# Using 3-dimensional Brownian bridges for valuation of barrier options 

## Constantinos Kardaras <br> Boston University

Fields Institute Quantitative Finance Seminar Series

November 24th, 2010

## Outline

Valuation and hedging of barrier options

A Monte-Carlo method based on 3-d Brownian bridges

Short maturities

Ramifications

Density of first-passage times for diffusions

## Outline

# Valuation and hedging of barrier options 

## A Monte-Carlo method based on 3-d Brownian bridges

## Short maturities

## Ramifications

Density of first-passage times for diffusions

## The model

Asset price model: $\left(Y_{t}\right)_{t \in[0, T]}$, one-dimensional diffusion.

$$
\mathrm{d} Y_{t}=b\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} W_{t}, t \in[0, T], Y_{0}=y
$$

- Dynamics under the pricing probability $\mathbb{P}_{y}^{(b, \sigma)}$.
- If $Y$ is traded, $b(y)=r y$.


## The model

Asset price model: $\left(Y_{t}\right)_{t \in[0, T]}$, one-dimensional diffusion.

$$
\mathrm{d} Y_{t}=b\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} W_{t}, t \in[0, T], \quad Y_{0}=y
$$

- Dynamics under the pricing probability $\mathbb{P}_{y}^{(b, \sigma)}$.
- If $Y$ is traded, $b(y)=r y$.

Claim payoff: $P_{T}=G\left(T,\left(Y_{t}\right)_{t \in[0, T]}\right)$, paid at maturity $T$.

- Price of claim at time $t=0$ is $P_{0}:=\mathbb{E}_{y}^{(b, \sigma)}\left[e^{-r T} P_{T}\right]$.


## Barrier Options

Plain vanilla calls and puts. Most basic examples of claims:

- Call: $P_{T}=\left(Y_{T}-K\right)_{+}$. Put: $P_{T}=\left(K-Y_{T}\right)_{+}$.


## Barrier Options

Plain vanilla calls and puts. Most basic examples of claims:

- Call: $P_{T}=\left(Y_{T}-K\right)_{+}$. Put: $P_{T}=\left(K-Y_{T}\right)_{+}$.

Barrier options. They become "in" or "out" depending on whether the asset price crosses a certain level $\ell$. Define $m_{T}:=\min _{t \in[0, T]} Y_{t}$ and $M_{T}:=\max _{t \in[0, T]} Y_{t}$. Then, for example:

- Down-and-out put: $P_{T}=\left(K-Y_{T}\right)_{+} \mathbb{I}_{\left\{m_{T}>\ell\right\}}, \quad \ell<y \wedge K$.
- Up-and-in put: $P_{T}=\left(K-Y_{T}\right)_{+} \mathbb{I}_{\left\{M_{T}>\ell\right\}}, K<\ell$.


## Barrier Options

Plain vanilla calls and puts. Most basic examples of claims:

- Call: $P_{T}=\left(Y_{T}-K\right)_{+}$. Put: $P_{T}=\left(K-Y_{T}\right)_{+}$.

Barrier options. They become "in" or "out" depending on whether the asset price crosses a certain level $\ell$. Define $m_{T}:=\min _{t \in[0, T]} Y_{t}$ and $M_{T}:=\max _{t \in[0, T]} Y_{t}$. Then, for example:

- Down-and-out put: $P_{T}=\left(K-Y_{T}\right)_{+} \mathbb{I}_{\left\{m_{T}>\ell\right\}}, \quad \ell<y \wedge K$.
- Up-and-in put: $P_{T}=\left(K-Y_{T}\right)_{+} \mathbb{I}_{\left\{M_{T}>\ell\right\}}, K<\ell$.

General "down" barrier option's payoff: $g_{i}\left(Y_{T}\right) \mathbb{I}_{\left\{m_{T}>\ell\right\}}+g_{o}\left(Y_{T}\right) \mathbb{I}_{\left\{m_{T} \leq \ell\right\}}$

## Barrier Options

Plain vanilla calls and puts. Most basic examples of claims:

- Call: $P_{T}=\left(Y_{T}-K\right)_{+}$. Put: $P_{T}=\left(K-Y_{T}\right)_{+}$.

Barrier options. They become "in" or "out" depending on whether the asset price crosses a certain level $\ell$. Define $m_{T}:=\min _{t \in[0, T]} Y_{t}$ and $M_{T}:=\max _{t \in[0, T]} Y_{t}$. Then, for example:

- Down-and-out put: $P_{T}=\left(K-Y_{T}\right)_{+} \mathbb{I}_{\left\{m_{T}>\ell\right\}}, \quad \ell<y \wedge K$.
- Up-and-in put: $P_{T}=\left(K-Y_{T}\right)_{+} \mathbb{I}_{\left\{M_{T}>\ell\right\}}, K<\ell$.

General "down" barrier option's payoff:
$g_{i}\left(Y_{T}\right) \mathbb{I}_{\left\{m_{T}>\ell\right\}}+g_{o}\left(Y_{T}\right) \mathbb{I}_{\left\{m_{T} \leq \ell\right\}}=\left(g_{i}-g_{o}\right)\left(Y_{T}\right) \mathbb{I}_{\left\{m_{T}>\ell\right\}}+g_{o}\left(Y_{T}\right)$.

- The second is just plain vanilla. We only consider then down-and-out options: $P_{T}=g\left(Y_{T}\right) \mathbb{I}_{\left\{m_{T}>\ell\right\}}$.


## Prices and Hedges for Barrier Options

Pricing function for barrier options: In diffusion models, there exists a deterministic function $q: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ such that:

- $P_{t}=q\left(T-t, Y_{t}\right)$.
- $\Delta_{t}=q_{y}^{\prime}\left(T-t, Y_{t}\right)$ : hedging strategy in complete models.

Pricing and hedging becomes a problem of estimation of $q$ and $q_{y}^{\prime}$.

## Prices and Hedges for Barrier Options

Pricing function for barrier options: In diffusion models, there exists a deterministic function $q: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}$ such that:

- $P_{t}=q\left(T-t, Y_{t}\right)$.
- $\Delta_{t}=q_{y}^{\prime}\left(T-t, Y_{t}\right)$ : hedging strategy in complete models.

Pricing and hedging becomes a problem of estimation of $q$ and $q_{y}^{\prime}$.

## Remarks:

- Even in incomplete markets, $q_{y}^{\prime}$ is an interesting quantity.
- Other derivatives can be interesting; for example:
- Gamma: $q_{y y}^{\prime \prime}$.
- Rho: derivative with respect to interest rate.


## Finite differences

PDE approach: Solve numerically for $(T, y) \in(0, \infty) \times(\ell, \infty)$ :

$$
q_{T}^{\prime}(T, y)+b(y) q_{y}^{\prime}(T, y)+\frac{1}{2} \sigma^{2}(y) q_{y y}^{\prime \prime}(T, y)=r q(T, y)
$$

Boundary conditions: $q(0, y)=g(y), q(T, \ell)=0$.

## Finite differences

PDE approach: Solve numerically for $(T, y) \in(0, \infty) \times(\ell, \infty)$ :

$$
q_{T}^{\prime}(T, y)+b(y) q_{y}^{\prime}(T, y)+\frac{1}{2} \sigma^{2}(y) q_{y y}^{\prime \prime}(T, y)=r q(T, y)
$$

Boundary conditions: $q(0, y)=g(y), q(T, \ell)=0$.
Numerical issues: Near $(0, \ell), q$ and its derivatives are badly-behaved. This affects negatively numerical approximations. In fact, the following limits exist and depend on $w>0$ :

- $\lim _{T \downarrow 0} q(T, \ell+w \sqrt{T})$;
- $\lim _{T \downarrow 0} \sqrt{T} q_{y}^{\prime}(T, \ell+w \sqrt{T})$.


## Finite differences

PDE approach: Solve numerically for $(T, y) \in(0, \infty) \times(\ell, \infty)$ :

$$
q_{T}^{\prime}(T, y)+b(y) q_{y}^{\prime}(T, y)+\frac{1}{2} \sigma^{2}(y) q_{y y}^{\prime \prime}(T, y)=r q(T, y)
$$

Boundary conditions: $q(0, y)=g(y), q(T, \ell)=0$.
Numerical issues: Near $(0, \ell), q$ and its derivatives are badly-behaved. This affects negatively numerical approximations. In fact, the following limits exist and depend on $w>0$ :

- $\lim _{T \downarrow 0} q(T, \ell+w \sqrt{T})$;
- $\lim _{T \downarrow 0} \sqrt{T} q_{y}^{\prime}(T, \ell+w \sqrt{T})$.

Analytical issues: If we replace $g\left(Y_{T}\right)$ by $G\left(T,\left(Y_{t}\right)_{t \in[0, T]}\right)$, the PDE approach does not work.

## Monte Carlo approach to valuing barrier options

Monte-Carlo: Based on simulation. Use expected value representation for price. Use some differentiation method for delta.

## Monte Carlo approach to valuing barrier options

Monte-Carlo: Based on simulation. Use expected value representation for price. Use some differentiation method for delta.

Approximate simulation. Via discretization; for example, Euler:

$$
\hat{Y}_{t_{i}}=\hat{Y}_{t_{i-1}}+b\left(\hat{Y}_{t_{i-1}}\right) h+\sigma\left(\hat{Y}_{t_{i-1}}\right) \sqrt{h} Z_{i}
$$

where $h=t_{i}-t_{i-1}$ and $Z_{1}, \ldots, Z_{n}$ are i.i.d. standard normals.
Approximating the payoff. Set $\hat{m}_{T}:=\min _{i \in\{0, \ldots, n\}} \hat{Y}_{t_{i}}$ and $\hat{P}_{T}:=g\left(\hat{Y}_{T}\right) \mathbb{I}_{\left\{\hat{m}_{T}>\ell\right\}}$.

## Monte Carlo approach to valuing barrier options

Monte-Carlo: Based on simulation. Use expected value representation for price. Use some differentiation method for delta.

Approximate simulation. Via discretization; for example, Euler:

$$
\hat{Y}_{t_{i}}=\hat{Y}_{t_{i-1}}+b\left(\hat{Y}_{t_{i-1}}\right) h+\sigma\left(\hat{Y}_{t_{i-1}}\right) \sqrt{h} Z_{i}
$$

where $h=t_{i}-t_{i-1}$ and $Z_{1}, \ldots, Z_{n}$ are i.i.d. standard normals.
Approximating the payoff. Set $\hat{m}_{T}:=\min _{i \in\{0, \ldots, n\}} \hat{Y}_{t_{i}}$ and $\hat{P}_{T}:=g\left(\hat{Y}_{T}\right) \mathbb{I}_{\left\{\hat{m}_{T}>\ell\right\}}$. There are two sources of bias:

- Numerically approximating the solution of $Y: \mathcal{O}(h)$.
- Discrete minimum as continuous-time proxy: $\mathcal{O}(\sqrt{h})$.


## Monte Carlo approach to valuing barrier options

Monte-Carlo: Based on simulation. Use expected value representation for price. Use some differentiation method for delta.

Approximate simulation. Via discretization; for example, Euler:

$$
\hat{Y}_{t_{i}}=\hat{Y}_{t_{i-1}}+b\left(\hat{Y}_{t_{i-1}}\right) h+\sigma\left(\hat{Y}_{t_{i-1}}\right) \sqrt{h} Z_{i}
$$

where $h=t_{i}-t_{i-1}$ and $Z_{1}, \ldots, Z_{n}$ are i.i.d. standard normals.
Approximating the payoff. Set $\hat{m}_{T}:=\min _{i \in\{0, \ldots, n\}} \hat{Y}_{t_{i}}$ and $\hat{P}_{T}:=g\left(\hat{Y}_{T}\right) \mathbb{I}_{\left\{\hat{m}_{T}>\ell\right\}}$. There are two sources of bias:

- Numerically approximating the solution of $Y: \mathcal{O}(h)$.
- Discrete minimum as continuous-time proxy: $\mathcal{O}(\sqrt{h})$.

Partial remedy: In Euler scheme, we regard $\left(\hat{Y}_{t}\right)_{t \in\left[t_{i-1}, t_{i}\right]}$ given $\hat{Y}_{t_{i-1}}$ as Brownian motion, so we can use better estimators for $\hat{m}_{T}$.

## Monte Carlo approach to hedging barrier options I

There are several ways of trying to estimate $q_{y}^{\prime}$ for barrier options.

1. Finite differences: For "small" $\epsilon$, use the estimator:

$$
\frac{\hat{q}_{N}(T, y+\epsilon)-\hat{q}_{N}(T, y-\epsilon)}{2 \epsilon} .
$$

- Bias is $\mathcal{O}\left(\epsilon^{2}\right)$.
- In best-case scenario, variance is $\mathcal{O}(1 / \epsilon)$.


## Monte Carlo approach to hedging barrier options I

There are several ways of trying to estimate $q_{y}^{\prime}$ for barrier options.

1. Finite differences: For "small" $\epsilon$, use the estimator:

$$
\frac{\hat{q}_{N}(T, y+\epsilon)-\hat{q}_{N}(T, y-\epsilon)}{2 \epsilon}
$$

- Bias is $\mathcal{O}\left(\epsilon^{2}\right)$.
- In best-case scenario, variance is $\mathcal{O}(1 / \epsilon)$.

2. Pathwise differentiation: Write $Y^{y}$ for the (strong) solution of the SDE with $Y_{0}=y$. Can we then write:

$$
\frac{\partial}{\partial y} \mathbb{E}\left[g\left(Y_{T}^{y}\right) \mathbb{I}_{\left\{m_{T}^{y}>\ell\right\}}\right] \stackrel{?}{=} \mathbb{E}\left[\frac{\partial}{\partial y} g\left(Y_{T}^{y}\right) \mathbb{I}_{\left\{m_{T}^{y}>\ell\right\}}\right]
$$

## Monte Carlo approach to hedging barrier options I

There are several ways of trying to estimate $q_{y}^{\prime}$ for barrier options.

1. Finite differences: For "small" $\epsilon$, use the estimator:

$$
\frac{\hat{q}_{N}(T, y+\epsilon)-\hat{q}_{N}(T, y-\epsilon)}{2 \epsilon}
$$

- Bias is $\mathcal{O}\left(\epsilon^{2}\right)$.
- In best-case scenario, variance is $\mathcal{O}(1 / \epsilon)$.

2. Pathwise differentiation: Write $Y^{y}$ for the (strong) solution of the SDE with $Y_{0}=y$. Can we then write:

$$
\frac{\partial}{\partial y} \mathbb{E}\left[g\left(Y_{T}^{y}\right) \mathbb{I}_{\left\{m_{T}^{y}>\ell\right\}}\right] \stackrel{?}{=} \mathbb{E}\left[\frac{\partial}{\partial y} g\left(Y_{T}^{y}\right) \mathbb{I}_{\left\{m_{T}^{y}>\ell\right\}}\right]
$$

NO! The indicator is not differentiable (not even continuous).

## Monte Carlo approach to hedging barrier options II

3. Likelihood ratio differentiation: Differentiate the (approximate) density $\varphi$ of $\left(\hat{Y}_{t_{1}}, \ldots, \hat{Y}_{t_{n}}\right)$ with respect to $y$ :

$$
\begin{aligned}
q_{y}^{\prime}(T, y) & \approx \int_{\mathbb{R}^{n}} g\left(y_{n}\right) \frac{\partial}{\partial y} \varphi\left(y_{1}, \ldots, y_{n} ; y\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{n} \\
& =\mathbb{E}_{y}\left[g\left(\hat{Y}_{T}\right) \frac{\partial}{\partial y} \log \varphi\left(\hat{Y}_{t_{1}}, \ldots, \hat{Y}_{t_{n}} ; y\right)\right]
\end{aligned}
$$

- Estimator is biased - we are using approximate likelihood.
- The variance of the delta estimator is $\mathcal{O}\left(1 / t_{1}\right)$.


## Monte Carlo approach to hedging barrier options II

3. Likelihood ratio differentiation: Differentiate the (approximate) density $\varphi$ of $\left(\hat{Y}_{t_{1}}, \ldots, \hat{Y}_{t_{n}}\right)$ with respect to $y$ :

$$
\begin{aligned}
q_{y}^{\prime}(T, y) & \approx \int_{\mathbb{R}^{n}} g\left(y_{n}\right) \frac{\partial}{\partial y} \varphi\left(y_{1}, \ldots, y_{n} ; y\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{n} \\
& =\mathbb{E}_{y}\left[g\left(\hat{Y}_{T}\right) \frac{\partial}{\partial y} \log \varphi\left(\hat{Y}_{t_{1}}, \ldots, \hat{Y}_{t_{n}} ; y\right)\right]
\end{aligned}
$$

- Estimator is biased - we are using approximate likelihood.
- The variance of the delta estimator is $\mathcal{O}\left(1 / t_{1}\right)$.

4. Malliavin calculus: Efforts have been made, but estimators are complicated and not very efficient.

## Aim of the present work

1. Find (as) unbiased (as possible) estimators for price and delta. We do this by transforming the problem:

- First we make $\sigma=1$.
- Next we make $b=0$. (Now we have a Brownian motion.)
- Then we pass to a 3-d Bessel process and eliminate $\mathbb{I}_{\left\{m_{T}>\ell\right\}}$.
- Lastly, we express this is terms of 3-d Brownian bridges.


## Aim of the present work

1. Find (as) unbiased (as possible) estimators for price and delta. We do this by transforming the problem:

- First we make $\sigma=1$.
- Next we make $b=0$. (Now we have a Brownian motion.)
- Then we pass to a 3-d Bessel process and eliminate $\mathbb{I}_{\left\{m_{T}>\ell\right\}}$.
- Lastly, we express this is terms of 3-d Brownian bridges.

2. Enhance price and hedge estimators for small maturities.

We want the variance to be very small when $T$ is small.

## Aim of the present work

1. Find (as) unbiased (as possible) estimators for price and delta. We do this by transforming the problem:

- First we make $\sigma=1$.
- Next we make $b=0$. (Now we have a Brownian motion.)
- Then we pass to a 3-d Bessel process and eliminate $\mathbb{I}_{\left\{m_{T}>\ell\right\}}$.
- Lastly, we express this is terms of 3-d Brownian bridges.

2. Enhance price and hedge estimators for small maturities. We want the variance to be very small when $T$ is small.
3. Use previous methods for first-passage-time density estimation. The wish is to do better then the usual kernel estimation of densities via CDF estimation.

## Outline

## Valuation and hedging of barrier options

A Monte-Carlo method based on 3-d Brownian bridges

## Short maturities

## Ramifications

Density of first-passage times for diffusions

## Constant diffusion transformation

Original diffusion: $\mathrm{d} Y_{t}=b\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} W_{t}, Y_{0}=y$.

## Constant diffusion transformation

Original diffusion: $\mathrm{d} Y_{t}=b\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} W_{t}, Y_{0}=y$.
Transformed diffusion: $\mathrm{d} X_{t}=a\left(X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, X_{0}=x$, where

- $X:=H(Y), x:=H(y)$, with $H(y):=\int_{\ell}^{y}(1 / \sigma(u)) \mathrm{d} u$.
- $a:=\left(b / \sigma-\sigma^{\prime} / 2\right) \circ H^{-1}$


## Constant diffusion transformation

Original diffusion: $\mathrm{d} Y_{t}=b\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} W_{t}, Y_{0}=y$.
Transformed diffusion: $\mathrm{d} X_{t}=a\left(X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}, X_{0}=x$, where

- $X:=H(Y), x:=H(y)$, with $H(y):=\int_{\ell}^{y}(1 / \sigma(u)) \mathrm{d} u$.
- $a:=\left(b / \sigma-\sigma^{\prime} / 2\right) \circ H^{-1}$

No loss of generality: For $f:=g \circ H^{-1}$, define

$$
p(T, x):=\mathbb{E}_{x}^{(a, 1)}\left[f\left(X_{T}\right) \mathbb{I}_{\left\{m_{T}>0\right\}}\right] .
$$

- $q(T, y)=p(T, H(y))$
- $q_{y}^{\prime}(T, y)=p_{x}^{\prime}(T, H(y)) / \sigma(y)$

We focus on $p$ from now on.

## Eliminating the drift

Girsanov's theorem: $p(T, y)=\mathbb{E}_{x}^{(0,1)}\left[Z_{T} f\left(X_{T}\right) \mathbb{I}_{\left\{m_{T}>0\right\}}\right]$, where

$$
Z_{T}:=\exp \left(\int_{0}^{T} a\left(X_{s}\right) \mathrm{d} X_{s}-\frac{1}{2} \int_{0}^{T} a^{2}\left(X_{s}\right) \mathrm{d} s\right)
$$

## Eliminating the drift

Girsanov's theorem: $p(T, y)=\mathbb{E}_{x}^{(0,1)}\left[Z_{T} f\left(X_{T}\right) \mathbb{I}_{\left\{m_{T}>0\right\}}\right]$, where

$$
Z_{T}:=\exp \left(\int_{0}^{T} a\left(X_{s}\right) \mathrm{d} X_{s}-\frac{1}{2} \int_{0}^{T} a^{2}\left(X_{s}\right) \mathrm{d} s\right)
$$

Stochastic to Lebesgue: Set $\gamma:=\left(a^{\prime}+a^{2}\right) / 2$. By Itô:

$$
\int_{0}^{T} a\left(X_{s}\right) \mathrm{d} X_{s}=\int_{X}^{X_{T}} a(v) \mathrm{d} v-\frac{1}{2} \int_{0}^{T} a^{\prime}\left(X_{s}\right) \mathrm{d} s
$$

Therefore, $\quad Z_{T}=\exp \left(\int_{x}^{X_{T}} a(v) \mathrm{d} v-\int_{0}^{T} \gamma\left(X_{s}\right) \mathrm{d} s\right)$.

## Eliminating the drift

Girsanov's theorem: $p(T, y)=\mathbb{E}_{x}^{(0,1)}\left[Z_{T} f\left(X_{T}\right) \mathbb{I}_{\left\{m_{T}>0\right\}}\right]$, where

$$
Z_{T}:=\exp \left(\int_{0}^{T} a\left(X_{s}\right) \mathrm{d} X_{s}-\frac{1}{2} \int_{0}^{T} a^{2}\left(X_{s}\right) \mathrm{d} s\right)
$$

Stochastic to Lebesgue: Set $\gamma:=\left(a^{\prime}+a^{2}\right) / 2$. By Itô:

$$
\int_{0}^{T} a\left(X_{s}\right) \mathrm{d} X_{s}=\int_{X}^{X_{T}} a(v) \mathrm{d} v-\frac{1}{2} \int_{0}^{T} a^{\prime}\left(X_{s}\right) \mathrm{d} s
$$

$$
\text { Therefore, } \quad Z_{T}=\exp \left(\int_{x}^{X_{T}} a(v) \mathrm{d} v-\int_{0}^{T} \gamma\left(X_{s}\right) \mathrm{d} s\right)
$$

Putting everything together: $p(T, x)$ is equal to

$$
\mathbb{E}_{x}^{(0,1)}\left[\exp \left(\int_{x}^{X_{T}} a(v) \mathrm{d} v-\int_{0}^{T} \gamma\left(X_{s}\right) \mathrm{d} s\right) f\left(X_{T}\right) \mathbb{I}_{\left\{m_{T}>0\right\}}\right]
$$

## Eliminating the indicator

From Brownian Motion (BM) to 3-d Bessel (BES ${ }^{3}$ ). With $\tau_{0}$ being the first passage time of $X$ to zero, define $\mathbb{P}_{x}^{B E S^{3}}$ via

$$
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{\mathrm{BES}^{3}}}{\mathrm{~d}_{X}^{(0,1)}}\right|_{\mathcal{F}_{T}}:=\frac{X_{\tau_{0} \wedge T}}{x}
$$

- Under $\mathbb{P}_{x}^{\mathrm{BES}}{ }^{3}, X$ is $\mathrm{BES}^{3}$ starting at $x$ (Girsanov's theorem).
$-\mathbb{P}_{x}^{\mathrm{BES}^{3}}\left[m_{T}>0\right]=1$.


## Eliminating the indicator

From Brownian Motion (BM) to 3-d Bessel (BES ${ }^{3}$ ). With $\tau_{0}$ being the first passage time of $X$ to zero, define $\mathbb{P}_{x}^{B E S^{3}}$ via

$$
\left.\frac{\mathrm{d}_{x}^{\mathrm{BES}^{3}}}{\mathrm{dP}_{x}^{(0,1)}}\right|_{\mathcal{F}_{T}}:=\frac{X_{\tau_{0} \wedge T}}{x}
$$

- Under $\mathbb{P}_{x}^{\mathrm{BES}}{ }^{3}, X$ is $\mathrm{BES}^{3}$ starting at $x$ (Girsanov's theorem).
- $\mathbb{P}_{x}^{\mathrm{BES}^{3}}\left[m_{T}>0\right]=1$.

New representation for price:

$$
p(T, x)=x \mathbb{E}_{x}^{\mathrm{BES}^{3}}\left[\exp \left(\int_{x}^{X_{T}} a(v) \mathrm{d} v-\int_{0}^{T} \gamma\left(X_{s}\right) \mathrm{d} s\right) \frac{f\left(X_{T}\right)}{X_{T}}\right]
$$

## Eliminating the indicator

From Brownian Motion (BM) to 3-d Bessel (BES ${ }^{3}$ ). With $\tau_{0}$ being the first passage time of $X$ to zero, define $\mathbb{P}_{x}^{\mathrm{BES}^{3}}$ via

$$
\left.\frac{\mathrm{d} \mathbb{P}_{x}^{\mathrm{BES}}{ }^{3}}{\mathrm{dP}_{x}^{(0,1)}}\right|_{\mathcal{F}_{T}}:=\frac{X_{\tau_{0} \wedge T}}{x}
$$

- Under $\mathbb{P}_{x}^{\mathrm{BES}^{3}}, X$ is $\mathrm{BES}^{3}$ starting at $x$ (Girsanov's theorem).
$-\mathbb{P}_{x}^{\mathrm{BES}^{3}}\left[m_{T}>0\right]=1$.
New representation for price:

$$
\begin{aligned}
p(T, x) & =x \mathbb{E}_{x}^{\mathrm{BES}^{3}}\left[\exp \left(\int_{x}^{X_{T}} a(v) \mathrm{d} v-\int_{0}^{T} \gamma\left(X_{s}\right) \mathrm{d} s\right) \frac{f\left(X_{T}\right)}{X_{T}}\right] \\
& =x A(x) \mathbb{E}_{x}^{\mathrm{BES}^{3}}\left[\exp \left(-\int_{0}^{T} \gamma\left(X_{s}\right) \mathrm{d} s\right) \frac{f_{A}\left(X_{T}\right)}{X_{T}}\right]
\end{aligned}
$$

where $A(x)=\exp \left(-\int_{0}^{x} a(v) \mathrm{d} v\right)$ and $f_{A}(x)=f(x) / A(x)$.

## Issues. . . to be taken care of

1. We can use the MC method already from the representation

$$
p(T, x)=x A(x) \mathbb{E}_{x}^{\mathrm{BES}^{3}}\left[\exp \left(-\int_{0}^{T} \gamma\left(X_{s}\right) \mathrm{d} s\right) \frac{f_{A}\left(X_{T}\right)}{X_{T}}\right]
$$

- $f_{A}(x)$ is sometimes zero for many values of $x$. Can we profit from such a situation? Possibly by simulating $X_{T}$ first?


## Issues. . . to be taken care of

1. We can use the MC method already from the representation

$$
p(T, x)=x A(x) \mathbb{E}_{x}^{\mathrm{BES}^{3}}\left[\exp \left(-\int_{0}^{T} \gamma\left(X_{s}\right) \mathrm{d} s\right) \frac{f_{A}\left(X_{T}\right)}{X_{T}}\right]
$$

- $f_{A}(x)$ is sometimes zero for many values of $x$. Can we profit from such a situation? Possibly by simulating $X_{T}$ first?

2. We can find an estimator of $p_{x}^{\prime}$ by writing
$p(T, x)=\mathbb{E}_{0}^{\mathrm{BM}^{3}}\left[x A(x) \exp \left(-\int_{0}^{T} \gamma\left(\left|x \mathrm{e}^{1}+W_{s}\right|\right) \mathrm{d} s\right) \frac{f_{A}\left(\left|x \mathrm{e}^{1}+W_{T}\right|\right)}{\left|x \mathrm{e}^{1}+W_{T}\right|}\right]$
and differentiating w.r.t. $x$ inside the expectation.

## Issues. . . to be taken care of

1. We can use the MC method already from the representation

$$
p(T, x)=x A(x) \mathbb{E}_{x}^{\mathrm{BES}^{3}}\left[\exp \left(-\int_{0}^{T} \gamma\left(X_{s}\right) \mathrm{d} s\right) \frac{f_{A}\left(X_{T}\right)}{X_{T}}\right]
$$

- $f_{A}(x)$ is sometimes zero for many values of $x$. Can we profit from such a situation? Possibly by simulating $X_{T}$ first?

2. We can find an estimator of $p_{x}^{\prime}$ by writing
$p(T, x)=\mathbb{E}_{0}^{\mathrm{BM}^{3}}\left[x A(x) \exp \left(-\int_{0}^{T} \gamma\left(\left|x \mathrm{e}^{1}+W_{s}\right|\right) \mathrm{d} s\right) \frac{f_{A}\left(\left|x \mathrm{e}^{1}+W_{T}\right|\right)}{\left|x \mathrm{e}^{1}+W_{T}\right|}\right]$
and differentiating w.r.t. $x$ inside the expectation.

- Could be that $f$ is not differentiable...
- ... but even if it is, this delta estimator has infinite variance.


## Steps for Monte-Carlo simulation

1. Simulation of $X_{T}$. With $\xi$ a 3-d standard normal,

$$
X_{T} \stackrel{d}{=} \sqrt{T}\left|z e_{1}+\xi\right|, \quad \text { where } z=x / \sqrt{T}
$$

## Steps for Monte-Carlo simulation

1. Simulation of $X_{T}$. With $\xi$ a 3-d standard normal,

$$
X_{T} \stackrel{d}{=} \sqrt{T}\left|z \mathrm{e}_{1}+\xi\right|, \quad \text { where } z=x / \sqrt{T}
$$

2. Simulation of $\left(X_{s}\right)_{s \in[0, T]}$ given $X_{T}$. With $\beta$ a $\mathrm{BB}^{3}-$ standard Brownian bridge, independent of $\xi$ :

$$
\left(\left(X_{s}\right)_{s \in[0, T]} \mid X_{T}=\sqrt{T} \xi\right) \stackrel{d}{=}\left(\sqrt{T}\left|z \mathrm{e}_{1}+\frac{s}{T} \xi+\beta_{s / T}\right|\right)_{s \in[0, T]}
$$

## Steps for Monte-Carlo simulation

1. Simulation of $X_{T}$. With $\xi$ a 3-d standard normal,

$$
X_{T} \stackrel{d}{=} \sqrt{T}\left|z \mathrm{e}_{1}+\xi\right|, \quad \text { where } z=x / \sqrt{T}
$$

2. Simulation of $\left(X_{s}\right)_{s \in[0, T]}$ given $X_{T}$. With $\beta$ a $\mathrm{BB}^{3}$ standard Brownian bridge, independent of $\xi$ :

$$
\left(\left(X_{s}\right)_{s \in[0, T]} \mid X_{T}=\sqrt{T} \xi\right) \stackrel{d}{=}\left(\sqrt{T}\left|z \mathrm{e}_{1}+\frac{s}{T} \xi+\beta_{s / T}\right|\right)_{s \in[0, T]}
$$

- With $z=x / \sqrt{T}$ and some change of variables, we get that $\left(\int_{0}^{T} \gamma\left(X_{s}\right) \mathrm{d} s \mid X_{T}=\sqrt{T} \xi\right)$ has the distribution of

$$
T \int_{0}^{1} \gamma\left(\sqrt{T}\left|z \mathrm{e}_{1}+u \xi+\beta_{u}\right|\right) \mathrm{d} u
$$

## Monte-Carlo estimation for price

A final transformation. Set $\pi(T, z):=p(T, z \sqrt{T})$.

- $p_{x}^{\prime}(T, \sqrt{T} z)=\pi_{z}^{\prime}(T, z) / \sqrt{T}$.


## Monte-Carlo estimation for price

A final transformation. Set $\pi(T, z):=p(T, z \sqrt{T})$.

- $p_{x}^{\prime}(T, \sqrt{T} z)=\pi_{z}^{\prime}(T, z) / \sqrt{T}$.

Notation: Under $\mathbb{P}^{\left(0, \mathrm{BB}^{3}\right)}$, the pair $(\xi, \beta)$ consists of two independent elements: $\xi \sim \mathcal{N}_{3}(0$, Id $)$ and $\beta \sim \mathrm{BB}^{3}$.

## The representation for the price.

$$
\pi(T, z)=\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\frac{f_{A}\left(\sqrt{T}\left|z \mathrm{e}_{1}+\xi\right|\right)}{\left|z \mathrm{e}_{1}+\xi\right|} H^{0}(T, z ; \xi, \beta)\right]
$$

where
$H^{0}(T, z ; \xi, \beta):=A(\sqrt{T} z) \exp \left(-T \int_{0}^{1} \gamma\left(\sqrt{T}\left|z e_{1}+u \xi+\beta_{u}\right|\right) \mathrm{d} u\right)$.

## Monte-Carlo estimation for delta

Idea: Write the price as

$$
\begin{aligned}
\pi(T, z) & =\mathbb{E}^{\left(z, \mathrm{BB}^{3}\right)}\left[\frac{f_{A}(\sqrt{T}|\xi|)}{|\xi|} H^{0}\left(T, z ; \xi-z \mathrm{e}_{1}, \beta\right)\right] \\
& =\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\left(\frac{\mathrm{dP}^{\left(z, \mathrm{BB}^{3}\right)}}{\mathrm{dP} \mathbb{P}^{\left(0, \mathrm{BB}^{3}\right)}}\right) \frac{f_{A}(\sqrt{T}|\xi|)}{|\xi|} H^{0}\left(T, z ; \xi-z \mathrm{e}_{1}, \beta\right)\right]
\end{aligned}
$$

where $\mathbb{P}^{\left(z, \mathrm{BB}^{3}\right)}$ is a new probability with

$$
\frac{\mathrm{d} \mathbb{P}^{\left(z, \mathrm{BB}^{3}\right)}}{\mathrm{d} \mathbb{P}^{\left(0, \mathrm{BB}^{3}\right)}}=\exp \left(-\frac{|z|^{2}}{2}+z \xi^{1}\right)
$$

## Monte-Carlo estimation for delta

Idea: Write the price as

$$
\begin{aligned}
\pi(T, z) & =\mathbb{E}^{\left(z, \mathrm{BB}^{3}\right)}\left[\frac{f_{A}(\sqrt{T}|\xi|)}{|\xi|} H^{0}\left(T, z ; \xi-z \mathrm{e}_{1}, \beta\right)\right] \\
& =\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\left(\frac{\mathrm{dP}^{\left(z, \mathrm{BB}^{3}\right)}}{\mathrm{dP} \mathbb{P}^{\left(0, \mathrm{BB}^{3}\right)}}\right) \frac{f_{A}(\sqrt{T}|\xi|)}{|\xi|} H^{0}\left(T, z ; \xi-z \mathrm{e}_{1}, \beta\right)\right]
\end{aligned}
$$

where $\mathbb{P}^{\left(z, \mathrm{BB}^{3}\right)}$ is a new probability with

$$
\frac{\mathrm{d} \mathbb{P}^{\left(z, \mathrm{BB}^{3}\right)}}{\mathrm{d} \mathbb{P}^{\left(0, \mathrm{BB}^{3}\right)}}=\exp \left(-\frac{|z|^{2}}{2}+z \xi^{1}\right)
$$

The representation for the delta. Differentiate, take then converse steps (pass to $\mathbb{P}^{\left(z, B^{3}\right)}$ and then back to $\left.\mathbb{P}^{\left(0, \mathrm{BB}^{3}\right)}\right)$ :
$\pi_{z}^{\prime}(T, z)=\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\frac{f_{A}\left(\sqrt{T}\left|z \mathrm{e}_{1}+\xi\right|\right)}{\left|z \mathrm{e}_{1}+\xi\right|} H^{1}(T, z ; \xi, \beta)\right]$, where $\ldots$

## Some facts to keep in mind.

1. Bias is not an issue, since:

- Exact simulation of all stochastic quantities can be performed.
- Only Riemann integrals have to be approximated.


## Some facts to keep in mind.

1. Bias is not an issue, since:

- Exact simulation of all stochastic quantities can be performed.
- Only Riemann integrals have to be approximated.

2. Variance for long maturities does not depend on the discretization steps we choose.

## Some facts to keep in mind.

1. Bias is not an issue, since:

- Exact simulation of all stochastic quantities can be performed.
- Only Riemann integrals have to be approximated.

2. Variance for long maturities does not depend on the discretization steps we choose.
3. Variance for short maturities close to barrier. We have:

- Estimators for $\pi(T, z)$ and $\pi_{z}^{\prime}(T, z)$ have $\mathcal{O}(1)$ variance.
- Therefore, the estimator for:
- $q(T, \ell+w \sqrt{T})$ has $\mathcal{O}(1)$ variance.
- $q_{y}^{\prime}(T, \ell+w \sqrt{T})$ has $\mathcal{O}(1 / T)$ variance.

We need to improve on those.

## Outline

## Valuation and hedging of barrier options

A Monte-Carlo method based on 3-d Brownian bridges

Short maturities

## Ramifications

Density of first-passage times for diffusions

## General remarks on control variates

Control variates. Suppose we can jointly simulate $(\kappa, \lambda)$.

- $\mathbb{E}[\lambda]$ is not known, but $\mathbb{E}[\kappa]$ is known.
- With a sample $\left(\kappa_{j}, \lambda_{j}\right)_{j=1, \ldots, N}$, regress $\lambda$ on $\kappa-\mathbb{E}[\kappa]$. Use the intercept from the regression as an estimator for $\mathbb{E}[\lambda]$.
- Comparison to naive sample-average estimator for $\mathbb{E}[\lambda]$ : variance decreases by a factor of $1 /\left(1-\rho_{\kappa, \lambda}^{2}\right)$.


## General remarks on control variates

Control variates. Suppose we can jointly simulate $(\kappa, \lambda)$.

- $\mathbb{E}[\lambda]$ is not known, but $\mathbb{E}[\kappa]$ is known.
- With a sample $\left(\kappa_{j}, \lambda_{j}\right)_{j=1, \ldots, N}$, regress $\lambda$ on $\kappa-\mathbb{E}[\kappa]$. Use the intercept from the regression as an estimator for $\mathbb{E}[\lambda]$.
- Comparison to naive sample-average estimator for $\mathbb{E}[\lambda]$ : variance decreases by a factor of $1 /\left(1-\rho_{\kappa, \lambda}^{2}\right)$.

Improving efficiency. Now consider $\left(\kappa_{T}, \lambda_{T}\right)$ processes.

- Want to estimate $\mathbb{E}\left[\lambda_{T}\right]$ for small $T ; \mathbb{E}\left[\kappa_{T}\right]$ is known.

Lemma: If $\lambda_{T}=\kappa_{T}+\mathcal{O}\left(h_{T}\right)$ for $h: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$, then

$$
\sqrt{1-\rho_{\kappa_{T}, \lambda_{T}}^{2}}=\mathcal{O}\left(h_{T}\right)
$$

## Back to our problem

Idea. Remember that for $k=0,1$ we have:

$$
\begin{aligned}
\pi(T, z) & =\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\frac{f_{A}\left(\sqrt{T}\left|z \mathrm{e}_{1}+\xi\right|\right)}{\left|z \mathrm{e}_{1}+\xi\right|} H^{0}(T, z ; \xi, \beta)\right] \\
\pi_{z}^{\prime}(T, z) & =\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\frac{f_{A}\left(\sqrt{T}\left|z \mathrm{e}_{1}+\xi\right|\right)}{\left|z \mathrm{e}_{1}+\xi\right|} H^{1}(T, z ; \xi, \beta)\right]
\end{aligned}
$$

- Expand the above quantities around $T=0$.


## Back to our problem

Idea. Remember that for $k=0,1$ we have:

$$
\begin{aligned}
\pi(T, z) & =\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\frac{f_{A}\left(\sqrt{T}\left|z \mathrm{e}_{1}+\xi\right|\right)}{\left|z \mathrm{e}_{1}+\xi\right|} H^{0}(T, z ; \xi, \beta)\right] \\
\pi_{z}^{\prime}(T, z) & =\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\frac{f_{A}\left(\sqrt{T}\left|z \mathrm{e}_{1}+\xi\right|\right)}{\left|z \mathrm{e}_{1}+\xi\right|} H^{1}(T, z ; \xi, \beta)\right]
\end{aligned}
$$

- Expand the above quantities around $T=0$.
- If the expectations of the expansions above are computable, we are in business.
- This will also give limits of price and delta for short maturities and near the barrier.


## The expansions for $T \approx 0$

For $k=0,1$, we can write:

$$
\frac{f_{A}\left(\sqrt{T}\left|z e_{1}+\xi\right|\right)}{\left|z e_{1}+\xi\right|} H^{k}(T, z ; \xi, \beta)=\sum_{i=0}^{2} \eta_{i}^{k}(z ; \xi) T^{i / 2}+\mathcal{O}\left(\sqrt{T^{3}}\right)
$$

## Remarks.

- None of the $\eta$ 's above involves $\beta$.
- Both $\eta_{0}^{k}$ 's do not involve a (or $\gamma$ ).
- $\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\eta_{i}^{k}(z ; \xi)\right]$ has closed form for $k=0,1, i=0,1,2$.
- We can go further in the expansion. Alas, the $\eta_{3}^{k}$ 's involve $\beta$ and their expectations are not straightforward.


## The expansions for $T \approx 0$

For $k=0,1$, we can write:

$$
\frac{f_{A}\left(\sqrt{T}\left|z e_{1}+\xi\right|\right)}{\left|z e_{1}+\xi\right|} H^{k}(T, z ; \xi, \beta)=\sum_{i=0}^{2} \eta_{i}^{k}(z ; \xi) T^{i / 2}+\mathcal{O}\left(\sqrt{T^{3}}\right)
$$

Remarks.

- None of the $\eta$ 's above involves $\beta$.
- Both $\eta_{0}^{k}$ 's do not involve a (or $\gamma$ ).
- $\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\eta_{i}^{k}(z ; \xi)\right]$ has closed form for $k=0,1, i=0,1,2$.
- We can go further in the expansion. Alas, the $\eta_{3}^{k}$ 's involve $\beta$ and their expectations are not straightforward.

Original problem. We have managed to find estimators. . .

- . . of $q(T, \ell+\sqrt{T} w)$ with $\mathcal{O}\left(T^{3}\right)$ variance.
- ... of $q_{y}^{\prime}(T, \ell+\sqrt{T} w)$ with $\mathcal{O}\left(T^{2}\right)$ variance.


## Limiting behavior of price and delta for short maturities

Limits close to the barrier for short maturities:

$$
\begin{aligned}
\lim _{T \downarrow 0} q(T, \ell+\sqrt{T} z \sigma(\ell)) & =g(\ell)(2 \Phi(z)-1), \\
\lim _{T \downarrow 0} \sqrt{T} q_{y}^{\prime}(T, \ell+\sqrt{T} z \sigma(\ell)) & =\frac{2 g(\ell)}{\sigma(\ell)}\left(\Phi(-z)(1+z)+\frac{e^{-\frac{z^{2}}{2}}}{\sqrt{2 \pi}}\right)
\end{aligned}
$$

- $\Phi$ : standard normal CDF.


## Outline

## Valuation and hedging of barrier options

A Monte-Carlo method based on 3-d Brownian bridges

Short maturities

Ramifications

Density of first-passage times for diffusions

## Other sensitivities

Gamma. We can also represent:

$$
\pi_{z z}^{\prime \prime}(T, z)=\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\frac{f_{A}\left(\sqrt{T}\left|z \mathrm{e}_{1}+\xi\right|\right)}{\left|z \mathrm{e}_{1}+\xi\right|} H^{2}(T, z ; \xi, \beta)\right] .
$$

- We get asymptotic expansions of same order as before...
- Estimators for $q_{y y}^{\prime \prime}(T, \ell+\sqrt{T} w)$ have $\mathcal{O}(T)$ variance.


## Other sensitivities

Gamma. We can also represent:

$$
\pi_{z z}^{\prime \prime}(T, z)=\mathbb{E}^{\left(0, \mathrm{BB}^{3}\right)}\left[\frac{f_{A}\left(\sqrt{T}\left|z \mathrm{e}_{1}+\xi\right|\right)}{\left|z \mathrm{e}_{1}+\xi\right|} H^{2}(T, z ; \xi, \beta)\right] .
$$

- We get asymptotic expansions of same order as before...
- Estimators for $q_{y y}^{\prime \prime}(T, \ell+\sqrt{T} w)$ have $\mathcal{O}(T)$ variance.

Rho. If underlying is traded $(b(y)=r y), r$ appears in $a($ and $\gamma)$ :

$$
a(y)=\frac{r H^{-1}(y)}{\sigma \circ H^{-1}(y)}-\frac{\sigma^{\prime} \circ H^{-1}(y)}{2}
$$

With this in mind, we can carry the previous steps.

## Smooth path-dependency; Non-homogeneity

1. More complicated payoffs. We consider:

$$
P_{T}:=G\left(T,\left(Y_{t}\right)_{t \in[0, T]}\right) \mathbb{I}_{\left\{m_{T}>\ell\right\}} .
$$

- Price representation: Exactly same as before.
- Delta representation: $G$ must be differentiable. Apart from extra work to differentiate $G$, no further problems.


## Smooth path-dependency; Non-homogeneity

1. More complicated payoffs. We consider:

$$
P_{T}:=G\left(T,\left(Y_{t}\right)_{t \in[0, T]}\right) \mathbb{I}_{\left\{m_{T}>\ell\right\}} .
$$

- Price representation: Exactly same as before.
- Delta representation: $G$ must be differentiable. Apart from extra work to differentiate $G$, no further problems.

2. Non-homogeneous diffusions.

$$
\mathrm{d} Y_{t}=b\left(t, Y_{t}\right) \mathrm{d} t+\sigma\left(t, Y_{t}\right) \mathrm{d} W_{t}
$$

- $H$, a (and $\gamma$ ) are now functions of $(t, y)$.
- Results in more complicated integration, but doable.


## Outline

## Valuation and hedging of barrier options

## A Monte-Carlo method based on 3-d Brownian bridges

## Short maturities

## Ramifications

Density of first-passage times for diffusions

## First-passage time density estimation - the problem

Model: A diffusion $Y$ with $Y_{0}=y$ and dynamics

$$
\mathrm{d} Y_{t}=b\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} W_{t}, \quad t \in \mathbb{R}_{+}
$$

## First-passage time density estimation - the problem

Model: A diffusion $Y$ with $Y_{0}=y$ and dynamics

$$
\mathrm{d} Y_{t}=b\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} W_{t}, \quad t \in \mathbb{R}_{+}
$$

First passage time to $\ell<y$ : the stopping time defined as

$$
\tau_{\ell}:=\inf \left\{t \in \mathbb{R}_{+} \mid Y_{t}=\ell\right\}
$$

## First-passage time density estimation - the problem

Model: A diffusion $Y$ with $Y_{0}=y$ and dynamics

$$
\mathrm{d} Y_{t}=b\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} W_{t}, \quad t \in \mathbb{R}_{+}
$$

First passage time to $\ell<y$ : the stopping time defined as

$$
\tau_{\ell}:=\inf \left\{t \in \mathbb{R}_{+} \mid Y_{t}=\ell\right\}
$$

Problem: Figure out the density $\phi_{y \rightarrow \ell}^{(b, \sigma)}$ of $\tau_{\ell}$ under $\mathbb{P}_{y}^{(b, \sigma)}$ :

$$
\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)=\frac{\mathrm{d} \mathbb{P}_{y}^{(b, \sigma)}\left[\tau_{\ell} \leq T\right]}{\mathrm{d} T}
$$

## First-passage time density estimation - usual approach

CDF estimation: Simulate $N$ discretized paths of $Y$.

- For each path $i=1, \ldots, N$, simulate $\hat{Y}_{t_{1}}, \ldots$, until the first $k$ such that $\hat{Y}_{t_{k}} \leq \ell$ and set $\hat{\tau}^{i}$ equal to $t_{k}$.
- Consider the (biased, in general) estimator of the CDF:

$$
\hat{F}_{N}(T)=\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{\left\{\hat{\tau}^{i} \leq T\right\}}
$$

## First-passage time density estimation - usual approach

CDF estimation: Simulate $N$ discretized paths of $Y$.

- For each path $i=1, \ldots, N$, simulate $\hat{Y}_{t_{1}}, \ldots$, until the first $k$ such that $\hat{Y}_{t_{k}} \leq \ell$ and set $\hat{\tau}^{i}$ equal to $t_{k}$.
- Consider the (biased, in general) estimator of the CDF:

$$
\hat{F}_{N}(T)=\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{\left\{\hat{\tau}^{i} \leq T\right\}}
$$

Density estimation. $\phi=F^{\prime}$; use a kernel estimator to get $\hat{\phi}_{N}$ from $\hat{F}_{N}$. Even if $\hat{F}_{N}$ is unbiased, we do not get

$$
\hat{\phi}_{N}=\phi+\mathcal{O}\left(N^{-1 / 2}\right)
$$

## Can we do better?

Aim: Find an estimator of $\phi$ with $\hat{\phi}_{N}=\phi+\mathcal{O}\left(N^{-1 / 2}\right)$.

## Can we do better?

Aim: Find an estimator of $\phi$ with $\hat{\phi}_{N}=\phi+\mathcal{O}\left(N^{-1 / 2}\right)$.
Representation with respect to Brownian bridge: Following the previous steps, with slight twists, we get with $x=H(y)$ :

$$
\frac{\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)}{\phi_{y \rightarrow \ell}^{(0,1)}(T)}=x A(x) \mathbb{E}^{\mathrm{BB}^{3}}\left[\exp \left(-T \int_{0}^{T} \gamma\left(\left|x u \mathrm{e}_{1}+\sqrt{T} \beta_{u}\right|\right) \mathrm{d} u\right)\right] .
$$

## Can we do better?

Aim: Find an estimator of $\phi$ with $\hat{\phi}_{N}=\phi+\mathcal{O}\left(N^{-1 / 2}\right)$.
Representation with respect to Brownian bridge: Following the previous steps, with slight twists, we get with $x=H(y)$ :
$\frac{\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)}{\phi_{y \rightarrow \ell}^{(0,1)}(T)}=x A(x) \mathbb{E}^{\mathrm{BB}^{3}}\left[\exp \left(-T \int_{0}^{T} \gamma\left(\left|x u e_{1}+\sqrt{T} \beta_{u}\right|\right) \mathrm{d} u\right)\right]$.

- The representation and the CLT give an estimator such that

$$
\left(\widehat{\phi_{y \rightarrow \ell}^{(b, \sigma)}}\right)_{N}(T)=\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)+\mathcal{O}\left(N^{-1 / 2}\right)
$$

- The convergence holds uniformly for $(T, y)$ in compact sets.


## Delving slightly deeper

The "rate" function: Write $\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)=\exp \left(-T \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T)\right)$, i.e,

$$
\lambda_{y \rightarrow \ell}^{(b, \sigma)}(T):=-\frac{1}{T} \log \left(\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)\right)
$$

## Delving slightly deeper

The "rate" function: Write $\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)=\exp \left(-T \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T)\right)$, i.e,

$$
\lambda_{y \rightarrow \ell}^{(b, \sigma)}(T):=-\frac{1}{T} \log \left(\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)\right)
$$

Rate near zero: $\lim _{T \downarrow 0} \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T)=\frac{1}{y-\ell} \int_{\ell}^{y} \gamma(u) \mathrm{d} u$.

## Delving slightly deeper

The "rate" function: Write $\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)=\exp \left(-T \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T)\right)$, i.e,

$$
\lambda_{y \rightarrow \ell}^{(b, \sigma)}(T):=-\frac{1}{T} \log \left(\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)\right)
$$

Rate near zero: $\lim _{T \downarrow 0} \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T)=\frac{1}{y-\ell} \int_{\ell}^{y} \gamma(u) \mathrm{d} u$.
Rate at infinity: There is no explosion:

$$
-\infty<\liminf _{T \rightarrow \infty} \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T) \leq \limsup _{T \rightarrow \infty} \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T)<+\infty
$$

## Delving slightly deeper

The "rate" function: Write $\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)=\exp \left(-T \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T)\right)$, i.e,

$$
\lambda_{y \rightarrow \ell}^{(b, \sigma)}(T):=-\frac{1}{T} \log \left(\phi_{y \rightarrow \ell}^{(b, \sigma)}(T)\right)
$$

Rate near zero: $\lim _{T \downarrow 0} \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T)=\frac{1}{y-\ell} \int_{\ell}^{y} \gamma(u) \mathrm{d} u$.
Rate at infinity: There is no explosion:

$$
-\infty<\liminf _{T \rightarrow \infty} \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T) \leq \limsup _{T \rightarrow \infty} \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T)<+\infty
$$

Connection with 2nd order ODEs. For ergodic diffusions, $\lim _{T \rightarrow \infty} \lambda_{y \rightarrow \ell}^{(b, \sigma)}(T)=: \lambda_{1}$ exists, does not depend on $y$, and is the first eigenvalue of a certain Dirichlet problem on $[\ell, \infty)$.

- This fact can be used to improve the estimator for the density.
- Other direction: MC can help to numerically compute $\lambda_{1}$.


## Concluding discussion

- We propose a MC simulation method for approximating the price and sensitivities of barrier options in diffusion models.
- The method has very low bias because all stochastic quantities involved can be simulated exactly.
- The variance does not depend on dicretization.
- Via asymptotic expansions near maturity we obtain control variates that dramatically reduce variance, especially for short maturities (but that should be used for any maturity).
- We apply the method for estimation of the density of diffusion first-passage times, where we are able to beat the typical non-parametric rate of convergence.


## Concluding discussion

- We propose a MC simulation method for approximating the price and sensitivities of barrier options in diffusion models.
- The method has very low bias because all stochastic quantities involved can be simulated exactly.
- The variance does not depend on dicretization.
- Via asymptotic expansions near maturity we obtain control variates that dramatically reduce variance, especially for short maturities (but that should be used for any maturity).
- We apply the method for estimation of the density of diffusion first-passage times, where we are able to beat the typical non-parametric rate of convergence.


## The End.

