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Definitions

A Lévy process X is specified by the triple (µ, σ,Π), where µ ∈ R,
σ ≥ 0 and Π(dx) satisfies

∫
R min(1, x2)Π(dx) <∞.

If λ = Π(R) is finite then X is a sum of BM and a compound Poisson
process:

Xt = σWt + µt+
N(λt)∑
i=1

ξi,

where P(ξi ∈ dx) = λ−1Π(dx). The characteristic exponent Ψ(z) is
defined as

E
[
eizXt

]
= e−tΨ(z).

The Lévy-Khintchine representation for Ψ(z) is

Ψ(z) =
σ2z2

2
− iµz −

∫
R

(
eizx − 1− izxh(x)

)
Π(dx).

Alexey Kuznetsov 1/50



Introduction Wiener-Hopf Meromorphic One-sided Two-sided Numerics Penalty function

Examples: VG process

The density of the jump measure is

π(x) =
1
k|x|

eAx−B|x|.

The characteristic exponent is

Ψ(z) = izγ − 1
k

ln
(

1 +
σ2k

2
z2 − iθkz

)
.
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Examples: generalized tempered stable process (KoBoL,
CGMY)

The density of the jump measure is

π(x) =
c

x1+α
e−λxI(x > 0) +

ĉ

|x|1+α̂
eλ̂xI(x < 0).

The characteristic exponent is

Ψ(u) = izγ + Γ(−α)λαc
[(

1− iz
λ

)α
− 1 +

iz
α

]
+ Γ(−α̂)λ̂α̂ĉ

[(
1 +

iz

λ̂

)α̂
− 1− iz

α̂

]
.
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Functionals of a Lévy process: one sided exit

supremum Xt and infimum Xt

first passage times τ+
a = inf{t ≥ 0 : Xt > a} and τ−b

overshoot Xτ+
a
− a and undershoot a−Xτ+

a −

last maximum/minimum before the first passage time: Xτ+
a − and

Xτ−b −

last time the maximum/minimum was achieved before the first
passage time: Gτ+

a − and Gτ−b −
, where

Gt = sup{s < t : Xs = Xs}
Gt = sup{s < t : Xs = Xs}
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Functionals of a Lévy process: one sided exit
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Functionals of a Lévy process: two sided exit

exit time from a finite interval [0, a]: τ+
a ∧ τ−0 and location of X

at this time
entrance time into a finite interval τ[0,a] = inf{t ≥ 0 : Xt ∈ (0, a)}
and location of X at this time
process reflected at supremum Yt = Xt −Xt

first passage time of the reflected process σa = inf{t ≥ 0 : Yt > a}
overshoot and undershoot of the reflected process at the first
passage: Yσa − a and a− Yσa−
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Applications: Math finance

Up-and-out barrier option

Ex
[
f(Xt)I(τ+

a > t)
]

Rebate barrier option

Ex
[
f(Xt)I(τ+

a > t)
]

+ Ex
[
g(Xτ+

a
)I(τ+

a < t)
]

Double barrier option

Ex
[
f(Xt)I(τ+

a ∧ τ−b > t)
]
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Applications: Actuarial Mathematics

Ruin probability (here τ = τ−0 )

Px(τ < t)

Expected discounted penalty function

Ex
[
e−qτw

(
−Xτ , Xτ−, Xτ−

)
I{τ<∞}

]
Finite time expected discounted penalty function

Ex
[
e−qτw

(
−Xτ , Xτ−, Xτ−

)
I{τ<t}

]
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Reducing the complexity

Many of these functionals are related to the distribution of the
extrema of the process.

First passage time VS supremum:

P(τ+
a < t) = P(Xt > a).

First passage time and overshoot VS supremum:

E
[
e
−qτ+

a −z(Xτ+a
−a)
]

=
E
[
e−z(Xe(q)−a)I(Xe(q) > a)

]
E
[
e−zXe(q)

] .

Here and everywhere else e(q) ∼ Exp(q) and independent of the
process X.
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Review of the Wiener-Hopf factorization

Define

φ+
q (z) = E

[
eizXe(q)

]
, φ−q (z) = E

[
eizXe(q)

]
.

Theorem

Random variables Xe(q) and Xe(q) −Xe(q) are independent.

Xe(q) −Xe(q)
d= Xe(q).

Random variable Xe(q) [Xe(q)] is infinitely divisible, positive
[negative] and has zero drift.

For z ∈ R we have
q

q + Ψ(z)
= φ+

q (z)φ−q (z).
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Review of the Wiener-Hopf factorization

Wiener-Hopf factors can be given as

φ+
q (z) = exp

 z

2πi

∫
R

ln
(

q

q + Ψ(u)

)
du

u(u− z)

 , z ∈ C+.

A.L. Lewis and E. Mordecki.
Wiener-Hopf factorization for Lévy processes having positive
jumps with rational transforms.
J. Appl. Probab., 45(1):118–134., 2008.
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Pricing up-and-out barrier option

First compute the price of an option with random maturity T = e(q):

E
[
f(Xe(q))I(Xe(q) < a)

]
= E

[
f(Xe(q) +Xe(q) −Xe(q))I(Xe(q) < a)

]
= E [f(S + I)I(S < a)]

=
∫

R−

P(I ∈ dy)

a∫
0

f(x+ y)P(S ∈ dx),

where S d= Xe(q) and I
d= Xe(q). The price with the deterministic

maturity can be found as an inverse Laplace transform in the
q-variable of the above expression.
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Examples

Classical Poisson risk model

The risk process is Xt = X0 + µt−
∑N(at)
i=1 ξi, where ξi ∼ Exp(ρ).

The Laplace exponent is defined as ψ(z) = ln E
[
ezX1

]
= −Ψ(−iz),

and by the Lévy-Khinchine formula we have

ψ(z) =
σ2z2

2
+ µz +

∫
R

(ezx − 1− zxh(x)) Π(dx).

In our case Π(dx) = I(x < 0)aρ exp(ρx)dx, therefore

ψ(z) = µz − az

ρ+ z
.

For q > 0 equation ψ(z) = q has two solutions −ζ and Φ, where
0 < ζ < ρ and Φ > 0 and

ζ =
a+ q − µρ−

√
(a+ q − µρ)2 + 4qµρ

2µ
.
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Examples

Classical Poisson risk model

We have a factorization

q

q − ψ(z)
=

1 + z
ρ

1 + z
ζ

× 1
1− z

Φ

Thus the positive/negative Wiener-Hopf factors are

φ+
q (−iz) = E

[
ezXe(q)

]
=

1
1− z

Φ

,

φ−q (−iz) = E
[
ezXe(q)

]
=

1 + z
ρ

1 + z
ζ

=
ζ

ρ
+
(

1− ζ

ρ

)
ζ

ζ + z
.

We have Xe(q) ∼ Exp(Φ) and

P(Xe(q) ∈ dx) =
ζ

ρ
δ0(dx) +

(
1− ζ

ρ

)
ζe−ζxdx.
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Examples

Classical Poisson risk model

Therefore

P(−Xe(q) > x) =
(

1− ζ

ρ

)
e−ζx

Using P(−Xe(q) > x) = Px(τ−0 < e(q)) and

Px(τ−0 < e(q)) = q

∞∫
0

e−qtPx(τ−0 < t)dt

we conclude that

Px(τ−0 < t) =
1

2πi

∫
c+iR

(
1− ζ(q)

ρ

)
e−ζ(q)x+qt dq

q

where

ζ =
a+ q − µρ−

√
(a+ q − µρ)2 + 4qµρ

2µ
.
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Examples

Kou model: double exponential jump diffusion process

X is a Lévy process with jumps defined by

π(x) = I{x>0}a1ρ1e
−ρ1x + I{x<0}â1ρ̂1e

ρ̂1x.

Then the Laplace exponent is

ψ(z) =
σ2

2
z2 + µz +

a1z

ρ1 − z
− â1z

ρ̂1 + z
.

Thus equation ψ(z) = q is a fourth degree polynomial equation, and we
have explicit solutions and exact WH factorization.
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Examples

Hyper-exponential jumps

The jump measure is a “mixture” of exponential distributions:

π(x) = I{x>0}

N∑
i=1

aiρie
−ρix + I{x<0}

N̂∑
i=1

âiρ̂ie
ρ̂ix,

where all the coefficients are positive.
Consider the Laplace exponent

ψ(z) =
σ2

2
z2 + µz + z

N∑
i=1

ai
ρi − z

− z
N̂∑
i=1

âi
ρ̂i + z

.
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Examples

Hyper-exponential jumps

Assume σ > 0. Then equation ψ(z) = q has
N + 1 positive solutions ζi,
N̂ + 1 negative solutions −ζ̂i.
These solutions interlace with the poles of ψ(z):

...− ρ2 < −ζ2 < −ρ1 < −ζ1 < 0 < ζ̂1 < ρ̂1 < ζ̂2 < ρ̂2 < ...
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Examples

Example

Solving ψ(z) = q for N = 2 and N̂ = 1:

ψ(z) =
σ2

2
z2 + µz + z

[
a1

ρ1 − z
+

a2

ρ2 − z

]
− â1z

ρ̂1 + z
.
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Examples

Hyper-exponential jumps

Define functions

f+(z) =
1

1 + z
ζ1

N∏
i=1

1 + z
ρi

1 + z
ζi+1

, f−(z) =
1

1 + z
ζ̂1

N̂∏
i=1

1 + z
ρ̂i

1 + z
ζ̂i+1

.

Then f+(−z)f−(z) = q/(q − ψ(z)). Partial fractions decomposition
gives us

f+(z) = E
[
e−zXe(q)

]
=
N+1∑
i=1

ci
ζi

z + ζi
.

Thus the distribution of Xe(q) is a mixture of exponentials

d
dx

P(Xe(q) ≤ x) =
N+1∑
i=1

ciζie
−ζix,

where ci > 0 and
∑
ci = 1.
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Examples

Completely monotone jumps

Definition

A function f(x) is called completely monotone if (−1)nf (n)(x) > 0 for
all n = 0, 1, 2, . . . .

Theorem
The jump density of a process X is completely monotone if and only if
Xe(q) and Xe(q) are mixtures of exponentials.

L.C.G. Rogers.
Wiener-Hopf factorization of diffusions and Lévy processes.
Proc. London Math. Soc., 47(3):177–191, 1983.
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Examples

Distribution of Xe(q)

Theorem
Distribution of Xe(q) is a mixture of exponentials:

d
dx

P(Xe(q) ≤ x) = I(x > 0)
N∑
i=1

biζie
−ζix + I(x < 0)

N̂∑
i=1

b̂iζ̂ie
ζ̂ix

Proof.
Again, use the partial fraction decomposition and the interlacing
property:

E
[
ezXe(q)

]
=

q

q − ψ(z)
=

N∑
i=1

biζi
ζi − z

+
N̂∑
i=1

b̂iζ̂i

ζ̂i + z

ut
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Meromorphic Lévy processes

Assumption

Series
∑
n≥1 anρ

−2
n and

∑
n≥1 ânρ̂

−2
n converge.

Next we define the function π(x) as

π(x) = I(x > 0)
∑
n≥1

anρne
−ρnx + I(x < 0)

∑
n≥1

ânρ̂ne
ρ̂nx.

Assumption 1 implies that
∫

R x
2π(x)dx <∞.
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Meromorphic Lévy processes: solutions to ψ(z) = q

The Laplace exponent ψ(z) is a meromorphic function having a
partial fraction decomposition

ψ(z) =
1
2
σ2z2 + µz + z2

∑
n≥1

an
ρn(ρn − z)

+ z2
∑
n≥1

ân
ρ̂n(ρ̂n + z)

.

Proposition

Assume that q > 0. Equation ψ(z) = q has solutions {ζn,−ζ̂n}n≥1,
where {ζn}n≥1 and {ζ̂n}n≥1 are sequences of positive numbers which
satisfy the following interlacing property

0 < ζ1 < ρ1 < ζ2 < ρ2 < . . . (1)

0 < ζ̂1 < ρ̂1 < ζ̂2 < ρ̂2 < . . .
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Meromorphic Lévy processes: W-H factors

Theorem

Assume that q > 0. Then for Re(z) > 0

E
[
e−zXe(q)

]
=
∏
n≥1

1 + z
ρn

1 + z
ζn

.

The distribution of Xe(q) can be identified as an infinite mixture of
exponential distributions

P(Xe(q) = 0) = c0,
d

dx
P(Xe(q) ≤ x) =

∑
n≥1

cnζne
−ζnx, x > 0,

where cn ≥ 0, satisfy
∑
n≥0 cn = 1, and can be computed as

c0 = lim
n→+∞

n∏
k=1

ζk
ρk
, cn =

(
1− ζn

ρn

) ∏
k≥1
k 6=n

1− ζn
ρk

1− ζn
ζk

.
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Examples

Definition of the β-family

Definition
We define the β-family of Lévy processes by the generating triple
(µ, σ, π), where µ ∈ R, σ ≥ 0 and the density of the Lévy measure is

π(x) = c1
e−α1β1x

(1− e−β1x)λ1
I{x>0} + c2

eα2β2x

(1− eβ2x)λ2
I{x<0}

and parameters satisfy αi > 0, βi > 0, ci ≥ 0 and λi ∈ (0, 3).
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Examples

Lévy processes similar to the β-family

The generalized tempered stable family

π(x) = c+
e−α+x

xλ+
I{x>0} + c−

eα−x

|x|λ−
I{x<0}.

can be obtained as the limit as β → 0+ if we let

c1 = c+β
λ+ , c2 = c−β

λ− , α1 = α+β
−1, α2 = α−β

−1, β1 = β2 = β

Particular cases:
λ1 = λ2 −→ tempered stable, or KoBoL processes
c1 = c2, λ1 = λ2 and β1 = β2 −→ CGMY processes
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Examples

Computing the characteristic exponent

Theorem

If λi ∈ (0, 3) \ {1, 2} then

Ψ(z) =
σ2z2

2
+ iρz + γ

− c1
β1

B
(
α1 −

iz
β1

; 1− λ1

)
− c2
β2

B
(
α2 +

iz
β2

; 1− λ2

)
.

Here B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the beta function.
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Examples

Definition of the θ-family: χ = 3/2

Definition
Define the Lévy measure

π(x) = I{x>0}2c1β1

∑
n≥1

n2e−(α1+β1n
2)x + I{x<0}2c2β2

∑
n≥1

n2e(α2+β2n
2)x

Then π(x) ∼ c|x|− 3
2 as x→ 0 and we have a process with jumps of

infinite activity/bounded variation.

The characteristic exponent can be computed as follows

Ψ(z) =
1
2
σ2z2 − iρz + c1π

√
(α1 − iz)β−1

1 coth
(
π

√
(α1 − iz)β−1

1

)
+ c2π

√
(α2 + iz)β−1

2 coth
(
π

√
(α2 + iz)β−1

2

)
− γ.
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Notation: partial fraction decomposition

Define the coefficients an(ρ, ζ) and bn(ζ, ρ) as the coefficients in the
partial fraction decomposition

∏
n≥1

1 + z
ρn

1 + z
ζn

= a0(ρ, ζ) +
∑
n≥1

an(ρ, ζ)
ζn

ζn + z
,

∏
n≥1

1 + z
ζn

1 + z
ρn

= 1 + zb0(ζ, ρ) +
∑
n≥1

bn(ζ, ρ)
[
1− ρn

ρn + z

]
.
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Vector/matrix notation

Everything will depend on the coefficients {an(ρ, ζ), an(ρ̂, ζ̂)}n≥0 and
{bn(ζ, ρ),bn(ζ̂, ρ̂)}n≥0. We define for convenience a column vector

ā(ρ, ζ) = [a0(ρ, ζ), a1(ρ, ζ), a2(ρ, ζ), ...]T

and similarly for a(ρ̂, ζ̂), b(ζ, ρ) and b(ζ̂, ρ̂). Next, given a sequence of
positive numbers ζ = {ζn}n≥1, we define the column vector v̄(ζ, x) as
a vector of distributions

v̄(ζ, x) =
[
δ0(x), ζ1e−ζ1x, ζ2e−ζ2x, . . .

]T
,

where δ0(x) is the Dirac delta function at x = 0.

Alexey Kuznetsov 31/50



Introduction Wiener-Hopf Meromorphic One-sided Two-sided Numerics Penalty function

Distribution of extrema

Corollary

(i) For x ≥ 0

P(Xe(q) ∈ dx) = ā(ρ, ζ)T × v̄(ζ, x)dx

P(−Xe(q) ∈ dx) = ā(ρ̂, ζ̂)T × v̄(ζ̂, x)dx.

(ii) a0(ρ, ζ) (equiv. a0(ρ̂, ζ̂)) is nonzero if and only if 0 is irregular
for (0,∞) (equiv. (−∞, 0)).

(iii) b0(ζ, ρ) (equiv. b0(ζ̂, ρ̂)) is nonzero if and only if the process Xt

creeps upwards. (equiv. downwards)
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Distribution of extrema: notation

Expression in vector/matrix form

P(Xe(q) ∈ dx) = ā(ρ, ζ)T × v̄(ζ, x)dx

is equivalent to

P(Xe(q) = 0) = a0(ρ, ζ)

and

d
dx

P(Xe(q) < x) =
∑
n≥1

an(ρ, ζ)ζne−ζnx
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Joint distribution of the fpt and the overshoot

Define τ+
a = inf{t > 0 : Xt > a}.

Theorem

Define a matrix A = {ai,j}i,j≥0 as

ai,j =


0 if i = 0, j ≥ 0
ai(ρ, ζ)b0(ζ, ρ) if i ≥ 1, j = 0
ai(ρ, ζ)bj(ζ, ρ)

ρj − ζi
if i ≥ 1, j ≥ 1

Then for c > 0 and y ≥ 0 we have

E
[
e−qτ

+
c I
(
Xτ+

c
− c ∈ dy

)]
= v̄(ζ, c)T ×A× v̄(ρ, y)dy.
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Two-sided exit problem

Theorem

Let a > 0 and define a matrix B = B(ρ̂, ζ, a) = {bi,j}i,j≥0 with

bi,j =


ζje
−aζj if i = 0, j ≥ 1

0 if i ≥ 0, j = 0
ρ̂iζj
ρ̂i + ζj

e−aζj if i ≥ 1, j ≥ 1

and similarly B̂ = B(ρ, ζ̂, a).There exist matrices C1, C2 and Ĉ1, Ĉ2

such that for x ∈ (0, a) we have

Ex
[
e−qτ

+
a I
(
Xτ+

a
∈ dy ; τ+

a < τ−0

)]
=
[
v̄(ζ, a− x)T ×C1 + v̄(ζ̂, x)T ×C2

]
× v̄(ρ, y − a)dy
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Two-sided exit problem

These matrices satisfy the following system of linear equations{
C1 = A− Ĉ2BA
Ĉ2 = −C1B̂Â

{
Ĉ1 = Â−C2B̂Â
C2 = −Ĉ1BA

This system of linear equations can be solved iteratively with
exponential convergence.
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Parameters

We use a process from the β-family with parameters

(σ, µ, α1, β1, λ1, c1, α2, β2, λ2, c2) = (σ, µ, 1, 1.5, 1.5, 1, 1, 1.5, 1.5, 1)

Here µ = E[X1] and σ is the Gaussian coefficient, the other
parameters define the density of a Lévy measure, which has
exponentially decaying tails and O(|x|−3/2) singularity at x = 0, thus
this process has jumps of infinite activity but finite varation. We
define the following four parameter sets

Set 1: σ = 0.5, µ = 1 Set 2: σ = 0.5, µ = −1
Set 3: σ = 0, µ = 1 Set 4: σ = 0, µ = −1
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Double-sided exit problem

(i) density of the overshoot if the exit happens at the upper
boundary

f1(x, y) =
d
dy

Ex
[
e−qτ

+
1 I
(
Xτ+

1
≤ y ; τ+

1 < τ−0

)]
(ii) probability of exiting from the interval [0, 1] at the upper

boundary

f2(x) = Ex
[
e−qτ

+
1 I
(
τ+
1 < τ−0

)]
(iii) probability of exiting the interval [0, 1] by creeping across the

upper boundary

f3(x) = Ex
[
e−qτ

+
1 I
(
Xτ+

1
= 1 ; τ+

1 < τ−0

)]
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Details of the alrgorithm

Truncate coefficients ai(ρ, ζ) and ai(ρ̂, ζ̂) at i = 200; coefficients
bj(ζ, ρ) and bj(ζ̂, ρ̂) at j = 100.

In order to compute coefficients ai(ρ, ζ), ai(ρ̂, ζ̂), bj(ζ, ρ) and
bj(ζ̂, ρ̂) we truncate the corresponding infinite products at
k = 400
All the computations depend on precomputing {ζn, ζ̂n} for
n = 1, 2, .., 400 (solving ψ(z) = q).
The code was written in Fortran and the computations were
performed on a standard laptop (Intel Core 2 Duo 2.5 GHz
processor and 3 GB of RAM).
Time to produce the three graphs for each parameter set: 0.15
sec.
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Double sided exit: σ > 0 and positive drift
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Figure: Unbounded variation case (σ = 0.5): computing the density of the
overshoot f1(x, y) (x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and
probability of creeping f3(x) for parameter Set 1, positive drift µ = 1
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Double sided exit: σ > 0 and negative drift
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Figure: Unbounded variation case (σ = 0.5): computing the density of the
overshoot f1(x, y) (x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and
probability of creeping f3(x) for parameter Set 2, negative drift µ = −1.
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Double sided exit: bounded variation and positive drift
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Figure: Bounded variation case (σ = 0): computing the density of the
overshoot f1(x, y) (x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and
probability of creeping f3(x) for parameter Set 3, positive drift µ = 1.
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Double sided exit: bounded variation and negative drift
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Figure: Bounded variation case (σ = 0): computing the density of the
overshoot f1(x, y) (x ∈ (0, 1), y ∈ (0, 0.5)), probability of first exit f2(x) and
probability of creeping f3(x) for parameter Set 4, positive drift µ = −1.
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Definitions

We consider a very general setup that generalizes the classical Poisson
risk model:

Xt := x+ Yt , t > 0 ,

where x > 0 is the initial surplus and Y is a spectrally negative Lévy
process.

Classical Poisson risk model:

Yt = ct−
N(λt)∑
i=1

ξi.
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Definitions

Denote τ = τ−0 = inf(t > 0 : Xt < 0).

Definition
The Generalized Expected Discounted Penalty Function φ associated
with the risk process X is given by

φ(x; q) := Ex
[
e−qτw

(
−Xτ , Xτ−, Xτ−

)
I{τ<∞}

]
,

where q ≥ 0 and w is a bounded measurable function on R3
+ satisfying

w(0, 0, 0) = w0 > 0.
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Gerber-Shiu measure

For q ≥ 0 equation ψ(z) = q has one positive solution Φ and negative
solutions −ζn.

For q ≥ 0, x > 0, y > 0, z > 0 and u ∈ (0, z ∧ x)

Ex
[
e−qτ I(−Xτ ∈ dy ; Xτ− ∈ dz ; Xτ− ∈ du ; τ <∞)

]
=

Φ
q

∑
m,n≥1

cnζname
−ζnx−ρmy−(Φ+ρm)z+(Φ+ζn)u

dydzdu .
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Functionals of a Lévy process: one sided exit
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Numerical examples

Figure: Computing the VaR of the deficit at ruin −Xτ and the distribution
of the last minimum before ruin f(x, u) = Ex[e−qτ I(Xτ− ≤ u)].
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