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Making a Profit

@ Classical theory: complete market

— unique no-arbitrage price for any derivative.
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Making a Profit

@ Classical theory: complete market
— unique no-arbitrage price for any derivative.
More realistic: incomplete market.
There is a range of prices consistent with no-arbitrage.
A derivative has market price P; investor has their own model price P.

The spread is a profit opportunity.

¢ €& ¢ ¢ ¢

Statistical arbitrage: buy at P < P, .. generate profit (on average) through
hedging.
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Making a Profit (cont.)

@ Step I: identify derivatives that seem to be “mispriced” by the market.

@ Find a contract F such that P, < P, — underpriced. Opportunity to buy and
make a profit.
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Making a Profit (cont.)

@ Step I: identify derivatives that seem to be “mispriced” by the market.

@ Find a contract F such that P, < P, — underpriced. Opportunity to buy and
make a profit.

@ But tomorrow, the spread might widen and can make even more profit.

@ Step II: when to buy?
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Making a Profit (cont.)

@ Step I: identify derivatives that seem to be “mispriced” by the market.

@ Find a contract F such that P, < P, — underpriced. Opportunity to buy and
make a profit.

@ But tomorrow, the spread might widen and can make even more profit.
@ Step II: when to buy? — Timing option.

@ Crucial factors: price dynamics, pricing measures, sources of risks/risk
premia, & option payoff.
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Introduction

Model Overview

@ Market prices arise due to a spectrum of equivalent martingale measures
(EMMs).

@ Pricing measures can be parametrized by risk premia.

@ Prevailing market measure & risk premium Q% vs. investor's Q.

@ The investor wishes to buy the option so as to maximize IST — P, over all
(stopping) times 7.
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Introduction

Model Overview

@ Market prices arise due to a spectrum of equivalent martingale measures
(EMMs).

@ Pricing measures can be parametrized by risk premia.
@ Prevailing market measure & risk premium Q? vs. investor's Q.

@ The investor wishes to buy the option so as to maximize IST — P, over all
(stopping) times 7.

@ Link together literatures on EMMs in popular incomplete models and
American options.

@ No closed-form solutions, so focus on qualitative properties.

@ Key: vis-a-vis risk premium spread.
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Outline

@ General incomplete market

» Equivalent formulations/interpretations.
» Delayed purchase premium
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Outline

@ General incomplete market

» Equivalent formulations/interpretations.
» Delayed purchase premium

@ Defaultable stock model

» Optimal stopping rule.
» Default risk premium and option payoff.
» Numerical examples - optimal purchase boundaries.
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Outline

@ General incomplete market

» Equivalent formulations/interpretations.
» Delayed purchase premium

@ Defaultable stock model

» Optimal stopping rule.
» Default risk premium and option payoff.
» Numerical examples - optimal purchase boundaries.

© Stochastic volatility model

» Optimal stopping rule.
» Volatility risk premia and option payoff.

@ Link with Utility Pricing Approaches
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General Setup

Optimal Purchase in a General Incomplete Market

@ On (Q, F,F = (Ft)o<e<T,P), model a risky asset S: +ve F-locally bounded
semimartingale.

@ Universal filtration F — known to all participants (no insiders, etc.).

@ Under the market pricing measure Q, the price of an European option F with
maturity T is

P. = EQe " T-OF(S7)| F:},  0<t<T.
@ The buyer prices the option under another EMM Q:

P, = EQ{e"T-9F(Sp)|F), 0<t<T.
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Option Price Spread

@ The buyer maximizes the expected discounted price spread:

Ji = esssup Eé{e_r(T_t)('bT — Pr)|[ Fe},
TETe, T

where T; 7 is the set of F-stopping times taking values in [t, T].
@ J; can be viewed as an
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General Setup

Option Price Spread

@ The buyer maximizes the expected discounted price spread:

Ji = esssup Eé{e_r(T_t)('bT — Pr)|[ Fe},
TETe, T

where T; 7 is the set of F-stopping times taking values in [t, T].
@ J; can be viewed as an

@ By iterated conditioning, J; simplifies to

J; = esssup Eé{e_’(T_t) Eé{e_’(T_T)F(ST)| Fr}—err=0p | ]-'t}
TET:, T

P,

:ﬁt_vta

where V; is the buyer's minimized expected cost to buy the option:

vt:essﬂ}nfEQ{(ZT/Zt)e*'(T*f)PT|ft}, Z, = EQ{ Ift}

TE T, T
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General Setup

Basic properties

@ Since Pt = Py = F(S7), we have J7 =0 and J; > 0.

o If P, <P, VYu>t, then Jy=0and V; = P,.

@ Since t and T are candidate stopping times, we have V; < P; A P,.
@ The optimal purchase time:

m=inf{t<u<T:V,=P,}=inf{t<u<T:J,=P,—P,}.

If @ = @, then V, = P; and the timing option is worthless.

One of our goals: explicitly characterize when 7 is trivial.

€

©

©

Also, what factors delay/accelerate purchasing decisions?
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General Setup

Delayed Purchase Premium

@ Can determine 7* from the
=PV, =Ji— (P — Py). (>0)

@ The process (e P;Z;)icpo, 1] satisfies

e P Z =e "P:Z —|—/ Zs_d(e "Ps) —|—/ e "P,_dZ, +/ e "d[P, Z]s,
t t

t

=P —essinfEQ{(2./2)e " VP, |.7-"t}

TET T

TETe, T

= esssup E? {_(Zt)_l/ e "=0d[P, Z]s | Ft} .
t

@ Hence, the quadratic covariation process G; := [P, Z|; plays a vital role.
@ Optimal purchase time: 7 =inf{t<u<T :[,=0}.
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The 7-Optimal Pricing Measure Q7
@ Denote the density processes associated with Q and @ (with respect to P) by
dQ m dQ
Zf:E{ﬁUR} and 2" = E{_5 | F}.

@ Concatenate Q and Q to form another measure Q7. Let Z7 := %bﬁ s.t.
b

mZT
Z0 =7 Lo (t) + Zi = len(),  0<t<T.
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The 7-Optimal Pricing Measure Q7
@ Denote the density processes associated with Q and @ (with respect to P) by
b dQ m dQ
Zt :E{ﬁ|]:t}7 and Zt :E{EL}}}

@ Concatenate Q and Q to form another measure Q7. Let Z7 := %|5 s.t.
b

T mZT
Z0 =7 1o (t) + Z o lem(t),  0<t<T.

@ By change of measure, we obtain an alternative representation for V;:

V; = essinf E? {efr(T*t)P |.7:t} =essinf E Z_TbZ_7’3’ H(T*t)F(Sr) ! Fi
7'67},7‘ T 7'67},7‘ ZIP Z;"
= essinf E? {e"T"OF(S7)| F}, where M(Q, @) = {Q" }re7.
QTEM(Q,Q)

@ Purchase at 7 — adopting the market measure Q at 7*.

@ Timing flexibility — expands from one @ to the collection M(Q, Q).
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Buying Options on Defaultable Stock

@ The pre-default dynamics of stock price S is
dSt:(u+3\t)5tdt+65tth—5t_ d/\/t7 S[):S>07

with g, 0 > 0.
W is a BM under P and } is the F°-adapted default intensity process.

©

At default time 7%, S drops to zero permanently.

€

N t
Mzinf{t:/xsds>5}, E~Exp(l), ELFY, N.=1
0

@ Denote F; = F7 V o(E); the compensated (PP, F)-martingale is M, = N, — fot As ds.
@ Focus on Markovian local intensities \; = A(t, St).
@ Similar models include Merton ('76), Carr-Linetsky ('06), Linetsky ('06), etc.
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The Buyer's Optimal Stopping Problem

@ The set of EMMs {Q”*} is parametrized through the RN density

o dQc’),u
2=

where the default risk premium « is a +ve bounded F;-predictable process, and ¢ is
the market price of risk satisfying

|7 = E(—0 W) E(al),

/.,L—r—>\t((](t—1)
po .

Dy =
@ By Girsanov Theorem, the evolution of S under any EMM Q¢ is

dS: = rSedt + 05 dWS™ — S, dMP, So=5>0,

where W2 = W, + fot ¢udu and MP™ = N, — fot Qs s ds.
@ {Q%“} is parametrized by « only, and Q¥ “-default intensity is A%t = Qe
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The Optimal Timing Rule

@ Pricing measures are Q = Qe (buyer) & Q = Q** (market).
@ Market price P(t,S;) := E?{e " T"9F(S71)| S:}. The buyer solves

V(t.s) = inf E°{e """9P(1,5,)| S = s}
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The Optimal Timing Rule

@ Pricing measures are Q = Qe (buyer) & Q = Q** (market).
@ Market price P(t,S;) := E?{e " T"9F(S71)| S:}. The buyer solves

V(t.s) = inf E°{e """9P(1,5,)| S = s}

@ The is
(t,s) = sup Eo{ —/ e "G (u,S,) du| S = s}, with
t

G(ts) = (A(t,s) — /\(t,s))(s%—f(t,s) + P(£,0) - P(t,5)).

Theorem

If G(t,s) <0V(t,s), then 7" = T and L(t,s) = P(t,s) — P(t,s).
If G(t,s) > 0 V(t,s), then ™ =t is optimal for V(t,s), and L(t,s) = 0.
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Outline of Proof
@ Consider the super/sub-martingality of (e~ P(t, St)Z¢):, with Z; := 99

dQ ]__t'

©

Recall that P, = e " P(t, S;) and Z; are both Q-martingales.
Using Ito's formula, compute the dynamics of e™ " P(t, S¢)Z; under Q:

©

d(Z:P:) = P dZ; + Z: dP, + dP, dZ,
=P.dZ,+ Z: dP, + Zt(% —1)(P(t,0) — P(t,5:_)) dM?

t

< opP
+ Ze(Ae — /\t)(st

E(t, Se) + P(t,0) — P(t,S:-)) dt.

€

The drift of d(Z:P;) is the last dt term.

Hence, the condition G(t,s) < 0 (resp. G(t,s) > 0) implies that ZP is a
Q-supermartingale (resp. Q-submartingale), and thus 7* = T (resp. 7* = 0).

©
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Defaultable Stocks Numerical Examples

Price Convexity & Purchase Timing

@ Recall: G(t,s) = (A(t,s) — A(t,s))(sZE(t,s) + P(t,0) — P(t,s)).
Corollary
Suppose s — P(t,s) is convex for each t € [0, T| (i.e. gamma Pg(t,s) > 0).

If X(t,s) < A(t,s) Y(t,s), then it is optimal to never buy the option, i.e. 7 = T.
)

v(t
If X(t,s) > A(t,s) V(t,s), then it is optimal to buy the option now.
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ral Setup Defaultable Stocks Stochastic Numerical Examples

Price Convexity & Purchase Timing

@ Recall: G(t,s) = (\(t,s) — A(t,s))(sZE(t,s) + P(t,0) — P(t,s)).
Corollary

Suppose s — P(t,s) is convex for each t € [0, T] (i.e. gamma Ps(t,s) > 0).
If X(t,s) < X(t,s) V(t,s), then it is optimal to never buy the option, i.e. 7" = T.
) V(t

v
If X(t,s) > A(t,s) V(t,s), then it is optimal to buy the option now.

Example
Take \(t,s) = A, then the market Call and Put prices are
C(t,s) = CP(t,sir+ X\, 0, K, T), P(t;s)=P5(t,sir+ X, 0,K, T)+ Ke "T791 — e 2T70),

Calls and Puts are convex in s and admit the same drift function (P-C parity):
G(t,s) = (A(t,s) — N Ke N T=0¢(dy).
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Buying a European Call or Put

Numerically solve the variational inequality for V/(t,s) using implicit PSOR method:
min(%—{ L5V + At s)V(t,0), P — v) =0, V(T,s)=F(s).

Figure: Parameters: A(t,s) = 0.2, A(t,s) = 0;26’0‘2(5’*(), r=5%,0=20%, T =1,
K = 5. Right: J(t,s) = P(t,s) — V(t,s) = [P(t,s) — P(t,s)] + L(t,s).
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Further Remarks

o If G(t,s) < 0 then should wait.
@ So the purchase boundary s*(t) must satisfy G(t,s*(t)) > 0.

@ e.g. for a Call, must have A(t,s*(t)) — A(t, s*(t)) > 0: the market is
underestimating the default intensity in the buy region.

@ Near expiry, A(t,s*(t)) = A(t,s*(t)) in the limit t — T.
o Comparison principle: If Gi(t,s) < Gy(t,s) V(t,s), then Li(t,s) > La(t,s),
so 71 > 75 a.s. (bigger G means earlier purchase).
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Digital Call Purchase Timing

Consider F(s) = 1{,5x3} (not convex) w/constant default intensities, the drift function is

G(t,s) = (X = A)e FNT=D (¢(d2)m/% —~ d>(d2)> ;

which changes sign, with lim;_,0 G(t,s) = 0 and limso0 G(t,5) = (A — A).
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Figure: A(t,s) = 0.2, 5\(t7 5)=0.25, r=0.05,0=0.2, T=1and K =5,
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Defaultable Stocks Numerical Examples

American Put Purchase Timing
The buyer's American option price: P*(t,s) = sup E{, {e”(”’t)F(Su)}. The buyer

VGT,:YT
A Q —r(T—t) [ PA A
solves: JA(t,s) = sup EZ, {e T=0(pPA(1,8,) — P (T,ST))}.
TET T
5 T T T T 0.2 T T T T
48 oasl| ——7(:5)
; - = =P(0,s) - P(0,s)
0.14 1
0121 4
0.1p 1
0.08 - 1
F_‘.-"' —(t) 0.06 R
88 ,—-""_d - == b (1) 0.04 1
34l o |1 002} i
32 . . . ; o . . .
0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10
Time ¢ Stock Price s

Figure: Parameters: A(t,s) = 0.2, A(t,s) = 0.25, r =0.05, ¢ = 0.2, T = 1 and K = 5. Left panel: Solid
line shows the purchase boundary s*(t); dashed line shows the market exercise boundary b*(t) and the
dash-dotted line shows the buyer’s exercise boundary b*(t).
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Stochastic Volatility

Buying Options under Stochastic Volatility

@ Consider a general stochastic volatility model under an EMM Q¥:
dS: = S; (rdt + o (Y:) dW?),

t,Ye) — ~
dY: = | b(t, Yi) — pc(t, m)% — pe(t, Yi)oe | dt + c(t, Vi) (pdW? + pd W),
t
where W, = W, + [; “j,Ys —'ds, W = W, + [ ¢s ds are indep. Q?-BM:s.
@ Buyer's vol. risk premium: ¢; = ¢(t, S, Y;), and market’s ¢, = ¢(t, St, ).
o Market price P(t,s,y) = E¢ {e="(T-9F(S7)|S; =5, Ye = y}.
@ The buyer faces the optimal stopping problem

V(tvsﬂ}/) = Tér’]TfT EO {e_r(T_t)P(Ta S:, YT)|St =5 Y= }/} .
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Stochastic Volatility

Buying Options under Stochastic Volatility

Theorem

Let
G(tz 57_)/) = Z_C(t7 57y)(¢;(t7 S, .y) - ¢(t7 Svy))'

If G(t,s,y) <0V(t,s,y), then T =T and L(t,s,y) = P(t,s,y) — P(t,s,y).
If G(t,s,y) > 0V(t,s,y), then 7* =0 (buy now) and L(t,s,y)=0.

In general, the optimal purchase time 7* = inf{t < T : [(t,S:, Y:) = 0}, where
(t,s,y) = P(t757y) - V(t,s,y)

= sup EG{ — / efr(”ft)ﬁc(u7 Y.)G(u, Sy, Yu)du|Se = s, Ye = y},
t

TETe, T
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Stochastic Volatility

Corollaries: Optimal Purchase Timing

Corollary

Assume P(t,s,y) is convex in s € Ry Y(t,y) and o’(y) > 0.

If gZ)(t, s,y) < ¢(t,s,y) Y(t,s,y), then it is optimal to never buy the option.
If ¢(t,s,y) > &(t,s,y) Y(t,s,y), then it is optimal to purchase the option immediately.

Idea: show that g—yp(t,s,y) > 0 (Romano-Touzi ('97)).
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Stochastic Volatility

Corollaries: Optimal Purchase Timing

Corollary

Assume P(t,s,y) is convex in s € Ry Y(t,y) and o’(y) > 0.
If gZ)(t, s,y) < ¢(t,s,y) Y(t,s,y), then it is optimal to never buy the option.
If ¢(t,s,y) > &(t,s,y) Y(t,s,y), then it is optimal to purchase the option immediately.
Idea: show that g—yp(t,s,y) > 0 (Romano-Touzi ('97)).
Examples:
@ For convex payoffs, don't buy at (t,s,y) if (;NS(t, s,y) < o(t,s,y).

@ Again by Put-Call Parity, the buyer’'s optimal purchase strategy for the
European Call and European Put are identical.

@ Heston model and q-optimal measures. HHHS'07 show that g — ¢9(t,s,y)
is increasing. So if investor has Q = Q) and market has Q@ = Q(92) then
the solution is trivial.
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Rolling Long-Dated Options

9 Long-dated T-Put is not traded in the market, so buy and hold one with
shorter maturity T;.

@ At the date 7 < Ti, simultaneously buy a Put expiring at T and
selling the Put expiring at Ti.

@ Minimize the net cost at the roll date 7: c®(T) — c@(Ty).
@ Payoff has complicated non-convex shape...
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Risk Averse Buyers

So far the buyer is risk-neutral and we worked under Q
Can consider a risk-averse buyer who works under PP.

Buyer's model price = indifference price of F.

¢ e ¢ ¢

This is one way to justify the discrepancy between pricing measures involved
and the choice of buyer's measure.

€

Tractable framework with exponential utility U(x) = —e™7*, v > 0.

€

Related to static-dynamic hedging, see Leung-Sircar ('09).
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Exponential Utility
@ Buying problem is:

J:(X¢; aF) = esssupesssup E{V,(X? — aP;; aF)|F:},
TET:, 1 €O,

where the Merton optimal investment value function is

Ve(Xe; aF) := esssup E {U(X} + aF (S7)) | F¢} .
0€O, T

@ Denote by h; the indifference price of the contract aF.
@ For exp. utility, duality interpretation of h; through entropic penalties.
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Exponential Utility

@ Buying problem is:

J:(X¢; aF) = esssupesssup E{V,(X? — aP;; aF)|F:},
TET:, 1 €O,

where the Merton optimal investment value function is

Ve(Xe; aF) := esssup E {U(X} + aF (S7)) | F¢} .
00, 1
Denote by h; the indifference price of the contract aF.
For exp. utility, duality interpretation of h; through entropic penalties.
Delayed purchase premium L;: Ji(X;; aF) =: Vi(X; + Ly — aPy; oF).
Based on Leung-Sircar (2009),

¢ ¢ ¢ ¢

Je(Xe; aF) = U(X:)-exp | —esssup essinf (YEF {h, — aP:} + H] (Q|P) + EX{H] (QF|P)})
TET:, T QEP(P)

@ QF is the minimal entropy martingale measure.
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Modified Problem

@ Asy — 0, recover L; = - (esssupTeth EQ [hE — P} — (hE — Pt)) :

9 Total value of purchasing the option is:

ft = ht - an + Lt
~ ~

indifference price for holding the option  cost of the option  delayed purchase premium

@ Conditional relative entropic penalty = quadratic penalty on the risk
premium.
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Modified Problem

@ Asy — 0, recover Ly = a - (esssupTeth EQ {hE — P} — (hE — Pt)) .
9 Total value of purchasing the option is:
ft = ht - an + Lt
~ ~

indifference price for holding the option  cost of the option  delayed purchase premium
@ Conditional relative entropic penalty = quadratic penalty on the risk
premium.

@ e.g. classical non-traded asset: option on Y; trade in S (corr. p).

; 1
~ sup anffzy{ / 5 (050 (5, V)V + VT = (s, )Py s vs)(os—ws)ds}
t

t<r<T ¢

@ ¢* is the optimal measure in the dual representation of h(t,y); ¢ is the
market risk premium.

@ Can again explicitly derive the drift function G(t,s, y).
@ Work in progress.
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