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Introduction

We develop a new class of multi-name unified credit-equity models that jointly model the
stock prices of multiple firms, as well as their default events,

I We construct a multi-dimensional Markov semimartingale by applying a multivariate
subordination of jump-to-default extended constant elasticity of variance (JDCEV)
diffusions.

Each of the stock prices experiences state-dependent jumps with the leverage effect (arrival
rates of large jumps increase as the stock price falls), including the possibility of a jump to
zero (jump to default).

Some of the jumps are idiosyncratic to each firm, while some are either common to all
firms (systematic), or common to a subgroup of firms.

For the two-firm case, we obtain analytical solutions for credit derivatives and equity
derivatives, such as basket options, in terms of eigenfunction expansions associated with
the relevant subordinated semigroups.
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Unifying Credit-Equity Models

The Jump to Default Extended Diffusions (JDED)

Before moving on to use time changes to construct models with jumps, we review
the Jump-to-Default Extended Diffusion framework (JDED)
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Jump to Default Extended Diffusions (JDED)

.
Defaultable Stock Price
..

.

. ..

.

.

St =

{
S̃t , ζ > t
0, ζ ≤ t

(ζ default time)

We assume absolute priority: the
stock holders do not receive any
recovery in the event of default

Compensates for the jump-to-default and ensures the discounted martingale
property

Rafael Mendoza (McCombs) Default Correlation Fields Institute 2010 4 / 57



. . . . . .

Jump to Default Extended Diffusions (JDED)

.
Defaultable Stock Price
..

.

. ..

.

.

St =

{
S̃t , ζ > t
0, ζ ≤ t

(ζ default time)

.
Stock Price
..

.

. ..

.

.

0

20

40

60

80

100

0.0 0.5 1.0 1.5 2.0
Time (yrs)

S(
t)

Model the pre-default stock dynamics under an EMM Q as:

dS̃t = [µ+ k(S̃t) ]S̃tdt + σ(S̃t) S̃tdBt
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Model the pre-default stock dynamics under an EMM Q as:

dS̃t = [ µ︸︷︷︸+ k(S̃t) ]S̃tdt + σ(S̃t) S̃tdBt

⇒ µ = r − q. Drift: short rate r minus the dividend yield q

Compensates for the jump-to-default and ensures the discounted martingale
property
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Model the pre-default stock dynamics under an EMM Q as:

dS̃t = [µ+ k(S̃t) ]S̃tdt + σ(S̃t)︸ ︷︷ ︸ S̃tdBt

⇒ σ(S). State dependent volatility

Compensates for the jump-to-default and ensures the discounted martingale
property
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If the diffusion S̃t can hit zero:

V Bankruptcy at the first hitting time of zero,

τ0 = inf
{
t : S̃t = 0

}
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Prior to τ0 default could also arrive by a jump-to-default ζ̃ with default
intensity k(S̃),

ζ̃ = inf
{
t ∈ [0, τ0] :

∫ t

0
k(S̃u) ≥ e

}
, e ≈ Exp(1)

V At time ζ̃ the stock price St jumps to zero and the firm defaults on its debt
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The default time ζ is the earliest of:

...1 The stock hits level zero by diffusion: τ0

...2 The stock jumps to zero from a positive value: ζ̃

ζ = min
(
ζ̃, τ0

)
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Time-Changed Process St = XTt

.
Time Changed Process Construction
..

.

. ..

.

.

St = XTt

I Xt is a background process (e.g. JDED)

I Tt is a random clock process independent of Xt

.
Random Clock {Tt , t ≥ 0}
..

.

. ..

.

.

Non-decreasing RCLL process starting at T0 = 0 and E [Tt ] < ∞.
I We are interested in T.C. with analytically tractable Laplace Transform (LT):

L(t, λ) = E
[
e−λTt

]
< ∞

Lévy Subordinators with L.T. L(t, λ) = e−ϕ(λ)t V induce jumps
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Examples of Lévy Subordinators

.
Three Parameter Lévy measure:
..

.

. ..

.

.

ν(ds) = Cs−Y−1e−ηsds

where C > 0, η > 0, Y < 1

C changes the time scale of the process (simultaneously modifies the
intensity of jumps of all sizes)

Y controls the small size jumps

η defines the decay rate of big jumps

.
Lévy-Khintchine formula
..

.

. ..

.

.

L(t, λ) = e−ϕ(λ)t

where ϕ(λ) =

 γλ− CΓ(−Y )[(λ+ η)Y − ηY ], Y ̸= 0

γλ+ C ln(1 + λ/η), Y = 0
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. . . . . .

Multiple Firms – The Not-So-Trivial case
Consider two firms, now running in two different random clocks

S1
t = X 1(T 1

t ) firm 1

S2
t = X 2(T 2

t ) firm 2

where T i
t i = 1, 2; are dependent (correlated) subordinators.

Note: although it is feasible to visualize it, it requires much more creativity! (and many
slides!)

Why is this not so trivial?

I When we use a single subordinator Tt all we require to model n firms is an n
dimensional Markov process,

(S1
t ,S

2
t , ..., S

n
t ) = (X 1(Tt),X 2(Tt), ...,X n(Tt)) = XTt

In this case, the all coordinates of the “vector” jump together at the same time and
for the same time length!

I When we use an n-dimensional subordinator Tt = (T 1
t , T 2

t , ..., T n
t ) we require an

n-parameter Markov process,

(S1
t , S

2
t , ..., S

n
t ) = (X 1(T 1

t ),X 2(T 2
t ), ...,X n(T 3

t )) = X(T 1
t ,T 2

t ,...,T n
t )

In this case, only some coordinates of the vector may jump together and, if they do,
they may jump for different time lengths!

We proceed to describe our modeling framework in more detail.
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. . . . . .

Multi-name Credit-Equity Model Architecture

We model the joint risk-neutral dynamics of stock prices S i
t of n firms under an EMM Q:

S i
t = 1{t<τi}e

ρi tX i
T i
t
≡

{
eρi tX i

T i
t
, t < τi

0, t ≥ τi
, i = 1, ..., n.

Independent Diffusions X i .
I We take n independent, time-homogeneous, non-negative diffusion processes starting

from positive values X i
0 = S i

0 > 0 (initial stock prices at time zero) and solving
stochastic differential equations:

dX i
t = (µi + ki (X

i
t ))X

i
t dt + σi (X

i
t )X

i
t dB

i
t

I σi (x) is the state-dependent instantaneous volatility

I µi + ki (x) is the state-dependent instantaneous drift, µi ∈ R are constant parameters

I B i
t are n independent standard Brownian motions.
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t = 1{t<τi}e

ρi tX i
T i
t
≡

{
eρi tX i

T i
t
, t < τi

0, t ≥ τi
, i = 1, ..., n.

Multivariate Time Change T .
I T is an n-dimensional subordinator: A n-dimensional subordinator is a Lévy process

in Rn
+ = [0,∞)n that is increasing in each of its coordinates.

I The (n-dimensional) Laplace transform of a n-dimensional subordinator is given by
(here ui ≥ 0 and ⟨u, v⟩ =

∑n
i=1 uivi ):

E[e−⟨u,Tt⟩] = e−tϕ(u)

I The Laplace exponent given by the Lévy-Khintchine formula:

ϕ(u) = ⟨γ, u⟩+
∫
Rn
+

(1− e−⟨u,s⟩)ν(ds),

where γ ∈ Rn
+ is the drift and the Lévy measure ν is a σ-finite measure such that∫

Rn
+
(∥s∥ ∧ 1)ν(ds) < ∞.
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in Rn
+ = [0,∞)n that is increasing in each of its coordinates.

I The (n-dimensional) Laplace transform of a n-dimensional subordinator is given by
(here ui ≥ 0 and ⟨u, v⟩ =

∑n
i=1 uivi ):

E[e−⟨u,Tt⟩] = e−tϕ(u)

I The Laplace exponent given by the Lévy-Khintchine formula:
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Multi-name Credit-Equity Model Architecture
We model the joint risk-neutral dynamics of stock prices S i

t of n firms under an
EMM Q:

S i
t = 1{t<τi}e

ρi tX i
T i
t
≡

{
eρi tX i

T i
t
, t < τi

0, t ≥ τi
, i = 1, ..., n.

Default Times τi .
I We define the positive random variable τi as the time of default of the ith firm on its

debt.

I The default times, τi , are constructed as follows:

...1 Let H i
0 be the first time that the diffusion X i hits zero.

...2 Let Ei be n independent exponential random variables with unit mean and
independent of all X i and T i

...3 Define the X i
t ’s lifetime (we assume that inf{∅} = H0 by convention):

ζi := inf{t ∈ [0,H i
0] :

∫ t

0
ki (X

i
u)du ≥ Ei}.

...4 Then, time of default of the ith firm is defined by applying the time change T i :

τi := inf{t ≥ 0 : T i
t ≥ ζi}.
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We model the joint risk-neutral dynamics of stock prices S i
t of n firms under an EMM Q:

S i
t = 1{t<τi}e

ρi tX i
T i
t
≡

{
eρi tX i

T i
t
, t < τi

0, t ≥ τi
, i = 1, ..., n.

Martingale Conditions.
I Each single-name stock price process S i is a non-negative martingale under the EMM

Q if and only if,

...1 the constant µi in the drift of X i satisfies the following condition:∫
[1,∞)

eµi sνi (ds) < ∞,

where νi is the Lévy measure of the one-dimensional subordinator T i

(νi (A) = ν(R+ × ...× A× ...R+) with A in the ith place, for any Borel set
A ⊂ R+ bounded away from zero),

...2 the constant ρi is:
ρi = r − qi + ϕi (−µi ),

where ϕi (u) is the Laplace exponent of T i , ϕi (u) = ϕ(0, ..., 0, u, 0, ..., 0) (u is in
the ith place)
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. . . . . .

Credit-Equity Derivatives Pricing

We are interested in pricing contingent claims written on multiple defaultable stocks.

In particular, the price of a European-style derivative expiring at time t > 0 with the payoff
function f (S1

t , ..., S
n
t ) is given by

e−rtE[f (S1
t , ..., S

n
t )]

Recall: Each of the n firms may default by time t (and its stock becomes worthless).

Therefore, at time t, the firm’s stock price is either:

I S i
t > 0 (survival to time t, i.e., τi > t) or,

I S i
t = 0 (default by time t, i.e., τi ≤ t).
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. . . . . .

Multivariate Subordination of Multiparameter Semigroups

Thus we are interested on calculating expectations of the form

E
[
1{τ{1,2,...,n}>t}f

(
X 1
T 1
t
,X 2

T 2
t
, ...,X n

T n
t

)]
= E

[
1{τ1>t} · · · 1{τn>t}f

(
X 1
T 1
t
,X 2

T 2
t
, ...,X n

T n
t

)] (
τ{1,...,n}
=
∧n
i=1 τi

)
= E

[
E
[
1{ζ1>T 1

t } · · · 1{ζn>T n
t }f

(
X 1
T 1
t
,X 2

T 2
t
, ...,X n

T n
t

)∣∣Tt]] (
Tt & Xt
are indep.

)
= E

[
E
[
1{ζ1>T 1

t } · · ·E
[
1{ζn>T n

t }f
(
X 1
T 1
t
,X 2

T 2
t
, ...,X n

T n
t

)∣∣Tt] · · · ∣∣Tt]] (
Xi
t
′
s

are indep.

)
=

∫
Rn
+

(Psf )︸ ︷︷ ︸
Multi−
parameter
Semigroup

πt(ds)︸ ︷︷ ︸
Multi−
Subord.
transition
kernel︸ ︷︷ ︸

Multivariate Subordination
of

Multiparameter Semigroups

= Pϕ
t f︸︷︷︸

Subordinated
Semigroup

(one − parameter)

.. Multiparameter Semigroups
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. . . . . .

Spectral Decomposition (I)

We assume that all X i are 1D diffusions (symmetric Markov processes) on (0,∞) such
that:

I the semigroups P i defined in the Hilbert spaces Hi = L2((0,∞),mi ) endowed with
the inner products (f , g)mi =

∫
(0,∞) f (x)g(x)mi (x)dx are symmetric with respect to

the speed density m(x), i.e.,

(P i
ti
f , g)mi = (f ,P i

ti
g)mi , ∀ti ≥ 0, & i = 1, ..., n

I Then H = L2((0,∞)n,m) is defined on the product space
(0,∞)n = (0,∞)× ...× (0,∞) with the product speed density
m(x) = m1(x1)...mn(xn) and the inner product

(f , g)m =

∫
(0,∞)n

f (x)g(x)m(x)dx
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(0,∞)n = (0,∞)× ...× (0,∞) with the product speed density
m(x) = m1(x1)...mn(xn) and the inner product

(f , g)m =

∫
(0,∞)n

f (x)g(x)m(x)dx
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. . . . . .

Spectral Decomposition (II)

In the special case when each infinitesimal generator Gi has a purely discrete spectrum with
eigenvalues {−λi

k}
∞
k=1 and the corresponding eigenfunctions φi

k (xi ),

Giφ
i
k(xi ) = −λi

kφ
i
k (xi ),

the spectral representation of the multi-parameter semigroup takes the form of the
eigenfunction expansion:

Ptf =
∑
k∈Nn

e−⟨λ,t⟩c fkφk, f ∈ H, t = (t1, ..., tn) ≥ 0,

where
∑

k∈Nn =
∑∞

k1=1 ...
∑∞

kn=1, N = {1, 2, ...},
the eigenvalues and eigenfunctions are

λ = (λ1
k1
, ..., λn

kn
)

φk(x) =
n∏

i=1

φi
ki
(xi ), xi ∈ (0,∞), x = (x1, ..., xn) ∈ (0,∞)n, k ∈ Nn,

and the expansion coefficients are

c fk = (f , φk)m, k ∈ Nn.
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. . . . . .

Spectral Decomposition of the Subordinated Semigroup Pϕ
t

Consequently, we can obtain the Spectral Decomposition of the Subordinated Semigroup
as follows,

Pϕ
t f = E

[
1{τ{1,2,...,n}>t}f

(
X 1
T 1
t
,X 2

T 2
t
, ...,X n

T n
t

)]
=

∫
Rn
+
Psf πt(ds)

(
Multivariate subordination

of the
n−parameter semigroup

)

=
∫
Rn
+

(∑
k∈Nn e−⟨λ,s⟩c fkφk

)
πt(ds)

(
Spectral representation

of the
n−parameter semigroup

)

=
∑

k∈Nn

(∫
Rn
+
e−⟨λ,s⟩πt(ds)

)
c fkφk

(
Laplace transform

of the
n−dimensional subordinator

)

=
∑

k∈Nn e
−ϕ(λ1

k1
,...,λn

kn
)t
c fkφk

(
Levy − Khintchine

exponent

)

Remark: When n = 1 the modeling framework is reduced to the Credit-Equity Model of
Mendoza-Arriaga et al. (2009).
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. . . . . .

Two Firms Illustration: the JDCEV process

Recall: we model the joint risk-neutral dynamics of stock prices S i
t of 2 firms under an

EMM Q:

S i
t = 1{t<τi}e

ρi tX i
T i
t
≡

{
eρi tX i

T i
t
, t < τi

0, t ≥ τi
, i = 1, 2

Let X i
t i = 1, 2 be Jump-to-Default Extended Constant Elasticity of Variance (JDCEV)

processes of Carr & Linetsky (2006):

dXt = [µ+ k(Xt)]Xt dt + σ(Xt)Xt dBt , X0 = x > 0

σ(X ) = aXβ

CEV Volatility
(Power function of X )

k(X ) = b + c σ2(X )

Killing Rate
(Affine function of Variance)
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(Power function of X )

k(X ) = b + c σ2(X )
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(Affine function of Variance)

a > 0 ⇒ volatility scale parameter (fixing ATM volatility)
β < 0 ⇒ volatility elasticity parameter
b ≥ 0 ⇒ constant default intensity
c ≥ 0 ⇒ sensitivity of the default intensity to variance
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k(X ) = b + c σ2(X )

Killing Rate
(Affine function of Variance)

a > 0 ⇒ volatility scale parameter (fixing ATM volatility)
β < 0 ⇒ volatility elasticity parameter
b ≥ 0 ⇒ constant default intensity
c ≥ 0 ⇒ sensitivity of the default intensity to variance

For c = 0 and b = 0 the JDCEV reduces to the standard CEV process

Rafael Mendoza (McCombs) Default Correlation Fields Institute 2010 32 / 57



. . . . . .

Two Firms Illustration: the JDCEV process

Recall: we model the joint risk-neutral dynamics of stock prices S i
t of 2 firms under an

EMM Q:

S i
t = 1{t<τi}e

ρi tX i
T i
t
≡

{
eρi tX i

T i
t
, t < τi

0, t ≥ τi
, i = 1, 2

Let X i
t i = 1, 2 be Jump-to-Default Extended Constant Elasticity of Variance (JDCEV)

processes of Carr & Linetsky (2006):

dXt = [µ+ k(Xt)]Xt dt + σ(Xt)Xt dBt , X0 = x > 0

σ(X ) = aXβ

CEV Volatility
(Power function of X )

k(X ) = b + c σ2(X )

Killing Rate
(Affine function of Variance)

a > 0 ⇒ volatility scale parameter (fixing ATM volatility)
β < 0 ⇒ volatility elasticity parameter
b ≥ 0 ⇒ constant default intensity
c ≥ 0 ⇒ sensitivity of the default intensity to variance

The model is consistent with:

leverage effect V S ⇓→ σ(S) ⇑
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a > 0 ⇒ volatility scale parameter (fixing ATM volatility)
β < 0 ⇒ volatility elasticity parameter
b ≥ 0 ⇒ constant default intensity
c ≥ 0 ⇒ sensitivity of the default intensity to variance

The model is consistent with:

leverage effect V S ⇓→ σ(S) ⇑
stock volatility–credit spreads linkage V σ(S) ⇑↔ k(S) ⇑
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. . . . . .

JDCEV Eigenvalues and Eigenfunctions

When µ+ b ̸= 0, the spectrum is purely discrete. When µ+ b < 0, the eigenvalues and
eigenfunctions are:

λn = ω(n − 1) + λ1, φn(x) = A
ν
2

√
(n − 1)!|µ+ b|

Γ(ν + n)
x Lνn−1(Ax

−2β), n = 1, 2, ...,

where Lνn (x) are the generalized Laguerre polynomials.

The principal eigenvalue λ1, A, ν and ω are,

λ1 := |µ|, A :=
|µ+ b|
a2|β|

, ν :=
1 + 2c

2|β|
, ω := 2|β(µ+ b)|, ,

The speed density is defined as,

m(x) =
2

a2
x2c−2−2βe−Ax−2β
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. . . . . .

Ex. Joint Survival Probability

Then the joint survival probability for two firms by time t > 0 is given by the eigenfunction
expansion (x = (x1, x2) = (S1

0 , S
2
0 )):

Q(τ{1,2} > t) = E
[
1{τ{1,2}>t}

]
=

∑∞
n1,n2=1 e

−ϕ(λ1
n1

,λ2
n2

)t
c1n1c

2
n2
φ1
n1
(x1)φ2

n2
(x2)

Similarly, the single-name survival probabilities are given by the eigenfunction expansions:

Q(τk > t) =
∞∑
n=1

e−ϕk (λ
k
n )tcknφ

k
n(xk), k = 1, 2.
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expansion (x = (x1, x2) = (S1

0 , S
2
0 )):

Q(τ{1,2} > t) = E
[
1{τ{1,2}>t}
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n1,n2=1 e

−ϕ(λ1
n1

,λ2
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c1n1c
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φ1
n1
(x1)φ2

n2
(x2)

Similarly, the single-name survival probabilities are given by the eigenfunction expansions:

Q(τk > t) =
∞∑
n=1

e−ϕk (λ
k
n )tcknφ

k
n(xk), k = 1, 2.

The expansion coefficients are given by:

ckn = (φn, 1)m =
A

1−2ck
4|βk |
k (1/(2|βk |))n−1 Γ(ck/|βk |+ 1)√

(n − 1)!|µk + bk |Γ(νk + n)
, k = 1, 2, n = 1, 2, ...,

where (z)n = z(z − 1)...(z − n − 1) is the Pochhammer symbol.
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. . . . . .

Default Correlation

The default correlation has the form:

Corr
(
1{τ1>t}, 1{τ2>t}

)
=

Q(τ{1,2}>t)−Q(τ1>t)Q(τ2>t)∏2
k=1

√
Q(τk>t)(1−Q(τk>t))

=

∑
n∈N2

1

(
e
−ϕ(λ1

n1
,λ2

n2
)t
−e

−
(
ϕ1(λ

1
n1

)+ϕ2(λ
2
n2

)
)
t
)
cnφn(x)∏2

k=1

√
Q(τk>t)(1−Q(τk>t))

From this expression we observe that:

I it is zero if and only if ϕ(u1, u2) = ϕ(u1, 0) + ϕ(0, u2),,

V That is, the coordinates T 1 and T 2 of the two-dimensional subordinator are
independent.
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. . . . . .

Numerical Illustration

We consider the two-name defaultable stock model.

For this example the two diffusion processes X are taken to be JDCEV with the same set
of parameters are,

X0 = x a b c q β µ r
50 10 0.01 0.5 0 -1 -0.3 0.05

Table: JDCEV parameter values.

The volatility scale parameter a in the local volatility function σ(x) = axβ is selected so
that σ(50) = 0.2.
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. . . . . .

Numerical Illustration

The two-dimensional subordinator T is constructed from three independent Inverse
Gaussian processes subordinators S i

t , i = 1, 2, 3, as follows:

T k
t = Sk

t + S3
t , k = 1, 2.

γ Y η C
S1
t 0 0.5 1 0.7

S2
t 0 0.5 1 0.7

S3
t 0 0.5 0.001 0.025

Table: IG parameter values.

In this specification S1 and S2 are two idiosyncratic components that influence only the
first stock and the second stock, respectively, and

S3
t is the systematic component common to both stocks.

The parameter η is the decay parameter (damping parameter), which controls large size
jumps V S3

t exhibits larger jumps.

Since the drift is zero (γ = 0) then the time changed processes X i
T i
t
are pure jump

processes

Rafael Mendoza (McCombs) Default Correlation Fields Institute 2010 37 / 57



. . . . . .

Numerical Illustration

The two-dimensional subordinator T is constructed from three independent Inverse
Gaussian processes subordinators S i

t , i = 1, 2, 3, as follows:

T k
t = Sk

t + S3
t , k = 1, 2.

γ Y η C
S1
t 0 0.5 1 0.7

S2
t 0 0.5 1 0.7

S3
t 0 0.5 0.001 0.025

Table: IG parameter values.

In this specification S1 and S2 are two idiosyncratic components that influence only the
first stock and the second stock, respectively, and

S3
t is the systematic component common to both stocks.

The parameter η is the decay parameter (damping parameter), which controls large size
jumps V S3

t exhibits larger jumps.

Since the drift is zero (γ = 0) then the time changed processes X i
T i
t
are pure jump

processes

Rafael Mendoza (McCombs) Default Correlation Fields Institute 2010 37 / 57



. . . . . .

Numerical Illustration

The two-dimensional subordinator T is constructed from three independent Inverse
Gaussian processes subordinators S i

t , i = 1, 2, 3, as follows:

T k
t = Sk

t + S3
t , k = 1, 2.

γ Y η C
S1
t 0 0.5 1 0.7

S2
t 0 0.5 1 0.7

S3
t 0 0.5 0.001 0.025

Table: IG parameter values.

In this specification S1 and S2 are two idiosyncratic components that influence only the
first stock and the second stock, respectively, and

S3
t is the systematic component common to both stocks.

The parameter η is the decay parameter (damping parameter), which controls large size
jumps V S3

t exhibits larger jumps.

Since the drift is zero (γ = 0) then the time changed processes X i
T i
t
are pure jump

processes

Rafael Mendoza (McCombs) Default Correlation Fields Institute 2010 37 / 57



. . . . . .

Numerical Illustration

The two-dimensional subordinator T is constructed from three independent Inverse
Gaussian processes subordinators S i

t , i = 1, 2, 3, as follows:

T k
t = Sk

t + S3
t , k = 1, 2.

γ Y η C
S1
t 0 0.5 1 0.7

S2
t 0 0.5 1 0.7

S3
t 0 0.5 0.001 0.025

Table: IG parameter values.

In this specification S1 and S2 are two idiosyncratic components that influence only the
first stock and the second stock, respectively, and

S3
t is the systematic component common to both stocks.

The parameter η is the decay parameter (damping parameter), which controls large size
jumps V S3

t exhibits larger jumps.

Since the drift is zero (γ = 0) then the time changed processes X i
T i
t
are pure jump

processes

Rafael Mendoza (McCombs) Default Correlation Fields Institute 2010 37 / 57



. . . . . .

Numerical Illustration

The two-dimensional subordinator T is constructed from three independent Inverse
Gaussian processes subordinators S i

t , i = 1, 2, 3, as follows:

T k
t = Sk

t + S3
t , k = 1, 2.

γ Y η C
S1
t 0 0.5 1 0.7

S2
t 0 0.5 1 0.7

S3
t 0 0.5 0.001 0.025

Table: IG parameter values.

In this specification S1 and S2 are two idiosyncratic components that influence only the
first stock and the second stock, respectively, and

S3
t is the systematic component common to both stocks.

The parameter η is the decay parameter (damping parameter), which controls large size
jumps V S3

t exhibits larger jumps.

Since the drift is zero (γ = 0) then the time changed processes X i
T i
t
are pure jump

processes

Rafael Mendoza (McCombs) Default Correlation Fields Institute 2010 37 / 57



. . . . . .

Numerical Illustration: Survival Probability

As the sock price falls, the firm’s survival probability decreases

0 20 40 60 80 100
Sk

0.2

0.4

0.6

0.8

1.0

QHΤk>tL

Figure: Single-name survival probability Q(τ > t) for t = 1 year as a function of the stock price S0 = x.
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. . . . . .

Numerical Illustration: Joint Survival Probability & Default Correlation

As the stock prices fall, the joint survival probability also decreases which, in turn, causes
the default correlation to decrease

(a) Joint survival probability. (b) Correlation of default indicators.

Figure: Joint survival probability Q(τ{1,2} > t) and default correlation Corr(1{τ1>t}, 1{τ2>t}) for t = 1 year as functions of

stock prices S10 and S20 .

When the stock price is relatively high, the default can only be triggered by a large
catastrophic jump to zero V the systematic component S3 governs large jumps.

When the stock price is low, a smaller jump is enough to trigger default V the
idiosyncratic components S1 and S2 primarily govern small jumps.
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. . . . . .

Two Firms Basket Put Option .. Basket Option: Analytical Solutions

Consider a basket put option on the portfolio of two stocks with the payoff at time t

f (S1
t , S

2
t ) = (K − w1S

1
t − w2S

2
t )

+

We observe six contingent claims:

I One basket put that delivers the payoff if and only if both firms survive to maturity

1{τ{1,2}>t}(K − w1S
1
t + w2S

2
t )

+

I Two single-name puts that deliver the payoffs if and only if both firms survive to
maturity

1{τ{1,2}>t}(K − wkS
k
t )

+, k = 1, 2

I Two single-name puts that deliver the payoffs if and only if the firm whose stock the
put is written on survives to maturity.

1{τk>t}(K − wkS
k
t )

+, k = 1, 2

I An embedded multi-name credit derivative

K(1{τ{1,2}>t} + 1− 1{τ1>t} − 1{τ2>t}) = K1{τ1∨τ2≤t}

I We obtained explicit analytical solutions for all these claims. .. Solutions
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. . . . . .

Numerical Illustration: Joint Survival Probability & Default Correlation

The price of a European-style basket put option on the equally-weighted portfolio of two
stocks (w1 = w2 = 1) with one year to maturity (t = 1) and with the strike price K = 100
as a function of the initial stock prices S1

0 and S2
0 .

Figure: Two-name basket put prices for the range of initial stock prices S10 and S20 from zero to $60 for one year time to maturity and K = 100.

When both firms are in default, (S1
0 ,S

2
0 ) = (0, 0), the price of the basket put is equal to

the discounted strike K .

When one of the two firms is in default, the basket put reduces to the single-name
European-style put on the surviving stock with the strike K .
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. . . . . .

Conclusion

We propose a modeling framework based on multi-variate subordination of diffusion

processes.

...1 We start with n independent jump-to-default extended diffusions for n stocks.

...2 Then we time change each one with a coordinate of a n-dimensional Subordinator

V the result is multi-name credit-equity model with dependent jumps and
jumps-to-default for all stocks.

The dependence among jumps is governed by the Lévy measure of the n-dimensional
subordinator.

The semigroup theory provides powerful analytical and computational tools for securities
pricing.

Thank you!
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. . . . . .

Multiparameter Semigroup

.. Return

If {Pt, t ∈ Rn
+} is a n-parameter strongly continuous semigroup on a Banach space B, then:

V it is the product of n one-parameter strongly continuous semigroups {P i
t , t ≥ 0} on B with

infinitesimal generators Gi with domains Dom(Gi ) ⊂ B.

I That is, for t = (t1, ..., tn) we have:

Pt =
n∏

i=1

P i
ti

and the semigroup operators P i
ti
commute with each other, ti ≥ 0, i = 1, ..., n.

In our case, the expectation operators associated with the Markov processes X i define the
corresponding semigroups {P i

ti
, ti ≥ 0},

P i
ti
f (xi ) := Exi [1{ζi>ti}f (X

i
ti
)], xi ∈ Ei , ti ≥ 0,

in Banach spaces of bounded Borel measurable functions on Ei .
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. . . . . .

Two Firms Basket Put Option .. Return

The embedded multi-name credit derivative with the notional amount equal to the strike
price K and paid at maturity if both firms default

e−rtE[K1{τ1∨τ2≤t}] = e−rtK(1 + Q(τ{1,2} > t)− Q(τ1 > t)− Q(τ2 > t))

where the joint survival probability Q(τ{1,2} > t) and marginal survival probabilities
Q(τk > t), k = 1, 2; were given earlier.
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Two Firms Basket Put Option .. Return

The basket put that delivers the payoff if and only if both firms survive to maturity

e−rtE
[
1{τ{1,2}>t}(K − w1S1

t + w2S2
t )

+
]

= e−r t
∑∞

n1,n2=1 e
−ϕ(λ1

n1
,λ2

n2
) t

cn1,n2 (K)︸ ︷︷ ︸φ1
n1
(x1)φ2

n1
(x2)

Where the expansion coefficient cn1,n2 (K) is given by,

cn1,n2 (K) =
(
(K − w1x1 − w2x2)

+, φn(x)
)
m

=

∫
R2
+

(K − w1x1 − w2x2)
+φ1

n1
(x1)φ

2
n2
(x2)m1(x1)m2(x2)dx1dx2

= K
2∏

k=1

√
Γ(νk + nk)

Γ(nk)|µk + bk |
2|βk |A

νk
2

+1

k K̃
2ck−2βk
k

Γ(νk + 1)


×

∞∑
p1,p2=0

(−1)p1+p2 (ν1 + n1)p1 (ν2 + n2)p2
(ν1 + 1)p1 p1! (ν2 + 1)p2 p2!

(
A1K̃

−2β1
1

)p1
d
(
A2K̃

−2β2
2

)p2

×
Γ (2c1 − 2β1(p1 + 1)) Γ (2c2 − 2β2(p2 + 1))

Γ (2c1 − 2β1(p1 + 1) + 2c2 − 2β2(p2 + 1) + 2)
.

where K̃k = e−ρk tK/wk .
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Two Firms Basket Put Option .. Return

The single-name put on the stock Sk that delivers the payoff if and only if the firm survives
to maturity:

e−rtE
[
1{τk>t}(K − wkS

k
t )

+
]
= e−rt

∞∑
n=1

1D Lévy Exp.︷ ︸︸ ︷
e−ϕk (λ

k
n ) t pkn (K)φk

n(xk),

Where the expansion coefficient pkn (K) is given as,

pkn (K) =
(
(K − wkxk)

+, φk
n(xk )

)
mk

=

∫
R+

(K − wkxk)
+φk

n(xk )mk(xk)dxk

= K

√
Γ(νk + n)

Γ(n)|µk + bk |
A

νk
2

+1

k K̃
2(ck−βk )
k

Γ(νk + 1)
×{

1

(1 + ck/|βk |)
2F2

( νk + n, νk + 1− 1
2|βk |

νk + 1, νk + 2− 1
2|βk |

;−Ak K̃
−2βk
k

)
−

1

(νk + 1)
1F1

( νk + n
νk + 2

;−Ak K̃
−2βk
k

)}
,

where 1F1 and 2F2 are the Kummer confluent hypergeometric function and the generalized
hypergeometric function, respectively; and K̃k = e−ρk tK/wk .
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Two Firms Basket Put Option .. Return

The single-name put on the stock S1 that delivers the payoff if and only if both firms
survive:

e−rtE
[
1{τ{1,2}>t}(K − w1S

1
t )

+
]
= e−rt

∞∑
n1,n2=1

2D Lévy Exp.︷ ︸︸ ︷
e
−ϕ(λ1

n1
,λ2

n2
) t

p1n1 (K)c2n2φ
1
n1
(x1)φ

2
n2
(x2),

where c2n are the coefficients of the expansion for the survival probability of the second
stock and,

p1n(K) are the expansion coefficients for the single-name put on the first stock.
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