots, \mathcal{T}_{t}^{n}\right)$ we require an n-parameter Markov process,

$$
\left(S_{t}^{1}, S_{t}^{2}, \ldots, S_{t}^{n}\right)=\left(X^{1}\left(\mathcal{T}_{t}^{1}\right), X^{2}\left(\mathcal{T}_{t}^{2}\right), \ldots, X^{n}\left(\mathcal{T}_{t}^{3}\right)\right)=\mathbf{X}_{\left(\mathcal{T}_{t}^{1}, \mathcal{T}_{t}^{2}, \ldots, \mathcal{T}_{t}^{n}\right)}
$$

In this case, only some coordinates of the vector may jump together and, if they do, they may jump for different time lengths!

- We proceed to describe our modeling framework in more detail.

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Independent Diffusions X^{i}.
- We take n independent, time-homogeneous, non-negative diffusion processes starting from positive values $X_{0}^{i}=S_{0}^{i}>0$ (initial stock prices at time zero) and solving stochastic differential equations:

$$
d X_{t}^{i}=\left(\mu_{i}+k_{i}\left(X_{t}^{i}\right)\right) X_{t}^{i} d t+\sigma_{i}\left(X_{t}^{i}\right) X_{t}^{i} d B_{t}^{i}
$$

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Independent Diffusions X^{i}.
- We take n independent, time-homogeneous, non-negative diffusion processes starting from positive values $X_{0}^{i}=S_{0}^{i}>0$ (initial stock prices at time zero) and solving stochastic differential equations:

$$
d X_{t}^{i}=\left(\mu_{i}+k_{i}\left(X_{t}^{i}\right)\right) X_{t}^{i} d t+\sigma_{i}\left(X_{t}^{i}\right) X_{t}^{i} d B_{t}^{i}
$$

- $\sigma_{i}(x)$ is the state-dependent instantaneous volatility

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Independent Diffusions X^{i}.
- We take n independent, time-homogeneous, non-negative diffusion processes starting from positive values $X_{0}^{i}=S_{0}^{i}>0$ (initial stock prices at time zero) and solving stochastic differential equations:

$$
d X_{t}^{i}=\left(\mu_{i}+k_{i}\left(X_{t}^{i}\right)\right) X_{t}^{i} d t+\sigma_{i}\left(X_{t}^{i}\right) X_{t}^{i} d B_{t}^{i}
$$

- $\sigma_{i}(x)$ is the state-dependent instantaneous volatility
- $\mu_{i}+k_{i}(x)$ is the state-dependent instantaneous drift, $\mu_{i} \in \mathbb{R}$ are constant parameters

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Independent Diffusions X^{i}.
- We take n independent, time-homogeneous, non-negative diffusion processes starting from positive values $X_{0}^{i}=S_{0}^{i}>0$ (initial stock prices at time zero) and solving stochastic differential equations:

$$
d X_{t}^{i}=\left(\mu_{i}+k_{i}\left(X_{t}^{i}\right)\right) X_{t}^{i} d t+\sigma_{i}\left(X_{t}^{i}\right) X_{t}^{i} d B_{t}^{i}
$$

- $\sigma_{i}(x)$ is the state-dependent instantaneous volatility
- $\mu_{i}+k_{i}(x)$ is the state-dependent instantaneous drift, $\mu_{i} \in \mathbb{R}$ are constant parameters
- B_{t}^{i} are n independent standard Brownian motions.

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i}{ }_{\mathcal{T}_{t}^{i}} \equiv\left\{\begin{array}{ll}
\mathrm{e}^{\rho_{i} t} X^{i}{ }_{\mathcal{T}_{t}^{i}}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Multivariate Time Change \mathcal{T}.
- \mathcal{T} is an n-dimensional subordinator: A n-dimensional subordinator is a Lévy process in $\mathbb{R}_{+}^{n}=[0, \infty)^{n}$ that is increasing in each of its coordinates.

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i}{ }_{\mathcal{T}_{t}^{i}} \equiv\left\{\begin{array}{ll}
\mathrm{e}^{\rho_{i} t} X^{i}{ }_{\mathcal{T}_{t}^{i}}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Multivariate Time Change \mathcal{T}.
- \mathcal{T} is an n-dimensional subordinator: A n-dimensional subordinator is a Lévy process in $\mathbb{R}_{+}^{n}=[0, \infty)^{n}$ that is increasing in each of its coordinates.
- The (n-dimensional) Laplace transform of a n-dimensional subordinator is given by (here $u_{i} \geq 0$ and $\langle\mathbf{u}, \mathbf{v}\rangle=\sum_{i=1}^{n} u_{i} v_{i}$):

$$
\mathbb{E}\left[e^{-\left\langle\mathbf{u}, \mathcal{T}_{t}\right\rangle}\right]=e^{-t \phi(\mathbf{u})}
$$

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i}{ }_{\mathcal{T}_{t}^{i}}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Multivariate Time Change \mathcal{T}.
- \mathcal{T} is an n-dimensional subordinator: A n-dimensional subordinator is a Lévy process in $\mathbb{R}_{+}^{n}=[0, \infty)^{n}$ that is increasing in each of its coordinates.
- The (n-dimensional) Laplace transform of a n-dimensional subordinator is given by (here $u_{i} \geq 0$ and $\langle\mathbf{u}, \mathbf{v}\rangle=\sum_{i=1}^{n} u_{i} v_{i}$):

$$
\mathbb{E}\left[e^{-\left\langle\mathbf{u}, \mathcal{T}_{t}\right\rangle}\right]=e^{-t \phi(\mathbf{u})}
$$

- The Laplace exponent given by the Lévy-Khintchine formula:

$$
\phi(\mathbf{u})=\langle\gamma, \mathbf{u}\rangle+\int_{\mathbb{R}_{+}^{n}}\left(1-e^{-\langle\mathbf{u}, \mathbf{s}\rangle}\right) \nu(d \mathbf{s}),
$$

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i}{ }_{\mathcal{T}_{t}^{i}}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Multivariate Time Change \mathcal{T}.
- \mathcal{T} is an n-dimensional subordinator: A n-dimensional subordinator is a Lévy process in $\mathbb{R}_{+}^{n}=[0, \infty)^{n}$ that is increasing in each of its coordinates.
- The (n-dimensional) Laplace transform of a n-dimensional subordinator is given by (here $u_{i} \geq 0$ and $\langle\mathbf{u}, \mathbf{v}\rangle=\sum_{i=1}^{n} u_{i} v_{i}$):

$$
\mathbb{E}\left[e^{-\left\langle\mathbf{u}, \mathcal{T}_{t}\right\rangle}\right]=e^{-t \phi(\mathbf{u})}
$$

- The Laplace exponent given by the Lévy-Khintchine formula:

$$
\phi(\mathbf{u})=\langle\gamma, \mathbf{u}\rangle+\int_{\mathbb{R}_{+}^{n}}\left(1-e^{-\langle\mathbf{u}, \mathbf{s}\rangle}\right) \nu(d \mathbf{s}),
$$

where $\gamma \in \mathbb{R}_{+}^{n}$ is the drift and the Lévy measure ν is a σ-finite measure such that $\int_{\mathbb{R}_{+}^{n}}(\|\mathbf{s}\| \wedge 1) \nu(d \mathbf{s})<\infty$.

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i}{ }_{\mathcal{T}_{t}^{i}}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Multivariate Time Change \mathcal{T}.
- \mathcal{T} is an n-dimensional subordinator: A n-dimensional subordinator is a Lévy process in $\mathbb{R}_{+}^{n}=[0, \infty)^{n}$ that is increasing in each of its coordinates.
- The (n-dimensional) Laplace transform of a n-dimensional subordinator is given by (here $u_{i} \geq 0$ and $\langle\mathbf{u}, \mathbf{v}\rangle=\sum_{i=1}^{n} u_{i} v_{i}$):

$$
\mathbb{E}\left[e^{-\left\langle\mathbf{u}, \mathcal{T}_{t}\right\rangle}\right]=e^{-t \phi(\mathbf{u})}
$$

- The Laplace exponent given by the Lévy-Khintchine formula:

$$
\phi(\mathbf{u})=\langle\gamma, \mathbf{u}\rangle+\int_{\mathbb{R}_{+}^{n}}\left(1-e^{-\langle\mathbf{u}, \mathbf{s}\rangle}\right) \nu(d \mathbf{s}),
$$

where $\gamma \in \mathbb{R}_{+}^{n}$ is the drift and the Lévy measure ν is a σ-finite measure such that $\int_{\mathbb{R}_{+}^{n}}(\|\mathbf{s}\| \wedge 1) \nu(d \mathbf{s})<\infty$.

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Default Times τ_{i}.
- We define the positive random variable τ_{i} as the time of default of the i th firm on its debt.

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Default Times τ_{i}.
- We define the positive random variable τ_{i} as the time of default of the i th firm on its debt.
- The default times, τ_{i}, are constructed as follows:

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Default Times τ_{i}.
- We define the positive random variable τ_{i} as the time of default of the i th firm on its debt.
- The default times, τ_{i}, are constructed as follows:
(1) Let H_{0}^{i} be the first time that the diffusion X^{i} hits zero.

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Default Times τ_{i}.
- We define the positive random variable τ_{i} as the time of default of the i th firm on its debt.
- The default times, τ_{i}, are constructed as follows:
(1) Let H_{0}^{i} be the first time that the diffusion X^{i} hits zero.
(2) Let \mathcal{E}_{i} be n independent exponential random variables with unit mean and independent of all X^{i} and \mathcal{T}^{i}

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an $E M M \mathbb{Q}$:

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Default Times τ_{i}.
- We define the positive random variable τ_{i} as the time of default of the i th firm on its debt.
- The default times, τ_{i}, are constructed as follows:
(1) Let H_{0}^{i} be the first time that the diffusion X^{i} hits zero.
(2) Let \mathcal{E}_{i} be n independent exponential random variables with unit mean and independent of all X^{i} and \mathcal{T}^{i}
(3) Define the X_{t}^{i} 's lifetime (we assume that $\inf \{\emptyset\}=H_{0}$ by convention):

$$
\zeta_{i}:=\inf \left\{t \in\left[0, H_{0}^{i}\right]: \int_{0}^{t} k_{i}\left(X_{u}^{i}\right) d u \geq \mathcal{E}_{i}\right\}
$$

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an $E M M \mathbb{Q}$:

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Default Times τ_{i}.
- We define the positive random variable τ_{i} as the time of default of the i th firm on its debt.
- The default times, τ_{i}, are constructed as follows:
(1) Let H_{0}^{i} be the first time that the diffusion X^{i} hits zero.
(2) Let \mathcal{E}_{i} be n independent exponential random variables with unit mean and independent of all X^{i} and \mathcal{T}^{i}
(3) Define the X_{t}^{i} 's lifetime (we assume that $\inf \{\emptyset\}=H_{0}$ by convention):

$$
\zeta_{i}:=\inf \left\{t \in\left[0, H_{0}^{i}\right]: \int_{0}^{t} k_{i}\left(X_{u}^{i}\right) d u \geq \mathcal{E}_{i}\right\}
$$

(9) Then, time of default of the i th firm is defined by applying the time change \mathcal{T}^{i} :

$$
\tau_{i}:=\inf \left\{t \geq 0: \mathcal{T}_{t}^{i} \geq \zeta_{i}\right\}
$$

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Martingale Conditions.
- Each single-name stock price process S^{i} is a non-negative martingale under the EMM \mathbb{Q} if and only if,

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Martingale Conditions.
- Each single-name stock price process S^{i} is a non-negative martingale under the EMM \mathbb{Q} if and only if,
(1) the constant μ_{i} in the drift of X^{i} satisfies the following condition:

$$
\int_{[1, \infty)} e^{\mu_{i} s} \nu_{i}(d s)<\infty
$$

where ν_{i} is the Lévy measure of the one-dimensional subordinator \mathcal{T}^{i} $\left(\nu_{i}(A)=\nu\left(\mathbb{R}_{+} \times \ldots \times A \times \ldots \mathbb{R}_{+}\right)\right.$with A in the i th place, for any Borel set $A \subset \mathbb{R}_{+}$bounded away from zero),

Multi-name Credit-Equity Model Architecture

- We model the joint risk-neutral dynamics of stock prices S_{t}^{i} of n firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X_{\mathcal{T}_{t}^{i}}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1, \ldots, n .\right.
$$

- Martingale Conditions.
- Each single-name stock price process S^{i} is a non-negative martingale under the EMM \mathbb{Q} if and only if,
(1) the constant μ_{i} in the drift of X^{i} satisfies the following condition:

$$
\int_{[1, \infty)} e^{\mu_{i} s} \nu_{i}(d s)<\infty
$$

where ν_{i} is the Lévy measure of the one-dimensional subordinator \mathcal{T}^{i} $\left(\nu_{i}(A)=\nu\left(\mathbb{R}_{+} \times \ldots \times A \times \ldots \mathbb{R}_{+}\right)\right.$with A in the i th place, for any Borel set $A \subset \mathbb{R}_{+}$bounded away from zero),
(2) the constant ρ_{i} is:

$$
\rho_{i}=r-q_{i}+\phi_{i}\left(-\mu_{i}\right)
$$

where $\phi_{i}(u)$ is the Laplace exponent of $\mathcal{T}^{i}, \phi_{i}(u)=\phi(0, \ldots, 0, u, 0, \ldots, 0)(u$ is in the i th place)

Credit-Equity Derivatives Pricing

- We are interested in pricing contingent claims written on multiple defaultable stocks.

Credit-Equity Derivatives Pricing

- We are interested in pricing contingent claims written on multiple defaultable stocks.
- In particular, the price of a European-style derivative expiring at time $t>0$ with the payoff function $f\left(S_{t}^{1}, \ldots, S_{t}^{n}\right)$ is given by

$$
e^{-r t} \mathbb{E}\left[f\left(S_{t}^{1}, \ldots, S_{t}^{n}\right)\right]
$$

Credit-Equity Derivatives Pricing

- We are interested in pricing contingent claims written on multiple defaultable stocks.
- In particular, the price of a European-style derivative expiring at time $t>0$ with the payoff function $f\left(S_{t}^{1}, \ldots, S_{t}^{n}\right)$ is given by

$$
e^{-r t} \mathbb{E}\left[f\left(S_{t}^{1}, \ldots, S_{t}^{n}\right)\right]
$$

- Recall: Each of the n firms may default by time t (and its stock becomes worthless).

Therefore, at time t, the firm's stock price is either:

- $S_{t}^{i}>0$ (survival to time t, i.e., $\tau_{i}>t$) or,
- $S_{t}^{i}=0$ (default by time t, i.e., $\tau_{i} \leq t$).

Multivariate Subordination of Multiparameter Semigroups

- Thus we are interested on calculating expectations of the form

$$
\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right]
$$

Multivariate Subordination of Multiparameter Semigroups

- Thus we are interested on calculating expectations of the form

$$
\begin{aligned}
& \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\mathbb{E}\left[1_{\left\{\tau_{1}>t\right\}} \cdots 1_{\left\{\tau_{n}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right]
\end{aligned}
$$

$$
\binom{\tau_{\{1, \ldots, n\}}}{=\bigwedge_{i=1}^{n} \tau_{i}}
$$

Multivariate Subordination of Multiparameter Semigroups

- Thus we are interested on calculating expectations of the form

$$
\begin{array}{ll}
\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
=\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{1}>t\right\}} \cdots \mathbf{1}_{\left\{\tau_{n}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] & \binom{\tau_{\{1, \ldots, n\}}^{\tau_{i}^{n}}}{=\Lambda_{i=1}^{n} \tau_{i}} \\
=\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbf{1}_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right]\right] & \binom{\mathcal{T}_{t} \& X_{t}}{\text { are indep. }}
\end{array}
$$

Multivariate Subordination of Multiparameter Semigroups

- Thus we are interested on calculating expectations of the form

$$
\begin{aligned}
& \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{1}>t\right\}} \cdots \mathbf{1}_{\left\{\tau_{n}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbf{1}_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right]\right] \\
& \binom{\mathcal{T}_{t} \& X_{t}}{\text { are indep. }} \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right] \cdots \mid \mathcal{T}_{t}\right]\right] \quad\binom{x_{t}^{\prime^{\prime} s}}{\text { are indep. }}
\end{aligned}
$$

Multivariate Subordination of Multiparameter Semigroups

- Thus we are interested on calculating expectations of the form

$$
\begin{aligned}
& \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{1}>t\right\}} \cdots \mathbf{1}_{\left\{\tau_{n}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbf{1}_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right]\right] \\
& \binom{\mathcal{T}_{t} \& X_{t}}{\text { are indep. }} \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbb{E}\left[1_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right] \cdots \mid \mathcal{T}_{t}\right]\right] \quad\left(\begin{array}{c}
\left.\begin{array}{c}
x_{t}^{\prime \prime}{ }^{\prime}{ }^{\prime} \\
\text { are indep. }
\end{array}\right)
\end{array}\right. \\
& \underbrace{\left(\mathcal{P}_{\mathrm{s}} f\right)}_{\begin{array}{c}
\text { Multi- } \\
\text { parameter } \\
\text { Semigroup }
\end{array}}
\end{aligned}
$$

Multivariate Subordination of Multiparameter Semigroups

- Thus we are interested on calculating expectations of the form

$$
\begin{array}{ll}
\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
=\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{1}>t\right\}} \cdots \mathbf{1}_{\left\{\tau_{n}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] & \left(\begin{array}{c}
\begin{array}{c}
\tau_{\{1, \ldots, n\}} \\
=\Lambda_{i=1}^{n} \tau_{i}
\end{array}
\end{array}\right) \\
=\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbf{1}_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right]\right] & \left(\begin{array}{c}
\left.\begin{array}{c}
\mathcal{T}_{t} \& x_{t} \\
\text { are indep. }
\end{array}\right)
\end{array}\right) \\
=\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right] \cdots \mid \mathcal{T}_{t}\right]\right] & \left(\begin{array}{c}
\begin{array}{c}
x_{t}^{i^{\prime}{ }_{c}} \\
\text { are indep. }
\end{array}
\end{array}\right) \\
\int_{\mathbb{R}_{+}^{n}} \underbrace{\left(\mathcal{P}_{\mathbf{s}} f\right)}_{\begin{array}{c}
\text { Multi- } \\
\text { parameter } \\
\text { Semigroup }
\end{array}} \underbrace{\pi_{t}(d \mathrm{ds})}_{\begin{array}{c}
\text { Multi- } \\
\text { Subord. } \\
\text { transition } \\
\text { kernel }
\end{array}}
\end{array}
$$

Multivariate Subordination of Multiparameter Semigroups

- Thus we are interested on calculating expectations of the form

$$
\begin{aligned}
& \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{1}>t\right\}} \cdots \mathbf{1}_{\left\{\tau_{n}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbf{1}_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right]\right] \\
& \binom{\mathcal{T}_{t} \& X_{t}}{\text { are indep. }} \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right] \cdots \mid \mathcal{T}_{t}\right]\right] \quad\left(\begin{array}{c}
x_{t}^{i \prime}{ }^{\prime}{ }_{\text {are indep. }} .
\end{array}\right) \\
& =\int_{\mathbb{R}_{+}^{n}} \underbrace{\left(\mathcal{P}_{\mathbf{s}} f\right)}_{\begin{array}{c}
\text { Multi- } \\
\text { parameter } \\
\text { Semigroup }
\end{array}} \underbrace{\pi_{t}(d \mathbf{s})}_{\begin{array}{c}
\text { Multi- } \\
\begin{array}{c}
\text { Subord. } \\
\text { transition } \\
\text { kernel }
\end{array}
\end{array}} \\
& \text { Multivariate Subordination } \\
& \text { of } \\
& \text { Multiparameter Semigroups }
\end{aligned}
$$

Multivariate Subordination of Multiparameter Semigroups

- Thus we are interested on calculating expectations of the form

$$
\begin{aligned}
& \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{1}>t\right\}} \cdots \mathbf{1}_{\left\{\tau_{n}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbf{1}_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right]\right] \\
& \binom{\mathcal{T}_{t} \& X_{t}}{\text { are indep. }} \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{1}>\mathcal{T}_{t}^{1}\right\}} \cdots \mathbb{E}\left[\mathbf{1}_{\left\{\zeta_{n}>\mathcal{T}_{t}^{n}\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right) \mid \mathcal{T}_{t}\right] \cdots \mid \mathcal{T}_{t}\right]\right] \quad\left(\begin{array}{c}
x_{t}^{i \prime}{ }^{\prime}{ }_{\text {are indep. }} .
\end{array}\right) \\
& =\int_{\mathbb{R}_{+}^{n}} \underbrace{\left(\mathcal{P}_{\mathbf{s}} f\right)}_{\begin{array}{c}
\text { Multi- } \\
\text { parameter } \\
\text { Semigroup }
\end{array}} \underbrace{\pi_{t}(d \mathbf{s})}_{\begin{array}{c}
\text { Multi- } \\
\text { Subord. } \\
\text { transition } \\
\text { kernel }
\end{array}}=\underbrace{\mathcal{P}_{t}^{\phi} f}_{\begin{array}{c}
\text { Subordinated } \\
\text { Semigroup }
\end{array}} \\
& \text { Multivariate Subordination } \\
& \text { of } \\
& \text { Multiparameter Semigroups }
\end{aligned}
$$

Spectral Decomposition (I)

- We assume that all X^{i} are 1 D diffusions (symmetric Markov processes) on $(0, \infty)$ such that:
- the semigroups \mathcal{P}^{i} defined in the Hilbert spaces $\mathcal{H}_{i}=L^{2}\left((0, \infty), m_{i}\right)$ endowed with the inner products $(f, g)_{m_{i}}=\int_{(0, \infty)} f(x) g(x) m_{i}(x) d x$ are symmetric with respect to the speed density $m(x)$, i.e.,

$$
\left(\mathcal{P}_{t_{i}}^{i} f, g\right)_{m_{i}}=\left(f, \mathcal{P}_{t_{i}}^{i} g\right)_{m_{i}}, \quad \forall t_{i} \geq 0, \& i=1, \ldots, n
$$

Spectral Decomposition (I)

- We assume that all X^{i} are 1D diffusions (symmetric Markov processes) on $(0, \infty)$ such that:
- the semigroups \mathcal{P}^{i} defined in the Hilbert spaces $\mathcal{H}_{i}=L^{2}\left((0, \infty), m_{i}\right)$ endowed with the inner products $(f, g)_{m_{i}}=\int_{(0, \infty)} f(x) g(x) m_{i}(x) d x$ are symmetric with respect to the speed density $m(x)$, i.e.,

$$
\left(\mathcal{P}_{t_{i}}^{i} f, g\right)_{m_{i}}=\left(f, \mathcal{P}_{t_{i}}^{i} g\right)_{m_{i}}, \quad \forall t_{i} \geq 0, \& i=1, \ldots, n
$$

- Then $\mathrm{H}=L^{2}\left((0, \infty)^{n}, m\right)$ is defined on the product space $(0, \infty)^{n}=(0, \infty) \times \ldots \times(0, \infty)$ with the product speed density $m(\mathbf{x})=m_{1}\left(x_{1}\right) \ldots m_{n}\left(x_{n}\right)$ and the inner product

$$
(f, g)_{m}=\int_{(0, \infty)^{n}} f(\mathbf{x}) g(\mathbf{x}) m(\mathbf{x}) d \mathbf{x}
$$

Spectral Decomposition (II)

- In the special case when each infinitesimal generator \mathcal{G}_{i} has a purely discrete spectrum with eigenvalues $\left\{-\lambda_{k}^{i}\right\}_{k=1}^{\infty}$ and the corresponding eigenfunctions $\varphi_{k}^{i}\left(x_{i}\right)$,

$$
\mathcal{G}_{i} \varphi_{k}^{i}\left(x_{i}\right)=-\lambda_{k}^{i} \varphi_{k}^{i}\left(x_{i}\right),
$$

Spectral Decomposition (II)

- In the special case when each infinitesimal generator \mathcal{G}_{i} has a purely discrete spectrum with eigenvalues $\left\{-\lambda_{k}^{i}\right\}_{k=1}^{\infty}$ and the corresponding eigenfunctions $\varphi_{k}^{i}\left(x_{i}\right)$,

$$
\mathcal{G}_{i} \varphi_{k}^{i}\left(x_{i}\right)=-\lambda_{k}^{i} \varphi_{k}^{i}\left(x_{i}\right),
$$

- the spectral representation of the multi-parameter semigroup takes the form of the eigenfunction expansion:

$$
\mathcal{P}_{\mathbf{t}} f=\sum_{\mathbf{k} \in \mathbb{N}^{n}} e^{-\langle\lambda, \mathbf{t}\rangle} c_{\mathrm{k}}^{f} \varphi_{\mathbf{k}}, \quad f \in \mathbf{H}, \quad \mathbf{t}=\left(t_{1}, \ldots, t_{n}\right) \geq \mathbf{0}
$$

where $\sum_{\mathbf{k} \in \mathbb{N}^{n}}=\sum_{k_{1}=1}^{\infty} \cdots \sum_{k_{n}=1}^{\infty}, \mathbb{N}=\{1,2, \ldots\}$,

Spectral Decomposition (II)

- In the special case when each infinitesimal generator \mathcal{G}_{i} has a purely discrete spectrum with eigenvalues $\left\{-\lambda_{k}^{i}\right\}_{k=1}^{\infty}$ and the corresponding eigenfunctions $\varphi_{k}^{i}\left(x_{i}\right)$,

$$
\mathcal{G}_{i} \varphi_{k}^{i}\left(x_{i}\right)=-\lambda_{k}^{i} \varphi_{k}^{i}\left(x_{i}\right),
$$

- the spectral representation of the multi-parameter semigroup takes the form of the eigenfunction expansion:

$$
\mathcal{P}_{\mathbf{t}} f=\sum_{\mathbf{k} \in \mathbb{N}^{n}} e^{-\langle\lambda, \mathbf{t}\rangle} c_{\mathrm{k}}^{f} \varphi_{\mathbf{k}}, \quad f \in \mathbf{H}, \quad \mathbf{t}=\left(t_{1}, \ldots, t_{n}\right) \geq \mathbf{0}
$$

where $\sum_{\mathbf{k} \in \mathbb{N}^{n}}=\sum_{k_{1}=1}^{\infty} \cdots \sum_{k_{n}=1}^{\infty}, \mathbb{N}=\{1,2, \ldots\}$,
the eigenvalues and eigenfunctions are

$$
\begin{gathered}
\lambda=\left(\lambda_{k_{1}}^{1}, \ldots, \lambda_{k_{n}}^{n}\right) \\
\varphi_{\mathbf{k}}(\mathbf{x})=\prod_{i=1}^{n} \varphi_{k_{i}}^{i}\left(x_{i}\right), \quad x_{i} \in(0, \infty), \quad \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in(0, \infty)^{n}, \quad \mathbf{k} \in \mathbb{N}^{n}
\end{gathered}
$$

and the expansion coefficients are

$$
c_{\mathbf{k}}^{f}=\left(f, \varphi_{\mathbf{k}}\right)_{m}, \quad \mathbf{k} \in \mathbb{N}^{n}
$$

Spectral Decomposition of the Subordinated Semigroup \mathcal{P}_{t}^{ϕ}

- Consequently, we can obtain the Spectral Decomposition of the Subordinated Semigroup as follows,

Spectral Decomposition of the Subordinated Semigroup \mathcal{P}_{t}^{ϕ}

- Consequently, we can obtain the Spectral Decomposition of the Subordinated Semigroup as follows,

$$
\mathcal{P}_{t}^{\phi} f
$$

Spectral Decomposition of the Subordinated Semigroup \mathcal{P}_{t}^{ϕ}

- Consequently, we can obtain the Spectral Decomposition of the Subordinated Semigroup as follows,

$$
\mathcal{P}_{t}^{\phi} f=\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right]
$$

Spectral Decomposition of the Subordinated Semigroup \mathcal{P}_{t}^{ϕ}

- Consequently, we can obtain the Spectral Decomposition of the Subordinated Semigroup as follows,

$$
\begin{aligned}
\mathcal{P}_{t}^{\phi} f & =\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\int_{\mathbb{R}_{+}^{n}} \mathcal{P}_{\mathbf{s}} f \pi_{t}(d \mathbf{s})
\end{aligned}
$$

Spectral Decomposition of the Subordinated Semigroup \mathcal{P}_{t}^{ϕ}

- Consequently, we can obtain the Spectral Decomposition of the Subordinated Semigroup as follows,

$$
\begin{array}{rlr}
\mathcal{P}_{t}^{\phi} f & =\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right]\right. & \\
& =\int_{\mathbb{R}_{+}^{n}} \mathcal{P}_{\mathbf{s}} f \pi_{t}(d \mathbf{s}) & \left(\begin{array}{c}
\text { Multivariate subordination } \\
\text { of the } \\
n-\text { parameter semigroup }
\end{array}\right) \\
& =\int_{\mathbb{R}_{+}^{n}}\left(\sum_{\mathbf{k} \in \mathbb{N}^{n}} e^{-\langle\lambda, \mathbf{s}\rangle} c_{\mathrm{k}}^{f} \varphi_{\mathrm{k}}\right) \pi_{t}(d \mathbf{s}) & \left(\begin{array}{c}
\text { Spectral representation } \\
\text { of the } \\
n-\text { parameter semigroup }
\end{array}\right)
\end{array}
$$

Spectral Decomposition of the Subordinated Semigroup \mathcal{P}_{t}^{ϕ}

- Consequently, we can obtain the Spectral Decomposition of the Subordinated Semigroup as follows,

$$
\begin{array}{rlr}
\mathcal{P}_{t}^{\phi} f & =\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] & \\
& =\int_{\mathbb{R}_{+}^{n}} \mathcal{P}_{\mathbf{s}} f \pi_{t}(d \mathbf{s}) & \left(\begin{array}{c}
\text { Multivariate subbordination } \\
\text { of the } \\
n-\text { parameter semigroup }
\end{array}\right) \\
& =\int_{\mathbb{R}_{+}^{n}}\left(\sum_{\mathbf{k} \in \mathbb{N}^{n}} e^{-\langle\lambda, \mathbf{s}\rangle} c_{\mathbf{k}}^{f} \varphi_{\mathbf{k}}\right) \pi_{t}(d \mathbf{s}) & \left(\begin{array}{c}
\begin{array}{c}
\text { Spectral representation } \\
\text { of the } \\
n-\text { parameter semigroup }
\end{array}
\end{array}\right) \\
& =\sum_{\mathbf{k} \in \mathbb{N}^{n}}\left(\int_{\mathbb{R}_{+}^{n}} e^{-\langle\lambda, \mathbf{s}\rangle} \pi_{t}(d \mathbf{s})\right) c_{\mathbf{k}}^{f} \varphi_{\mathbf{k}} & \left(\begin{array}{c}
\text { Laplace transform } \\
\text { of the } \\
n-\text { dimensional subordinator }
\end{array}\right)
\end{array}
$$

Spectral Decomposition of the Subordinated Semigroup \mathcal{P}_{t}^{ϕ}

- Consequently, we can obtain the Spectral Decomposition of the Subordinated Semigroup as follows,

$$
\begin{aligned}
& \mathcal{P}_{t}^{\phi} f=\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\int_{\mathbb{R}_{+}^{n}} \mathcal{P}_{\mathbf{s}} f \pi_{t}(d \mathbf{s}) \\
& =\int_{\mathbb{R}_{+}^{n}}\left(\sum_{\mathbf{k} \in \mathbb{N}^{n}} e^{-\langle\lambda, \mathbf{s}} c_{\mathbf{k}}^{f} \varphi_{\mathbf{k}}\right) \pi_{t}(d \mathbf{s}) \\
& =\sum_{\mathbf{k} \in \mathbb{N}^{n}}\left(\int_{\mathbb{R}_{+}^{n}} e^{-\langle\lambda, \mathbf{s}\rangle} \pi_{t}(d \mathbf{s})\right) c_{\mathbf{k}}^{f} \varphi_{\mathbf{k}} \\
& =\sum_{\mathbf{k} \in \mathbb{N}^{n}} e^{-\phi\left(\lambda_{k_{1}}^{1}, \ldots, \lambda_{k_{n}}^{n}\right) t} c_{\mathbf{k}}^{f} \varphi_{\mathbf{k}} \\
& \left(\begin{array}{c}
\text { Multivariate subordination } \\
\text { of the } \\
n-\text { parameter semigroup }
\end{array}\right) \\
& \left(\begin{array}{c}
\text { Spectral representation } \\
\text { of the } \\
n-\text { parameter semigroup }
\end{array}\right) \\
& \left(\begin{array}{c}
\text { Laplace transform } \\
\text { of the } \\
\mathrm{n}-\text { dimensional subordinator }
\end{array}\right) \\
& \binom{\text { Levy }- \text { Khintchine }}{\text { exponent }}
\end{aligned}
$$

Spectral Decomposition of the Subordinated Semigroup \mathcal{P}_{t}^{ϕ}

- Consequently, we can obtain the Spectral Decomposition of the Subordinated Semigroup as follows,

$$
\left.\begin{array}{rlr}
\mathcal{P}_{t}^{\phi} f & =\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2, \ldots, n\}}>t\right\}} f\left(X_{\mathcal{T}_{t}^{1}}^{1}, X_{\mathcal{T}_{t}^{2}}^{2}, \ldots, X_{\mathcal{T}_{t}^{n}}^{n}\right)\right] \\
& =\int_{\mathbb{R}_{+}^{n}} \mathcal{P}_{\mathbf{s}} f \pi_{t}(d \mathbf{s}) & \\
& =\int_{\mathbb{R}_{+}^{n}}\left(\sum_{\mathbf{k} \in \mathbb{N}^{n}} e^{-\langle\lambda, \mathbf{s}\rangle} c_{\mathbf{k}}^{f} \varphi_{\mathbf{k}}\right) \pi_{t}(d \mathbf{s}) & \left(\begin{array}{c}
\text { Multivariate subordination } \\
\text { of the } \\
n-\text { parameter semigroup }
\end{array}\right) \\
& =\sum_{\mathbf{k} \in \mathbb{N}^{n}}\left(\int_{\mathbb{R}_{+}^{n}} e^{-\langle\lambda, \mathbf{s}\rangle} \pi_{t}(d \mathbf{s})\right) c_{\mathbf{k}}^{f} \varphi_{\mathbf{k}} & \left(\begin{array}{c}
\text { Spectral representation } \\
\text { of the } \\
n-\text { parameter semigroup }
\end{array}\right) \\
& \left(\begin{array}{c}
\text { Laplace transform } \\
\text { of the } \\
n-\text { dimensional subordinator }
\end{array}\right) \\
& =\sum_{\mathbf{k} \in \mathbb{N}^{n}} e^{-\phi\left(\lambda_{k_{1}}^{1}, \ldots, \lambda_{k_{n}}^{n}\right) t} c_{\mathbf{k}}^{f} \varphi_{\mathbf{k}} & \left(\begin{array}{c}
\text { Levy - Khintchine } \\
\text { exponent }
\end{array}\right.
\end{array}\right)
$$

- Remark: When $n=1$ the modeling framework is reduced to the Credit-Equity Model of Mendoza-Arriaga et al. (2009).

Two Firms Illustration: the JDCEV process

- Recall: we model the joint risk-neutral dynamics of stock prices S_{t}^{i} of 2 firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1,2\right.
$$

Two Firms Illustration: the JDCEV process

- Recall: we model the joint risk-neutral dynamics of stock prices S_{t}^{i} of 2 firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1,2\right.
$$

- Let $X_{t}^{i} \quad i=1,2$ be Jump-to-Default Extended Constant Elasticity of Variance (JDCEV) processes of Carr \& Linetsky (2006):

$$
\underline{\underline{d X_{t}}=\left[\mu+k\left(X_{t}\right)\right] X_{t} d t+\sigma\left(X_{t}\right) X_{t} d B_{t}}, \quad X_{0}=x>0
$$

$$
\sigma(X)=a X^{\beta}
$$

$$
k(X)=b+c \sigma^{2}(X)
$$

CEV Volatility
(Power function of X)

Killing Rate
(Affine function of Variance)

Two Firms Illustration: the JDCEV process

- Recall: we model the joint risk-neutral dynamics of stock prices S_{t}^{i} of 2 firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1,2\right.
$$

- Let $X_{t}^{i} \quad i=1,2$ be Jump-to-Default Extended Constant Elasticity of Variance (JDCEV) processes of Carr \& Linetsky (2006):

$$
\underline{\underline{d X_{t}}=\left[\mu+k\left(X_{t}\right)\right] X_{t} d t+\sigma\left(X_{t}\right) X_{t} d B_{t}}, \quad X_{0}=x>0
$$

$$
\sigma(X)=a X^{\beta}
$$

$$
k(X)=b+c \sigma^{2}(X)
$$

CEV Volatility
(Power function of X)

Killing Rate
(Affine function of Variance)
$a>0 \quad \Rightarrow$ volatility scale parameter (fixing ATM volatility)
$\beta<0 \Rightarrow$ volatility elasticity parameter
$b \geq 0 \quad \Rightarrow$ constant default intensity
$c \geq 0 \quad \Rightarrow$ sensitivity of the default intensity to variance

Two Firms Illustration: the JDCEV process

- Recall: we model the joint risk-neutral dynamics of stock prices S_{t}^{i} of 2 firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1,2\right.
$$

- Let $X_{t}^{i} \quad i=1,2$ be Jump-to-Default Extended Constant Elasticity of Variance (JDCEV) processes of Carr \& Linetsky (2006):

$$
\underline{\underline{d X_{t}}=\left[\mu+k\left(X_{t}\right)\right] X_{t} d t+\sigma\left(X_{t}\right) X_{t} d B_{t}}, \quad X_{0}=x>0
$$

$$
\sigma(X)=a X^{\beta}
$$

$$
k(X)=b+c \sigma^{2}(X)
$$

CEV Volatility
(Power function of X)

Killing Rate
(Affine function of Variance)
$a>0 \quad \Rightarrow$ volatility scale parameter (fixing ATM volatility)
$\beta<0 \quad \Rightarrow$ volatility elasticity parameter
$b \geq 0 \quad \Rightarrow$ constant default intensity
$c \geq 0 \quad \Rightarrow$ sensitivity of the default intensity to variance
For $c=0$ and $b=0$ the JDCEV reduces to the standard CEV process

Two Firms Illustration: the JDCEV process

- Recall: we model the joint risk-neutral dynamics of stock prices S_{t}^{i} of 2 firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1,2\right.
$$

- Let $X_{t}^{i} \quad i=1,2$ be Jump-to-Default Extended Constant Elasticity of Variance (JDCEV) processes of Carr \& Linetsky (2006):

$$
\begin{array}{cc}
\underline{\underline{d X_{t}}=\left[\mu+k\left(X_{t}\right)\right] X_{t} d t+\sigma\left(X_{t}\right) X_{t} d B_{t}}, & X_{0}=x>0 \\
\sigma(X)=a X^{\beta} & \underline{k(X)}=b+c \sigma^{2}(X)
\end{array}
$$

CEV Volatility
(Power function of X)
Killing Rate
(Affine function of Variance)
$a>0 \quad \Rightarrow$ volatility scale parameter (fixing ATM volatility)
$\beta<0 \quad \Rightarrow$ volatility elasticity parameter
$b \geq 0 \quad \Rightarrow$ constant default intensity
$c \geq 0 \quad \Rightarrow$ sensitivity of the default intensity to variance

The model is consistent with:
leverage effect $\Rightarrow S \Downarrow \rightarrow \sigma(S) \Uparrow$

Two Firms Illustration: the JDCEV process

- Recall: we model the joint risk-neutral dynamics of stock prices S_{t}^{i} of 2 firms under an EMM \mathbb{Q} :

$$
S_{t}^{i}=\mathbf{1}_{\left\{t<\tau_{i}\right\}} e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i} \equiv\left\{\begin{array}{ll}
e^{\rho_{i} t} X^{i} \mathcal{T}_{t}^{i}, & t<\tau_{i} \\
0, & t \geq \tau_{i}
\end{array}, \quad i=1,2\right.
$$

- Let $X_{t}^{i} \quad i=1,2$ be Jump-to-Default Extended Constant Elasticity of Variance (JDCEV) processes of Carr \& Linetsky (2006):

$$
\underline{\underline{d} X_{t}=\left[\mu+k\left(X_{t}\right)\right] X_{t} d t+\sigma\left(X_{t}\right) X_{t} d B_{t}}, \quad X_{0}=x>0
$$

$$
\sigma(X)=a X^{\beta}
$$

$$
k(X)=b+c \sigma^{2}(X)
$$

CEV Volatility Killing Rate
(Power function of X)
(Affine function of Variance)
$a>0 \Rightarrow$ volatility scale parameter (fixing ATM volatility)
$\beta<0 \quad \Rightarrow$ volatility elasticity parameter
$b \geq 0 \quad \Rightarrow$ constant default intensity
$c \geq 0 \quad \Rightarrow$ sensitivity of the default intensity to variance

The model is consistent with:
leverage effect $\Rightarrow S \Downarrow \rightarrow \sigma(S) \Uparrow$
stock volatility-credit spreads linkage $\Rightarrow \sigma(S) \Uparrow \leftrightarrow k(S) \Uparrow$

JDCEV Eigenvalues and Eigenfunctions

- When $\mu+b \neq 0$, the spectrum is purely discrete. When $\mu+b<0$, the eigenvalues and eigenfunctions are:

$$
\lambda_{n}=\omega(n-1)+\lambda_{1}, \quad \varphi_{n}(x)=A^{\frac{\nu}{2}} \sqrt{\frac{(n-1)!|\mu+b|}{\Gamma(\nu+n)}} \times L_{n-1}^{\nu}\left(A x^{-2 \beta}\right), \quad n=1,2, \ldots,
$$

where $L_{n}^{\nu}(x)$ are the generalized Laguerre polynomials.

JDCEV Eigenvalues and Eigenfunctions

- When $\mu+b \neq 0$, the spectrum is purely discrete. When $\mu+b<0$, the eigenvalues and eigenfunctions are:

$$
\lambda_{n}=\omega(n-1)+\lambda_{1}, \quad \varphi_{n}(x)=A^{\frac{\nu}{2}} \sqrt{\frac{(n-1)!|\mu+b|}{\Gamma(\nu+n)}} \times L_{n-1}^{\nu}\left(A x^{-2 \beta}\right), \quad n=1,2, \ldots,
$$

where $L_{n}^{\nu}(x)$ are the generalized Laguerre polynomials.

- The principal eigenvalue λ_{1}, A, ν and ω are,

$$
\lambda_{1}:=|\mu|, \quad A:=\frac{|\mu+b|}{a^{2}|\beta|}, \quad \nu:=\frac{1+2 c}{2|\beta|}, \quad \omega:=2|\beta(\mu+b)|,,
$$

JDCEV Eigenvalues and Eigenfunctions

- When $\mu+b \neq 0$, the spectrum is purely discrete. When $\mu+b<0$, the eigenvalues and eigenfunctions are:

$$
\lambda_{n}=\omega(n-1)+\lambda_{1}, \quad \varphi_{n}(x)=A^{\frac{\nu}{2}} \sqrt{\frac{(n-1)!|\mu+b|}{\Gamma(\nu+n)}} \times L_{n-1}^{\nu}\left(A x^{-2 \beta}\right), \quad n=1,2, \ldots,
$$

where $L_{n}^{\nu}(x)$ are the generalized Laguerre polynomials.

- The principal eigenvalue λ_{1}, A, ν and ω are,

$$
\lambda_{1}:=|\mu|, \quad A:=\frac{|\mu+b|}{a^{2}|\beta|}, \quad \nu:=\frac{1+2 c}{2|\beta|}, \quad \omega:=2|\beta(\mu+b)|,,
$$

- The speed density is defined as,

$$
m(x)=\frac{2}{a^{2}} x^{2 c-2-2 \beta} e^{-A x^{-2 \beta}}
$$

Ex. Joint Survival Probability

- Then the joint survival probability for two firms by time $t>0$ is given by the eigenfunction expansion $\left(\mathbf{x}=\left(x_{1}, x_{2}\right)=\left(S_{0}^{1}, S_{0}^{2}\right)\right)$:

$$
\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)=\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\right]
$$

Ex. Joint Survival Probability

- Then the joint survival probability for two firms by time $t>0$ is given by the eigenfunction expansion $\left(\mathbf{x}=\left(x_{1}, x_{2}\right)=\left(S_{0}^{1}, S_{0}^{2}\right)\right)$:

$$
\begin{gathered}
\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)=\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\right] \\
=\sum_{n_{1}, n_{2}=1}^{\infty} e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t} c_{n_{1}}^{1} c_{n_{2}}^{2} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{2}}^{2}\left(x_{2}\right)
\end{gathered}
$$

Ex. Joint Survival Probability

- Then the joint survival probability for two firms by time $t>0$ is given by the eigenfunction expansion $\left(\mathbf{x}=\left(x_{1}, x_{2}\right)=\left(S_{0}^{1}, S_{0}^{2}\right)\right)$:

$$
\begin{gathered}
\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)=\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\right] \\
=\sum_{n_{1}, n_{2}=1}^{\infty} e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t} c_{n_{1}}^{1} c_{n_{2}}^{2} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{2}}^{2}\left(x_{2}\right)
\end{gathered}
$$

- Similarly, the single-name survival probabilities are given by the eigenfunction expansions:

$$
\mathbb{Q}\left(\tau_{k}>t\right)=\sum_{n=1}^{\infty} e^{-\phi_{k}\left(\lambda_{n}^{k}\right) t} c_{n}^{k} \varphi_{n}^{k}\left(x_{k}\right), \quad k=1,2 .
$$

Ex. Joint Survival Probability

- Then the joint survival probability for two firms by time $t>0$ is given by the eigenfunction expansion $\left(\mathbf{x}=\left(x_{1}, x_{2}\right)=\left(S_{0}^{1}, S_{0}^{2}\right)\right)$:

$$
\begin{gathered}
\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)=\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\right] \\
=\sum_{n_{1}, n_{2}=1}^{\infty} e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t} c_{n_{1}}^{1} c_{n_{2}}^{2} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{2}}^{2}\left(x_{2}\right)
\end{gathered}
$$

- Similarly, the single-name survival probabilities are given by the eigenfunction expansions:

$$
\mathbb{Q}\left(\tau_{k}>t\right)=\sum_{n=1}^{\infty} e^{-\phi_{k}\left(\lambda_{n}^{k}\right) t} c_{n}^{k} \varphi_{n}^{k}\left(x_{k}\right), \quad k=1,2 .
$$

The expansion coefficients are given by:

$$
c_{n}^{k}=\left(\varphi_{n}, 1\right)_{m}=\frac{A_{k}^{\frac{1-2 c_{k}}{4\left|\beta_{k}\right|}}\left(1 /\left(2\left|\beta_{k}\right|\right)\right)_{n-1} \Gamma\left(c_{k} /\left|\beta_{k}\right|+1\right)}{\sqrt{(n-1)!\left|\mu_{k}+b_{k}\right| \Gamma\left(\nu_{k}+n\right)}}, \quad k=1,2, \quad n=1,2, \ldots
$$

where $(z)_{n}=z(z-1) \ldots(z-n-1)$ is the Pochhammer symbol.

Ex. Joint Survival Probability

- Then the joint survival probability for two firms by time $t>0$ is given by the eigenfunction expansion $\left(\mathbf{x}=\left(x_{1}, x_{2}\right)=\left(S_{0}^{1}, S_{0}^{2}\right)\right)$:

$$
\begin{gathered}
\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)=\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\right] \\
=\sum_{n_{1}, n_{2}=1}^{\infty} e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t} c_{n_{1}}^{1} c_{n_{2}}^{2} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{2}}^{2}\left(x_{2}\right)
\end{gathered}
$$

- Similarly, the single-name survival probabilities are given by the eigenfunction expansions:

$$
\mathbb{Q}\left(\tau_{k}>t\right)=\sum_{n=1}^{\infty} e^{-\phi_{k}\left(\lambda_{n}^{k}\right) t} c_{n}^{k} \varphi_{n}^{k}\left(x_{k}\right), \quad k=1,2 .
$$

$\phi(u, v)$ is the Laplace exponent of the two-dimensional subordinator $\left(\mathcal{T}^{1}, \mathcal{T}^{2}\right)^{\top}$

Ex. Joint Survival Probability

- Then the joint survival probability for two firms by time $t>0$ is given by the eigenfunction expansion $\left(\mathbf{x}=\left(x_{1}, x_{2}\right)=\left(S_{0}^{1}, S_{0}^{2}\right)\right)$:

$$
\begin{gathered}
\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)=\mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\right] \\
=\sum_{n_{1}, n_{2}=1}^{\infty} e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t} c_{n_{1}}^{1} c_{n_{2}}^{2} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{2}}^{2}\left(x_{2}\right)
\end{gathered}
$$

- Similarly, the single-name survival probabilities are given by the eigenfunction expansions:

$$
\mathbb{Q}\left(\tau_{k}>t\right)=\sum_{n=1}^{\infty} e^{-\phi_{k}\left(\lambda_{n}^{k}\right) t} c_{n}^{k} \varphi_{n}^{k}\left(x_{k}\right), \quad k=1,2 .
$$

$\phi(u, v)$ is the Laplace exponent of the two-dimensional subordinator $\left(\mathcal{T}^{1}, \mathcal{T}^{2}\right)^{\top}$
$\phi_{1}(u):=\phi(u, 0)$, and $\phi_{2}(u):=\phi(0, u)$ are the Laplace exponents of the marginal one-dimensional subordinators $\mathcal{T}^{k}, k \in\{1,2\}$, respectively.

Default Correlation

- The default correlation has the form:

$$
\operatorname{Corr}\left(\mathbf{1}_{\left\{\tau_{1}>t\right\}}, \mathbf{1}_{\left\{\tau_{2}>t\right\}}\right)=\frac{\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)-\mathbb{Q}\left(\tau_{1}>t\right) \mathbb{Q}\left(\tau_{2}>t\right)}{\prod_{k=1}^{2} \sqrt{\mathbb{Q}\left(\tau_{k}>t\right)\left(1-\mathbb{Q}\left(\tau_{k}>t\right)\right)}}
$$

Default Correlation

- The default correlation has the form:

$$
\begin{aligned}
\operatorname{Corr}\left(\mathbb{1}_{\left\{\tau_{1}>t\right\}}, \mathbf{1}_{\left\{\tau_{2}>t\right\}}\right) & =\frac{\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)-\mathbb{Q}\left(\tau_{1}>t\right) \mathbb{Q}\left(\tau_{2}>t\right)}{\prod_{k=1}^{2} \sqrt{\mathbb{Q}\left(\tau_{k}>t\right)\left(1-\mathbb{Q}\left(\tau_{k}>t\right)\right)}} \\
& =\frac{\sum_{\mathbf{n} \in \mathbb{N}_{1}^{2}}\left(e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t}-e^{-\left(\phi_{1}\left(\lambda_{n_{1}}^{1}\right)+\phi_{2}\left(\lambda_{n_{2}}^{2}\right)\right) t}\right) c_{\mathbf{n}} \varphi_{\mathbf{n}}(\mathbf{x})}{\prod_{k=1}^{2} \sqrt{\mathbb{Q}\left(\tau_{k}>t\right)\left(1-\mathbb{Q}\left(\tau_{k}>t\right)\right)}}
\end{aligned}
$$

Default Correlation

- The default correlation has the form:

$$
\begin{aligned}
\operatorname{Corr}\left(\mathbf{1}_{\left\{\tau_{1}>t\right\}}, \mathbf{1}_{\left\{\tau_{2}>t\right\}}\right) & =\frac{\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)-\mathbb{Q}\left(\tau_{1}>t\right) \mathbb{Q}\left(\tau_{2}>t\right)}{\prod_{k=1}^{2} \sqrt{\mathbb{Q}\left(\tau_{k}>t\right)\left(1-\mathbb{Q}\left(\tau_{k}>t\right)\right)}} \\
& =\frac{\sum_{\mathbf{n} \in \mathbb{N}_{1}^{2}}\left(e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t}-e^{-\left(\phi_{1}\left(\lambda_{n_{1}}^{1}\right)+\phi_{2}\left(\lambda_{n_{2}}^{2}\right)\right) t}\right) c_{\mathbf{n}} \varphi_{\mathbf{n}}(\mathrm{x})}{\prod_{k=1}^{2} \sqrt{\mathbb{Q}\left(\tau_{k}>t\right)\left(1-\mathbb{Q}\left(\tau_{k}>t\right)\right)}}
\end{aligned}
$$

- From this expression we observe that:
- it is zero if and only if $\phi\left(u_{1}, u_{2}\right)=\phi\left(u_{1}, 0\right)+\phi\left(0, u_{2}\right)$, ,

Default Correlation

- The default correlation has the form:

$$
\begin{aligned}
\operatorname{Corr}\left(\mathbb{1}_{\left\{\tau_{1}>t\right\}}, \mathbf{1}_{\left\{\tau_{2}>t\right\}}\right) & =\frac{\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)-\mathbb{Q}\left(\tau_{1}>t\right) \mathbb{Q}\left(\tau_{2}>t\right)}{\prod_{k=1}^{2} \sqrt{\mathbb{Q}\left(\tau_{k}>t\right)\left(1-\mathbb{Q}\left(\tau_{k}>t\right)\right)}} \\
& =\frac{\sum_{\mathbf{n} \in \mathbb{N}_{1}^{2}}\left(e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t}-e^{-\left(\phi_{1}\left(\lambda_{n_{1}}^{1}\right)+\phi_{2}\left(\lambda_{n_{2}}^{2}\right)\right) t}\right) c_{\mathbf{n}} \varphi_{\mathbf{n}}(\mathbf{x})}{\prod_{k=1}^{2} \sqrt{\mathbb{Q}\left(\tau_{k}>t\right)\left(1-\mathbb{Q}\left(\tau_{k}>t\right)\right)}}
\end{aligned}
$$

- From this expression we observe that:
- it is zero if and only if $\phi\left(u_{1}, u_{2}\right)=\phi\left(u_{1}, 0\right)+\phi\left(0, u_{2}\right)$,,
\Rightarrow That is, the coordinates \mathcal{T}^{1} and \mathcal{T}^{2} of the two-dimensional subordinator are independent.

Numerical Illustration

- We consider the two-name defaultable stock model.

Numerical Illustration

- We consider the two-name defaultable stock model.
- For this example the two diffusion processes X are taken to be JDCEV with the same set of parameters are,

$X_{0}=x$	a	b	c	q	β	μ	r
50	10	0.01	0.5	0	-1	-0.3	0.05

Table: JDCEV parameter values.

Numerical Illustration

- We consider the two-name defaultable stock model.
- For this example the two diffusion processes X are taken to be JDCEV with the same set of parameters are,

$X_{0}=x$	a	b	c	q	β	μ	r
50	10	0.01	0.5	0	-1	-0.3	0.05

Table: JDCEV parameter values.

- The volatility scale parameter a in the local volatility function $\sigma(x)=a x^{\beta}$ is selected so that $\sigma(50)=0.2$.

Numerical Illustration

- The two-dimensional subordinator \mathcal{T} is constructed from three independent Inverse Gaussian processes subordinators $\mathcal{S}_{t}^{i}, i=1,2,3$, as follows:

$$
\mathcal{T}_{t}^{k}=\mathcal{S}_{t}^{k}+\mathcal{S}_{t}^{3}, \quad k=1,2
$$

	γ	Y	η	C
\mathcal{S}_{t}^{1}	0	0.5	1	0.7
\mathcal{S}_{t}^{2}	0	0.5	1	0.7
\mathcal{S}_{t}^{3}	0	0.5	0.001	0.025

Table: IG parameter values.

Numerical Illustration

- The two-dimensional subordinator \mathcal{T} is constructed from three independent Inverse Gaussian processes subordinators $\mathcal{S}_{t}^{i}, i=1,2,3$, as follows:

$$
\mathcal{T}_{t}^{k}=\mathcal{S}_{t}^{k}+\mathcal{S}_{t}^{3}, \quad k=1,2
$$

	γ	Y	η	C
\mathcal{S}_{t}^{1}	0	0.5	1	0.7
\mathcal{S}_{t}^{2}	0	0.5	1	0.7
\mathcal{S}_{t}^{3}	0	0.5	0.001	0.025

Table: IG parameter values.

- In this specification S^{1} and \mathcal{S}^{2} are two idiosyncratic components that influence only the first stock and the second stock, respectively, and

Numerical Illustration

- The two-dimensional subordinator \mathcal{T} is constructed from three independent Inverse Gaussian processes subordinators $\mathcal{S}_{t}^{i}, i=1,2,3$, as follows:

$$
\mathcal{T}_{t}^{k}=\mathcal{S}_{t}^{k}+\mathcal{S}_{t}^{3}, \quad k=1,2
$$

	γ	Y	η	C
\mathcal{S}_{t}^{1}	0	0.5	1	0.7
\mathcal{S}_{t}^{2}	0	0.5	1	0.7
\mathcal{S}_{t}^{33}	0	0.5	0.001	0.025

Table: IG parameter values.

- In this specification S^{1} and \mathcal{S}^{2} are two idiosyncratic components that influence only the first stock and the second stock, respectively, and
- \mathcal{S}_{t}^{3} is the systematic component common to both stocks.

Numerical Illustration

- The two-dimensional subordinator \mathcal{T} is constructed from three independent Inverse Gaussian processes subordinators $\mathcal{S}_{t}^{i}, i=1,2,3$, as follows:

$$
\mathcal{T}_{t}^{k}=\mathcal{S}_{t}^{k}+\mathcal{S}_{t}^{3}, \quad k=1,2
$$

	γ	Y	η	C
\mathcal{S}_{t}^{1}	0	0.5	1	0.7
\mathcal{S}_{t}^{2}	0	0.5	1	0.7
\mathcal{S}_{t}^{33}	0	0.5	0.001	0.025

Table: IG parameter values.

- In this specification S^{1} and \mathcal{S}^{2} are two idiosyncratic components that influence only the first stock and the second stock, respectively, and
- \mathcal{S}_{t}^{3} is the systematic component common to both stocks.
- The parameter η is the decay parameter (damping parameter), which controls large size jumps $\Rightarrow \mathcal{S}_{t}^{3}$ exhibits larger jumps.

Numerical Illustration

- The two-dimensional subordinator \mathcal{T} is constructed from three independent Inverse Gaussian processes subordinators $\mathcal{S}_{t}^{i}, i=1,2,3$, as follows:

$$
\mathcal{T}_{t}^{k}=\mathcal{S}_{t}^{k}+\mathcal{S}_{t}^{3}, \quad k=1,2
$$

	γ	Y	η	C
\mathcal{S}_{t}^{1}	0	0.5	1	0.7
\mathcal{S}_{t}^{2}	0	0.5	1	0.7
\mathcal{S}_{t}^{3}	0	0.5	0.001	0.025

Table: IG parameter values.

- In this specification S^{1} and \mathcal{S}^{2} are two idiosyncratic components that influence only the first stock and the second stock, respectively, and
- \mathcal{S}_{t}^{3} is the systematic component common to both stocks.
- The parameter η is the decay parameter (damping parameter), which controls large size jumps $\Rightarrow \mathcal{S}_{t}^{3}$ exhibits larger jumps.
- Since the drift is zero $(\gamma=0)$ then the time changed processes $X_{\mathcal{T}_{t}^{i}}^{i}$ are pure jump processes

Numerical Illustration: Survival Probability

- As the sock price falls, the firm's survival probability decreases

Figure: Single-name survival probability $\mathbb{Q}(\tau>t)$ for $t=1$ year as a function of the stock price $S_{0}=x$.

Numerical Illustration: Joint Survival Probability \& Default Correlation

- As the stock prices fall, the joint survival probability also decreases which, in turn, causes the default correlation to decrease

(a) Joint survival probability.

(b) Correlation of default indicators.

Figure: Joint survival probability $\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)$ and default correlation $\operatorname{Corr}\left(\mathbf{1}_{\left\{\tau_{1}>t\right\}}, \mathbf{1}_{\left\{\tau_{2}>t\right\}}\right)$ for $t=1$ year as functions of stock prices S_{0}^{1} and S_{0}^{2}.

Numerical Illustration: Joint Survival Probability \& Default Correlation

- As the stock prices fall, the joint survival probability also decreases which, in turn, causes the default correlation to decrease

Figure: Joint survival probability $\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)$ and default correlation $\operatorname{Corr}\left(\mathbf{1}_{\left\{\tau_{1}>t\right\}}, \mathbf{1}_{\left\{\tau_{2}>t\right\}}\right)$ for $t=1$ year as functions of stock prices S_{0}^{1} and S_{0}^{2}.

- When the stock price is relatively high, the default can only be triggered by a large catastrophic jump to zero \Rightarrow the systematic component \mathcal{S}^{3} governs large jumps.

Numerical Illustration: Joint Survival Probability \& Default Correlation

- As the stock prices fall, the joint survival probability also decreases which, in turn, causes the default correlation to decrease

Figure: Joint survival probability $\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)$ and default correlation $\operatorname{Corr}\left(\mathbf{1}_{\left\{\tau_{1}>t\right\}}, \mathbf{1}_{\left\{\tau_{2}>t\right\}}\right)$ for $t=1$ year as functions of stock prices S_{0}^{1} and S_{0}^{2}.

- When the stock price is relatively high, the default can only be triggered by a large catastrophic jump to zero \Rightarrow the systematic component \mathcal{S}^{3} governs large jumps.
- When the stock price is low, a smaller jump is enough to trigger default \Rightarrow the idiosyncratic components \mathcal{S}^{1} and \mathcal{S}^{2} primarily govern small jumps.

Two Firms Basket Put Option Cbste onion anmel sommen

- Consider a basket put option on the portfolio of two stocks with the payoff at time t

$$
f\left(S_{t}^{1}, S_{t}^{2}\right)=\left(K-w_{1} S_{t}^{1}-w_{2} S_{t}^{2}\right)^{+}
$$

Two Firms Basket Put Option Costa orion Aminter somions

- Consider a basket put option on the portfolio of two stocks with the payoff at time t

$$
f\left(S_{t}^{1}, S_{t}^{2}\right)=\left(K-w_{1} S_{t}^{1}-w_{2} S_{t}^{2}\right)^{+}
$$

- We observe six contingent claims:

Two Firms Basket Put Option

- Consider a basket put option on the portfolio of two stocks with the payoff at time t

$$
f\left(S_{t}^{1}, S_{t}^{2}\right)=\left(K-w_{1} S_{t}^{1}-w_{2} S_{t}^{2}\right)^{+}
$$

- We observe six contingent claims:
- One basket put that delivers the payoff if and only if both firms survive to maturity

$$
\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}+w_{2} S_{t}^{2}\right)^{+}
$$

Two Firms Basket Put Option Costa orion Anmian smimion

- Consider a basket put option on the portfolio of two stocks with the payoff at time t

$$
f\left(S_{t}^{1}, S_{t}^{2}\right)=\left(K-w_{1} S_{t}^{1}-w_{2} S_{t}^{2}\right)^{+}
$$

- We observe six contingent claims:
- One basket put that delivers the payoff if and only if both firms survive to maturity

$$
\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}+w_{2} S_{t}^{2}\right)^{+}
$$

- Two single-name puts that deliver the payoffs if and only if both firms survive to maturity

$$
\mathbb{1}_{\{\tau\{1,2\}>t\}}\left(K-w_{k} S_{t}^{k}\right)^{+}, \quad k=1,2
$$

Two Firms Basket Put Option Costa orion Anmian smimion

- Consider a basket put option on the portfolio of two stocks with the payoff at time t

$$
f\left(S_{t}^{1}, S_{t}^{2}\right)=\left(K-w_{1} S_{t}^{1}-w_{2} S_{t}^{2}\right)^{+}
$$

- We observe six contingent claims:
- One basket put that delivers the payoff if and only if both firms survive to maturity

$$
\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}+w_{2} S_{t}^{2}\right)^{+}
$$

- Two single-name puts that deliver the payoffs if and only if both firms survive to maturity

$$
\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{k} S_{t}^{k}\right)^{+}, \quad k=1,2
$$

- Two single-name puts that deliver the payoffs if and only if the firm whose stock the put is written on survives to maturity.

$$
\mathbf{1}_{\left\{\tau_{k}>t\right\}}\left(K-w_{k} S_{t}^{k}\right)^{+}, \quad k=1,2
$$

Two Firms Basket Put Option © Bata orion Anmian smimion

- Consider a basket put option on the portfolio of two stocks with the payoff at time t

$$
f\left(S_{t}^{1}, S_{t}^{2}\right)=\left(K-w_{1} S_{t}^{1}-w_{2} S_{t}^{2}\right)^{+}
$$

- We observe six contingent claims:
- One basket put that delivers the payoff if and only if both firms survive to maturity

$$
\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}+w_{2} S_{t}^{2}\right)^{+}
$$

- Two single-name puts that deliver the payoffs if and only if both firms survive to maturity

$$
\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{k} S_{t}^{k}\right)^{+}, \quad k=1,2
$$

- Two single-name puts that deliver the payoffs if and only if the firm whose stock the put is written on survives to maturity.

$$
\mathbf{1}_{\left\{\tau_{k}>t\right\}}\left(K-w_{k} S_{t}^{k}\right)^{+}, \quad k=1,2
$$

- An embedded multi-name credit derivative

$$
K\left(\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}+1-\mathbf{1}_{\left\{\tau_{1}>t\right\}}-\mathbf{1}_{\left\{\tau_{2}>t\right\}}\right)=K \mathbf{1}_{\left\{\tau_{1} \vee \tau_{2} \leq t\right\}}
$$

Two Firms Basket Put Option \rightarrow Basket Option: Analytical Solutions

- Consider a basket put option on the portfolio of two stocks with the payoff at time t

$$
f\left(S_{t}^{1}, S_{t}^{2}\right)=\left(K-w_{1} S_{t}^{1}-w_{2} S_{t}^{2}\right)^{+}
$$

- We observe six contingent claims:
- One basket put that delivers the payoff if and only if both firms survive to maturity

$$
\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}+w_{2} S_{t}^{2}\right)^{+}
$$

- Two single-name puts that deliver the payoffs if and only if both firms survive to maturity

$$
\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{k} S_{t}^{k}\right)^{+}, \quad k=1,2
$$

- Two single-name puts that deliver the payoffs if and only if the firm whose stock the put is written on survives to maturity.

$$
\mathbf{1}_{\left\{\tau_{k}>t\right\}}\left(K-w_{k} S_{t}^{k}\right)^{+}, \quad k=1,2
$$

- An embedded multi-name credit derivative

$$
K\left(\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}+1-\mathbf{1}_{\left\{\tau_{1}>t\right\}}-\mathbf{1}_{\left\{\tau_{2}>t\right\}}\right)=K \mathbf{1}_{\left\{\tau_{1} \vee \tau_{2} \leq t\right\}}
$$

- We obtained explicit analytical solutions for all these claims.

Numerical Illustration: Joint Survival Probability \& Default Correlation

- The price of a European-style basket put option on the equally-weighted portfolio of two stocks ($w_{1}=w_{2}=1$) with one year to maturity $(t=1)$ and with the strike price $K=100$ as a function of the initial stock prices S_{0}^{1} and S_{0}^{2}.

Figure: Two-name basket put prices for the range of initial stock prices S_{0}^{1} and S_{0}^{2} from zero to $\$ 60$ for one year time to maturity and $K=100$.

Numerical Illustration: Joint Survival Probability \& Default Correlation

- The price of a European-style basket put option on the equally-weighted portfolio of two stocks ($w_{1}=w_{2}=1$) with one year to maturity $(t=1)$ and with the strike price $K=100$ as a function of the initial stock prices S_{0}^{1} and S_{0}^{2}.

Figure: Two-name basket put prices for the range of initial stock prices S_{0}^{1} and S_{0}^{2} from zero to $\$ 60$ for one year time to maturity and $K=100$.

- When both firms are in default, $\left(S_{0}^{1}, S_{0}^{2}\right)=(0,0)$, the price of the basket put is equal to the discounted strike K.

Numerical Illustration: Joint Survival Probability \& Default Correlation

- The price of a European-style basket put option on the equally-weighted portfolio of two stocks ($w_{1}=w_{2}=1$) with one year to maturity $(t=1)$ and with the strike price $K=100$ as a function of the initial stock prices S_{0}^{1} and S_{0}^{2}.

Figure: Two-name basket put prices for the range of initial stock prices S_{0}^{1} and S_{0}^{2} from zero to $\$ 60$ for one year time to maturity and $K=100$.

- When both firms are in default, $\left(S_{0}^{1}, S_{0}^{2}\right)=(0,0)$, the price of the basket put is equal to the discounted strike K.
- When one of the two firms is in default, the basket put reduces to the single-name European-style put on the surviving stock with the strike K.

Conclusion

- We propose a modeling framework based on multi-variate subordination of diffusion processes.

Conclusion

- We propose a modeling framework based on multi-variate subordination of diffusion processes.
(1) We start with n independent jump-to-default extended diffusions for n stocks.
(2) Then we time change each one with a coordinate of a n-dimensional Subordinator

Conclusion

- We propose a modeling framework based on multi-variate subordination of diffusion processes.
(1) We start with n independent jump-to-default extended diffusions for n stocks.
(2) Then we time change each one with a coordinate of a n-dimensional Subordinator
\Rightarrow the result is multi-name credit-equity model with dependent jumps and jumps-to-default for all stocks.

Conclusion

- We propose a modeling framework based on multi-variate subordination of diffusion processes.
(1) We start with n independent jump-to-default extended diffusions for n stocks.
(2) Then we time change each one with a coordinate of a n-dimensional Subordinator
\Rightarrow the result is multi-name credit-equity model with dependent jumps and jumps-to-default for all stocks.
- The dependence among jumps is governed by the Lévy measure of the n-dimensional subordinator.

Conclusion

- We propose a modeling framework based on multi-variate subordination of diffusion processes.
(1) We start with n independent jump-to-default extended diffusions for n stocks.
(2) Then we time change each one with a coordinate of a n-dimensional Subordinator
\Rightarrow the result is multi-name credit-equity model with dependent jumps and jumps-to-default for all stocks.
- The dependence among jumps is governed by the Lévy measure of the n-dimensional subordinator.
- The semigroup theory provides powerful analytical and computational tools for securities pricing.

Conclusion

- We propose a modeling framework based on multi-variate subordination of diffusion processes.
(1) We start with n independent jump-to-default extended diffusions for n stocks.
(2) Then we time change each one with a coordinate of a n-dimensional Subordinator
\Rightarrow the result is multi-name credit-equity model with dependent jumps and jumps-to-default for all stocks.
- The dependence among jumps is governed by the Lévy measure of the n-dimensional subordinator.
- The semigroup theory provides powerful analytical and computational tools for securities pricing.
- Thank you!

Multiparameter Semigroup

```
Return
```

- If $\left\{\mathcal{P}_{\mathbf{t}}, \mathbf{t} \in \mathbb{R}_{+}^{n}\right\}$ is a n-parameter strongly continuous semigroup on a Banach space \mathbf{B}, then:

Multiparameter Semigroup

```
Return
```

- If $\left\{\mathcal{P}_{\mathbf{t}}, \mathbf{t} \in \mathbb{R}_{+}^{n}\right\}$ is a n-parameter strongly continuous semigroup on a Banach space \mathbf{B}, then:
\Rightarrow it is the product of n one-parameter strongly continuous semigroups $\left\{\mathcal{P}_{t}^{i}, t \geq 0\right\}$ on \mathbf{B} with infinitesimal generators \mathcal{G}_{i} with domains $\operatorname{Dom}\left(\mathcal{G}_{i}\right) \subset \mathbf{B}$.

Multiparameter Semigroup

Return

- If $\left\{\mathcal{P}_{\mathbf{t}}, \mathbf{t} \in \mathbb{R}_{+}^{n}\right\}$ is a n-parameter strongly continuous semigroup on a Banach space \mathbf{B}, then:
\Rightarrow it is the product of n one-parameter strongly continuous semigroups $\left\{\mathcal{P}_{t}^{i}, t \geq 0\right\}$ on \mathbf{B} with infinitesimal generators \mathcal{G}_{i} with domains $\operatorname{Dom}\left(\mathcal{G}_{i}\right) \subset \mathbf{B}$.
- That is, for $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$ we have:

$$
\mathcal{P}_{\mathbf{t}}=\prod_{i=1}^{n} \mathcal{P}_{t_{i}}^{i}
$$

and the semigroup operators $\mathcal{P}_{t_{i}}^{i}$ commute with each other, $t_{i} \geq 0, i=1, \ldots, n$.

Multiparameter Semigroup

Return

- If $\left\{\mathcal{P}_{\mathbf{t}}, \mathbf{t} \in \mathbb{R}_{+}^{n}\right\}$ is a n-parameter strongly continuous semigroup on a Banach space \mathbf{B}, then:
\Rightarrow it is the product of n one-parameter strongly continuous semigroups $\left\{\mathcal{P}_{t}^{i}, t \geq 0\right\}$ on \mathbf{B} with infinitesimal generators \mathcal{G}_{i} with domains $\operatorname{Dom}\left(\mathcal{G}_{i}\right) \subset \mathbf{B}$.
- That is, for $\mathbf{t}=\left(t_{1}, \ldots, t_{n}\right)$ we have:

$$
\mathcal{P}_{\mathbf{t}}=\prod_{i=1}^{n} \mathcal{P}_{t_{i}}^{i}
$$

and the semigroup operators $\mathcal{P}_{t_{i}}^{i}$ commute with each other, $t_{i} \geq 0, i=1, \ldots, n$.

- In our case, the expectation operators associated with the Markov processes X^{i} define the corresponding semigroups $\left\{\mathcal{P}_{t_{i}}^{i}, t_{i} \geq 0\right\}$,

$$
\mathcal{P}_{t_{i}}^{i} f\left(x_{i}\right):=\mathbb{E}_{x_{i}}\left[\mathbf{1}_{\left\{\zeta_{i}>t_{i}\right\}} f\left(X_{t_{i}}^{i}\right)\right], \quad x_{i} \in E_{i}, \quad t_{i} \geq 0
$$

in Banach spaces of bounded Borel measurable functions on E_{i}.

Two Firms Basket Put Option Cram

- The embedded multi-name credit derivative with the notional amount equal to the strike price K and paid at maturity if both firms default

$$
e^{-r t} \mathbb{E}\left[K 1_{\left\{\tau_{1} \vee \tau_{2} \leq t\right\}}\right]=e^{-r t} K\left(1+\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)-\mathbb{Q}\left(\tau_{1}>t\right)-\mathbb{Q}\left(\tau_{2}>t\right)\right)
$$

where the joint survival probability $\mathbb{Q}\left(\tau_{\{1,2\}}>t\right)$ and marginal survival probabilities $\mathbb{Q}\left(\tau_{k}>t\right), k=1,2$; were given earlier.

Two Firms Basket Put Option Cram

- The basket put that delivers the payoff if and only if both firms survive to maturity

$$
e^{-r t} \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}+w_{2} S_{t}^{2}\right)^{+}\right]
$$

Two Firms Basket Put Option Crame

- The basket put that delivers the payoff if and only if both firms survive to maturity

$$
\begin{aligned}
& e^{-r t} \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}+w_{2} S_{t}^{2}\right)^{+}\right] \\
= & e^{-r t} \sum_{n_{1}, n_{2}=1}^{\infty} \overbrace{e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t}}^{2 D \text { Lévy Exp. }} c_{n_{1}, n_{2}}(K) \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{1}}^{2}\left(x_{2}\right)
\end{aligned}
$$

Two Firms Basket Put Option

- The basket put that delivers the payoff if and only if both firms survive to maturity

$$
\begin{gathered}
e^{-r t} \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}+w_{2} S_{t}^{2}\right)^{+}\right] \\
=e^{-r t} \sum_{n_{1}, n_{2}=1}^{\infty} e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t} \underbrace{c_{n_{1}, n_{2}}(K)} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{1}}^{2}\left(x_{2}\right)
\end{gathered}
$$

- Where the expansion coefficient $c_{n_{1}, n_{2}}(K)$ is given by,

$$
\begin{gathered}
c_{n_{1}, n_{2}}(K)=\left(\left(K-w_{1} x_{1}-w_{2} x_{2}\right)^{+}, \varphi_{\mathbf{n}}(\mathbf{x})\right)_{\mathbf{m}} \\
=\int_{\mathbb{R}_{+}^{2}}\left(K-w_{1} x_{1}-w_{2} x_{2}\right)^{+} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{2}}^{2}\left(x_{2}\right) m_{1}\left(x_{1}\right) m_{2}\left(x_{2}\right) d x_{1} d x_{2}
\end{gathered}
$$

Two Firms Basket Put Option ©

- The basket put that delivers the payoff if and only if both firms survive to maturity

$$
\begin{gathered}
e^{-r t} \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}+w_{2} S_{t}^{2}\right)^{+}\right] \\
=e^{-r t} \sum_{n_{1}, n_{2}=1}^{\infty} e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t} \underbrace{c_{n_{1}, n_{2}}(K)} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{1}}^{2}\left(x_{2}\right)
\end{gathered}
$$

- Where the expansion coefficient $c_{n_{1}, n_{2}}(K)$ is given by,

$$
\begin{gathered}
c_{n_{1}, n_{2}}(K)=\left(\left(K-w_{1} x_{1}-w_{2} x_{2}\right)^{+}, \varphi_{\mathbf{n}}(\mathbf{x})\right)_{\mathbf{m}} \\
=\int_{\mathbb{R}_{+}^{2}}\left(K-w_{1} x_{1}-w_{2} x_{2}\right)^{+} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{2}}^{2}\left(x_{2}\right) m_{1}\left(x_{1}\right) m_{2}\left(x_{2}\right) d x_{1} d x_{2} \\
=K \prod_{k=1}^{2}\left(\sqrt{\frac{\Gamma\left(\nu_{k}+n_{k}\right)}{\Gamma\left(n_{k}\right)\left|\mu_{k}+b_{k}\right|}} \frac{2\left|\beta_{k}\right| A_{k}^{\frac{\nu_{k}}{2}+1} \tilde{K}_{k}^{2 c_{k}-2 \beta_{k}}}{\Gamma\left(\nu_{k}+1\right)}\right) \\
\times \sum_{p_{1}, p_{2}=0}^{\infty} \frac{(-1)^{p_{1}+p_{2}}\left(\nu_{1}+n_{1}\right)_{p_{1}}\left(\nu_{2}+n_{2}\right)_{p_{2}}}{\left(\nu_{1}+1\right)_{p_{1}} p_{1}!\left(\nu_{2}+1\right)_{p_{2}} p_{2}!}\left(A_{1}^{-2 \beta_{1}}\right)^{p_{1}} d\left(A_{2} \tilde{K}_{2}^{-2 \beta_{2}}\right)^{p_{2}} \\
\times \frac{\Gamma\left(2 c_{1}-2 \beta_{1}\left(p_{1}+1\right)\right) \Gamma\left(2 c_{2}-2 \beta_{2}\left(p_{2}+1\right)\right)}{\Gamma\left(2 c_{1}-2 \beta_{1}\left(p_{1}+1\right)+2 c_{2}-2 \beta_{2}\left(p_{2}+1\right)+2\right)} .
\end{gathered}
$$

where $\tilde{K}_{k}=e^{-\rho_{k} t} K / w_{k}$.

Two Firms Basket Put Option

- The single-name put on the stock S^{k} that delivers the payoff if and only if the firm survives to maturity:

$$
e^{-r t} \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{k}>t\right\}}\left(K-w_{k} S_{t}^{k}\right)^{+}\right]=e^{-r t} \sum_{n=1}^{\infty} \overbrace{e^{-\phi_{k}\left(\lambda_{n}^{k}\right) t}}^{1 D \text { Lévy Exp. }} p_{n}^{k}(K) \varphi_{n}^{k}\left(x_{k}\right)
$$

Two Firms Basket Put Option

- The single-name put on the stock S^{k} that delivers the payoff if and only if the firm survives to maturity:

$$
e^{-r t} \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{k}>t\right\}}\left(K-w_{k} S_{t}^{k}\right)^{+}\right]=e^{-r t} \sum_{n=1}^{\infty} e^{-\phi_{k}\left(\lambda_{n}^{k}\right) t} \underbrace{p_{n}^{k}(K)} \varphi_{n}^{k}\left(x_{k}\right),
$$

- Where the expansion coefficient $p_{n}^{k}(K)$ is given as,

$$
\begin{aligned}
& p_{n}^{k}(K)=\left(\left(K-w_{k} x_{k}\right)^{+}, \varphi_{n}^{k}\left(x_{k}\right)\right)_{m_{k}} \\
= & \int_{\mathbb{R}_{+}}\left(K-w_{k} x_{k}\right)^{+} \varphi_{n}^{k}\left(x_{k}\right) m_{k}\left(x_{k}\right) d x_{k}
\end{aligned}
$$

Two Firms Basket Put Option

- The single-name put on the stock S^{k} that delivers the payoff if and only if the firm survives to maturity:

$$
e^{-r t} \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{k}>t\right\}}\left(K-w_{k} S_{t}^{k}\right)^{+}\right]=e^{-r t} \sum_{n=1}^{\infty} e^{-\phi_{k}\left(\lambda_{n}^{k}\right) t} \underbrace{p_{n}^{k}(K)} \varphi_{n}^{k}\left(x_{k}\right)
$$

- Where the expansion coefficient $p_{n}^{k}(K)$ is given as,

$$
\begin{gathered}
p_{n}^{k}(K)=\left(\left(K-w_{k} x_{k}\right)^{+}, \varphi_{n}^{k}\left(x_{k}\right)\right)_{m_{k}} \\
=\int_{\mathbb{R}_{+}}\left(K-w_{k} x_{k}\right)^{+} \varphi_{n}^{k}\left(x_{k}\right) m_{k}\left(x_{k}\right) d x_{k} \\
\left.=K \sqrt{\frac{\Gamma\left(\nu_{k}+n\right)}{\Gamma(n)\left|\mu_{k}+b_{k}\right|} \frac{A_{k}^{\frac{\nu_{k}}{2}+1} \tilde{K}_{k}^{2\left(c_{k}-\beta_{k}\right)}}{\Gamma\left(\nu_{k}+1\right)} \times} \begin{array}{c}
\left\{\begin{array}{c}
1 \\
\left(1+c_{k} /\left|\beta_{k}\right|\right) \\
2
\end{array} F_{2}\left(\begin{array}{ll}
\nu_{k}+n, & \nu_{k}+1-\frac{1}{2\left|\beta_{k}\right|} \\
\nu_{k}+1, & \nu_{k}+2-\frac{1}{2\left|\beta_{k}\right|}
\end{array}-A_{k} \tilde{K}_{k}^{-2 \beta_{k}}\right)\right. \\
-\frac{1}{\left(\nu_{k}+1\right)}{ }_{1} F_{1}\left(\begin{array}{c}
\nu_{k}+n \\
\nu_{k}+2
\end{array} ;-A_{k} \tilde{K}_{k}^{-2 \beta_{k}}\right)
\end{array}\right\},
\end{gathered}
$$

where ${ }_{1} F_{1}$ and ${ }_{2} F_{2}$ are the Kummer confluent hypergeometric function and the generalized hypergeometric function, respectively; and $\tilde{K}_{k}=e^{-\rho_{k} t} K / w_{k}$.

Two Firms Basket Put Option

- The single-name put on the stock S^{1} that delivers the payoff if and only if both firms survive:

$$
e^{-r t} \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}\right)^{+}\right]=e^{-r t} \sum_{n_{1}, n_{2}=1}^{\infty} \overbrace{e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t}}^{2 \mathrm{~L} \text { Lév. Exp. }} p_{n_{1}}^{1}(K) c_{n_{2}}^{2} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{2}}^{2}\left(x_{2}\right),
$$

Two Firms Basket Put Option

- The single-name put on the stock S^{1} that delivers the payoff if and only if both firms survive:

$$
e^{-r t} \mathbb{E}\left[\mathbf{1}_{\left\{\tau_{\{1,2\}}>t\right\}}\left(K-w_{1} S_{t}^{1}\right)^{+}\right]=e^{-r t} \sum_{n_{1}, n_{2}=1}^{\infty} e^{-\phi\left(\lambda_{n_{1}}^{1}, \lambda_{n_{2}}^{2}\right) t} \underbrace{p_{n_{1}}^{1}(K) c_{n_{2}}^{2}} \varphi_{n_{1}}^{1}\left(x_{1}\right) \varphi_{n_{2}}^{2}\left(x_{2}\right),
$$

- where c_{n}^{2} are the coefficients of the expansion for the survival probability of the second stock and,
- $p_{n}^{1}(K)$ are the expansion coefficients for the single-name put on the first stock.

