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Making a Profit

Classical theory: complete market

→ unique no-arbitrage price for any derivative.

More realistic: incomplete market.

There is a range of prices consistent with no-arbitrage.

A derivative has market price P ; investor has their own model price P̃ .

The spread is a profit opportunity.

Statistical arbitrage: buy at P < P̃ , ... generate profit (on average) through
hedging.
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Making a Profit (cont.)

Step I: identify derivatives that seem to be “mispriced” by the market.

Find a contract F such that Pt < P̃t – underpriced. Opportunity to buy and
make a profit.

But tomorrow, the spread might widen and can make even more profit.

Step II: when to buy? → Timing option.

Crucial factors: price dynamics, pricing measures, sources of risks/risk
premia, & option payoff.
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Model Overview

Market prices arise due to a spectrum of equivalent martingale measures
(EMMs).

Pricing measures can be parametrized by risk premia.

Prevailing market measure & risk premium Qφ vs. investor’s Q̃.

The investor wishes to buy the option so as to maximize P̃τ − Pτ over all
(stopping) times τ .

Link together literatures on EMMs in popular incomplete models and
American options.

No closed-form solutions, so focus on qualitative properties.

Key: contract shape vis-a-vis risk premium spread.
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Outline

1 General incomplete market
◮ Equivalent formulations/interpretations.
◮ Delayed purchase premium

2 Defaultable stock model
◮ Optimal stopping rule.
◮ Default risk premium and option payoff.
◮ Numerical examples - optimal purchase boundaries.

3 Stochastic volatility model
◮ Optimal stopping rule.
◮ Volatility risk premia and option payoff.

4 Link with Utility Pricing Approaches
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Optimal Purchase in a General Incomplete Market

On (Ω,F ,F = (Ft)0≤t≤T ,P), model a risky asset S : +ve F-locally bounded
semimartingale.

Universal filtration F – known to all participants (no insiders, etc.).

Under the market pricing measure Q, the price of an European option F with
maturity T is

Pt = IEQ{e−r(T−t)F (ST )| Ft}, 0 ≤ t ≤ T .

The buyer prices the option under another EMM Q̃:

P̃t = IE Q̃{e−r(T−t)F (ST )| Ft}, 0 ≤ t ≤ T .
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Option Price Spread

The buyer maximizes the expected discounted price spread:

Jt = ess sup
τ∈Tt,T

IE Q̃{e−r(τ−t)(P̃τ − Pτ )| Ft},

where Tt,T is the set of F-stopping times taking values in [t,T ].

Jt can be viewed as an American spread option.

By iterated conditioning, Jt simplifies to

Jt = ess sup
τ∈Tt,T

IE Q̃

{

e−r(τ−t) IE Q̃{e−r(T−τ )F (ST )| Fτ}
︸ ︷︷ ︸

P̃τ

−e−r(τ−t)Pτ | Ft

}

= P̃t − Vt ,

where Vt is the buyer’s minimized expected cost to buy the option:

Vt = ess inf
τ∈Tt,T

IEQ
{

(Zτ/Zt) e
−r(τ−t)Pτ | Ft

}

, Zt = IEQ{
dQ̃

dQ
|Ft}.
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Basic properties

Since PT = P̃T = F (ST ), we have JT = 0 and Jt ≥ 0.

If P̃u ≤ Pu ∀u ≥ t, then Jt = 0 and Vt = P̃t .

Since t and T are candidate stopping times, we have Vt ≤ Pt ∧ P̃t .

The optimal purchase time:

τ∗t = inf{ t ≤ u ≤ T : Vu = Pu } = inf{t ≤ u ≤ T : Ju = P̃u − Pu}.

If Q = Q̃, then Vt = Pt and the timing option is worthless.

One of our goals: explicitly characterize when τ is trivial.

Also, what factors delay/accelerate purchasing decisions?
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Delayed Purchase Premium

Can determine τ∗ from the delayed purchase premium:

Lt := Pt − Vt = Jt − (P̃t − Pt). (≥ 0)

The process (e−rtPtZt)t∈[0,T ] satisfies

e−rτPτZτ = e−rtPtZt +

∫ τ

t

Zs− d(e−rsPs) +

∫ τ

t

e−rsPs− dZs +

∫ τ

t

e−rsd [P,Z ]s ,

Lt = Pt − ess inf
τ∈Tt,T

IEQ
{

(Zτ/Zt) e
−r(τ−t)Pτ | Ft

}

= ess sup
τ∈Tt,T

IEQ

{

−(Zt)
−1

∫ τ

t

e−r(s−t)d [P,Z ]s
∣

∣Ft

}

.

Hence, the quadratic covariation process Gt := [P ,Z ]t plays a vital role.

Optimal purchase time: τ∗t = inf{ t ≤ u ≤ T : Lu = 0 }.
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The τ -Optimal Pricing Measure Qτ∗

Denote the density processes associated with Q̃ and Q (with respect to P) by

Z b
t = IE

{dQ̃

dP
| Ft

}

, and Zm
t = IE

{dQ

dP
| Ft

}

.

Concatenate Q̃ and Q to form another measure Qτ . Let Z τ
t := dQτ

dP
|Ft s.t.

Z τ
t := Z b

t 1I[0,τ)(t) + Zm
t

Z b
τ

Zm
τ

1I[τ,T ](t), 0 ≤ t ≤ T .

By change of measure, we obtain an alternative representation for Vt :

Vt = ess inf
τ∈Tt,T

IE Q̃
{

e−r(τ−t)Pτ | Ft

}

= ess inf
τ∈Tt,T

IE

{

Z b
τ

Z b
t

Zm
T

Zm
τ

e−r(T−t)F (ST )
∣

∣Ft

}

= ess inf
Qτ∈M(Q,Q̃)

IEQτ {e−r(T−t)F (ST ) | Ft}, where M(Q, Q̃) = {Qτ}τ∈T .

Purchase at τ∗ → adopting the market measure Q at τ∗.

Timing flexibility → expands from one Q̃ to the collection M(Q, Q̃).
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Buying Options on Defaultable Stock

The pre-default dynamics of stock price S is

dSt = (µ+ λ̂t)St dt + σSt dŴt − St− dNt , S0 = s > 0,

with µ, σ > 0.

Ŵ is a BM under P and λ̂ is the FS -adapted default intensity process.

At default time τ λ̂, S drops to zero permanently.

τ λ̂ = inf
{

t :

∫ t

0

λ̂s ds > E
}

, E ∼ Exp(1), E ⊥ FŴ ; Nt = 1
{t≥τ λ̂}

.

Denote Ft = FS
t ∨ σ(E); the compensated (P,F)-martingale is M̂t = Nt −

∫ t

0
λ̂s ds.

Focus on Markovian local intensities λ̂t = λ̂(t,St).

Similar models include Merton (’76), Carr-Linetsky (’06), Linetsky (’06), etc.
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The Buyer’s Optimal Stopping Problem

The set of EMMs {Qφ,α} is parametrized through the RN density

Zφ,α
t :=

dQφ,α

dP
|Ft = E(−φŴ )t E(αM̂)t ,

where the default risk premium α is a +ve bounded Ft -predictable process, and φ is
the market price of risk satisfying

φt =
µ− r − λ̂t(αt − 1)

σ
.

By Girsanov Theorem, the evolution of S under any EMM Qφ,α is

dSt = rSt dt + σSt dW
φ,α
t − St− dMφ,α

t , S0 = s > 0,

where W φ,α
t = Ŵt +

∫ t

0
φu du and Mφ,α

t = Nt −
∫ t

0
αs λ̂s ds.

{Qφ,α} is parametrized by α only, and Qφ,α-default intensity is λαt = αt λ̂t .
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The Optimal Timing Rule

Pricing measures are Q̃ = Q φ̃,α̃ (buyer) & Q = Qφ,α (market).

Market price P(t,St) := IEQ{e−r(T−t)F (ST ) |St}. The buyer solves

V (t, s) := inf
τ∈Tt,T

IE Q̃{e−r(τ−t)P(τ,Sτ ) |St = s}

The delayed purchase premium is

L(t, s) = sup
τ∈Tt,T

IE Q̃

{

−
∫ τ

t

e−r(u−t)G(u,Su) du |St = s

}

, with

G(t, s) = (λ̃(t, s)− λ(t, s))
(

s
∂P

∂s
(t, s) + P(t, 0)− P(t, s)

)

.

Theorem

If G(t, s) ≤ 0 ∀(t, s), then τ∗ = T and L(t, s) = P(t, s)− P̃(t, s).
If G(t, s) ≥ 0 ∀(t, s), then τ∗ = t is optimal for V (t, s), and L(t, s) = 0.

Mike Ludkovski Optimal Timing to Buy Options
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Outline of Proof

Consider the super/sub-martingality of (e−rtP(t,St)Zt)t , with Zt :=
dQ̃
dQ

∣

∣

∣

Ft

.

Recall that P̂t = e−rtP(t, St) and Zt are both Q-martingales.

Using Ito’s formula, compute the dynamics of e−rtP(t, St)Zt under Q:

d(Zt P̂t) = P̂t dZt + Zt dP̂t + dP̂t dZt

= P̂t dZt + Zt dP̂t + Zt(
λ̃t

λt

− 1)(P̂(t, 0) − P̂(t,St−)) dM
Q
t

+ Zt(λ̃t − λt)
(

St
∂P̂

∂s
(t,St) + P̂(t, 0)− P̂(t,St−)

)

dt.

The drift of d(Zt P̂t) is the last dt term.

Hence, the condition G(t, s) ≤ 0 (resp. G(t, s) ≥ 0) implies that ZP̂ is a

Q-supermartingale (resp. Q-submartingale), and thus τ∗ = T (resp. τ∗ = 0).
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Price Convexity & Purchase Timing

Recall: G(t, s) = (λ̃(t, s) − λ(t, s))
(

s ∂P
∂s

(t, s) + P(t, 0)− P(t, s)
)

.

Corollary

Suppose s 7→ P(t, s) is convex for each t ∈ [0,T ] (i.e. gamma Pss(t, s) ≥ 0).
If λ̃(t, s) ≤ λ(t, s) ∀(t, s), then it is optimal to never buy the option, i.e. τ∗ = T.
If λ̃(t, s) ≥ λ(t, s) ∀(t, s), then it is optimal to buy the option now.

Example

Take λ(t, s) = λ, then the market Call and Put prices are

C(t, s) = C
BS (t, s; r + λ, σ,K ,T ), P(t, s) = P

BS (t, s; r + λ, σ,K ,T ) + Ke
−r(T−t)(1 − e

−λ(T−t)).

Calls and Puts are convex in s and admit the same drift function (P-C parity):
G(t, s) = (λ̃(t, s) − λ)Ke−(r+λ)(T−t)Φ(d2).

Mike Ludkovski Optimal Timing to Buy Options
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Buying a European Call or Put
Numerically solve the variational inequality for V (t, s) using implicit PSOR method:

min
(

∂V
∂t

+ Lλ̃ V + λ̃(t, s)V (t, 0),P − V
)

=0, V (T , s)=F (s).

Figure: Parameters: λ(t, s) = 0.2, λ̃(t, s) = 0.2e−0.2(s−K ), r = 5%, σ = 20%, T = 1,
K = 5. Right: J(t, s) = P̃(t, s)− V (t, s) = [P̃(t, s)− P(t, s)] + L(t, s).
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Further Remarks

If G(t, s) < 0 then should wait.

So the purchase boundary s∗(t) must satisfy G(t, s∗(t)) > 0.

e.g. for a Call, must have λ̃(t, s∗(t))− λ(t, s∗(t)) > 0: the market is
underestimating the default intensity in the buy region.

Near expiry, λ̃(t, s∗(t)) = λ(t, s∗(t)) in the limit t → T .

Comparison principle: If G1(t, s) ≤ G2(t, s) ∀(t, s), then L1(t, s) ≥ L2(t, s),
so τ∗1 ≥ τ∗2 a.s. (bigger G means earlier purchase).

Mike Ludkovski Optimal Timing to Buy Options
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Digital Call Purchase Timing
Consider F (s) = 1{s>K} (not convex) w/constant default intensities, the drift function is

G(t, s) = (λ̃− λ)e−(r+λ)(T−t)

(

φ(d2)
1

σ
√
T − t

−Φ(d2)

)

,

which changes sign, with lims→0 G(t, s) = 0 and lims→∞ G(t, s) = (λ− λ̃).
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Figure: λ(t, s) = 0.2, λ̃(t, s) = 0.25, r = 0.05, σ = 0.2, T = 1 and K = 5.
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American Put Purchase Timing
The buyer’s American option price: P̃A(t, s) = sup

ν∈Tt,T

IE Q̃
t,s

{

e−r(ν−t)F (Sν)
}

. The buyer

solves: JA(t, s) = sup
τ∈Tt,T

IE Q̃
t,s

{

e−r(τ−t)(P̃A(τ,Sτ )− PA(τ,Sτ ))
}

.

0 0.2 0.4 0.6 0.8 1
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Time t

S
to

ck
P

ri
ce

s

 

 

s∗(t)

b∗(t)

b̃∗(t)

Buy Region

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Stock Price s

 

 

J(0, s)

P̃ (0, s)− P (0, s)

Figure: Parameters: λ(t, s) = 0.2, λ̃(t, s) = 0.25, r = 0.05, σ = 0.2, T = 1 and K = 5. Left panel: Solid
line shows the purchase boundary s∗(t); dashed line shows the market exercise boundary b∗(t) and the

dash-dotted line shows the buyer’s exercise boundary b̃∗(t).
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Buying Options under Stochastic Volatility

Consider a general stochastic volatility model under an EMM Qφ:











dSt = St ( r dt + σ(Yt) dW
φ
t ),

dYt =

[

b(t,Yt)− ρc(t,Yt)
µ(t,Yt)− r

σ(Yt)
− ρ̂c(t,Yt)φt

]

dt + c(t,Yt) (ρdW
φ
t + ρ̂dŴ φ

t ),

where W φ
t = Wt +

∫ t

0

µ(s,Ys )−r

σ(Ys)
ds, Ŵ φ

t = Ŵt +
∫ t

0
φs ds are indep. Qφ-BMs.

Buyer’s vol. risk premium: φ̃t = φ̃(t, St ,Yt), and market’s φt = φ(t, St ,Yt).

Market price P(t, s, y) = IEQ
{
e−r(T−t)F (ST ) |St = s,Yt = y

}
.

The buyer faces the optimal stopping problem

V (t, s, y) = inf
τ∈Tt,T

IE Q̃
{

e−r(τ−t)P(τ, Sτ ,Yτ )|St = s,Yt = y
}

.
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Buying Options under Stochastic Volatility

Theorem

Let

G(t, s, y) :=
∂P

∂y
(t, s, y)

(

φ̃(t, s, y)− φ(t, s, y)
)

.

If G(t, s, y) ≤ 0 ∀(t, s, y), then τ∗ = T and L(t, s, y) = P(t, s, y)− P̃(t, s, y).

If G(t, s, y) ≥ 0 ∀(t, s, y), then τ∗ = 0 (buy now) and L(t, s, y) = 0.

In general, the optimal purchase time τ∗ = inf{t ≤ T : L(t, St ,Yt) = 0}, where

L(t, s, y) = P(t, s, y)− V (t, s, y)

= sup
τ∈Tt,T

IE Q̃

{

−
∫ τ

t

e−r(u−t)ρ̂c(u,Yu)G(u,Su ,Yu) du | St = s,Yt = y

}

.
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Corollaries: Optimal Purchase Timing

Corollary

Assume P(t, s, y) is convex in s ∈ R+ ∀(t, y) and σ′(y) > 0.

If φ̃(t, s, y) ≤ φ(t, s, y) ∀(t, s, y), then it is optimal to never buy the option.
If φ̃(t, s, y) ≥ φ(t, s, y) ∀(t, s, y), then it is optimal to purchase the option immediately.

Idea: show that ∂P
∂y

(t, s, y) ≥ 0 (Romano-Touzi (’97)).

Examples:

For convex payoffs, don’t buy at (t, s, y) if φ̃(t, s, y) ≤ φ(t, s, y).

Again by Put-Call Parity, the buyer’s optimal purchase strategy for the
European Call and European Put are identical.

Heston model and q-optimal measures. HHHS’07 show that q 7→ φq(t, s, y)
is increasing. So if investor has Q̃ = Q(q1) and market has Q = Q(q2) then
the solution is trivial.
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Rolling Long-Dated Options

Long-dated T -Put is not traded in the market, so buy and hold one with
shorter maturity T1.

At the roll-over date τ ≤ T1, simultaneously buy a Put expiring at T and
selling the Put expiring at T1.

Minimize the net cost at the roll date τ : cQτ (T )− cQτ (T1).

Payoff has complicated non-convex shape...
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Risk Averse Buyers

So far the buyer is risk-neutral and we worked under Q̃.

Can consider a risk-averse buyer who works under P.

Buyer’s model price ≡ indifference price of F .

This is one way to justify the discrepancy between pricing measures involved
and the choice of buyer’s measure.

Tractable framework with exponential utility U(x) = −e−γx , γ > 0.

Related to static-dynamic hedging, see Leung-Sircar (’09).
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Exponential Utility

Buying problem is:

Jt(Xt ;αF ) = ess sup
τ∈Tt,T

ess sup
θ∈Θt,τ

IE{Vτ (X
θ
τ − αPτ ;αF ) |Ft},

where the Merton optimal investment value function is

Vt(Xt ;αF ) := ess sup
θ∈Θt,T

IE
{
U(X θ

T + αF (ST )) | Ft

}
.

Denote by ht the indifference price of the contract αF .

For exp. utility, duality interpretation of ht through entropic penalties.

Delayed purchase premium Lt : Jt(Xt ;αF ) =: Vt(Xt + Lt − αPt ;αF ).

Based on Leung-Sircar (2009),

Jt(Xt ;αF ) = U(Xt)·exp
(

− ess sup
τ∈Tt,T

ess inf
Q∈Pf (P)

(

γIEQ
t {hτ − αPτ}+ Hτ

t (Q|P) + IEQ
t {HT

τ (QE |P)}
)

)

.

QE is the minimal entropy martingale measure.
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Modified Problem

As γ → 0, recover Lt = α ·
(

ess supτ∈Tt,T
IEQE

t {hEτ − Pτ} − (hEt − Pt)
)

.

Total value of purchasing the option is:

ft = ht
︸︷︷︸

indifference price for holding the option

− αPt
︸︷︷︸

cost of the option

+ Lt
︸︷︷︸

delayed purchase premium

.

Conditional relative entropic penalty ≡ quadratic penalty on the risk
premium.

e.g. classical non-traded asset: option on Y ; trade in S (corr. ρ).

Lt = sup
t≤τ≤T

inf
φ
IE

φ
t,y

{∫ τ

t

1

2γ
(φs−φ

∗(s,Ys))
2+

√

1− ρ2c(s,Ys)Py (s,Ys)(φs−ψs) ds

}

φ∗ is the optimal measure in the dual representation of h(t, y); ψ is the
market risk premium.

Can again explicitly derive the drift function G(t, s, y).

Work in progress.
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