Using 3-dimensional Brownian bridges for valuation of barrier options

Constantinos Kardaras Boston University

Fields Institute Quantitative Finance Seminar Series

November 24th, 2010

Outline

Valuation and hedging of barrier options

A Monte-Carlo method based on 3-d Brownian bridges

Short maturities

Ramifications

Density of first-passage times for diffusions

Outline

Valuation and hedging of barrier options

A Monte-Carlo method based on 3-d Brownian bridges

Short maturities

Ramifications

Density of first-passage times for diffusions

The model

Asset price model: $(Y_t)_{t \in [0,T]}$, one-dimensional diffusion.

$$\mathrm{d}Y_t = b(Y_t)\mathrm{d}t + \sigma(Y_t)\mathrm{d}W_t, \ t \in [0, T], \ Y_0 = y.$$

- ▶ Dynamics under the *pricing* probability $\mathbb{P}_{y}^{(b,\sigma)}$.
- ▶ If Y is traded, b(y) = ry.

The model

Asset price model: $(Y_t)_{t \in [0,T]}$, one-dimensional diffusion.

$$\mathrm{d}Y_t = b(Y_t)\mathrm{d}t + \sigma(Y_t)\mathrm{d}W_t, \ t \in [0, T], \ Y_0 = y.$$

- ▶ Dynamics under the *pricing* probability $\mathbb{P}_{y}^{(b,\sigma)}$.
- ▶ If Y is traded, b(y) = ry.

Claim payoff: $P_T = G(T, (Y_t)_{t \in [0,T]})$, paid at *maturity* T.

▶ Price of claim at time t = 0 is $P_0 := \mathbb{E}_y^{(b,\sigma)} \left[e^{-rT} P_T \right]$.

Plain vanilla calls and puts. Most basic examples of claims:

▶ Call: $P_T = (Y_T - K)_+$. Put: $P_T = (K - Y_T)_+$.

Plain vanilla calls and puts. Most basic examples of claims:

▶ Call: $P_T = (Y_T - K)_+$. Put: $P_T = (K - Y_T)_+$.

Barrier options. They become "in" or "out" depending on whether the asset price crosses a certain level ℓ . Define $m_T := \min_{t \in [0,T]} Y_t$ and $M_T := \max_{t \in [0,T]} Y_t$. Then, for example:

- ▶ Down-and-out put: $P_T = (K Y_T)_+ \mathbb{I}_{\{m_T > \ell\}}, \ \ell < y \land K.$
- ▶ Up-and-in put: $P_T = (K Y_T)_+ \mathbb{I}_{\{M_T > \ell\}}$, $K < \ell$.

Plain vanilla calls and puts. Most basic examples of claims:

▶ Call: $P_T = (Y_T - K)_+$. Put: $P_T = (K - Y_T)_+$.

Barrier options. They become "in" or "out" depending on whether the asset price crosses a certain level ℓ . Define $m_T := \min_{t \in [0,T]} Y_t$ and $M_T := \max_{t \in [0,T]} Y_t$. Then, for example:

- ▶ Down-and-out put: $P_T = (K Y_T)_+ \mathbb{I}_{\{m_T > \ell\}}, \ \ell < y \land K.$
- ▶ Up-and-in put: $P_T = (K Y_T)_+ \mathbb{I}_{\{M_T > \ell\}}$, $K < \ell$.

General "down" barrier option's payoff:

$$g_i(Y_T)\mathbb{I}_{\{m_T>\ell\}}+g_o(Y_T)\mathbb{I}_{\{m_T\leq\ell\}}$$

Plain vanilla calls and puts. Most basic examples of claims:

▶ Call: $P_T = (Y_T - K)_+$. Put: $P_T = (K - Y_T)_+$.

Barrier options. They become "in" or "out" depending on whether the asset price crosses a certain level ℓ . Define $m_T := \min_{t \in [0,T]} Y_t$ and $M_T := \max_{t \in [0,T]} Y_t$. Then, for example:

- ▶ Down-and-out put: $P_T = (K Y_T)_+ \mathbb{I}_{\{m_T > \ell\}}, \ \ell < y \land K.$
- ▶ Up-and-in put: $P_T = (K Y_T)_+ \mathbb{I}_{\{M_T > \ell\}}$, $K < \ell$.

General "down" barrier option's payoff:

$$g_i(Y_T)\mathbb{I}_{\{m_T>\ell\}}+g_o(Y_T)\mathbb{I}_{\{m_T\leq\ell\}}=(g_i-g_o)(Y_T)\mathbb{I}_{\{m_T>\ell\}}+g_o(Y_T).$$

▶ The second is just plain vanilla. We only consider then down-and-out options: $P_T = g(Y_T)\mathbb{I}_{\{m_T > \ell\}}$.

Prices and Hedges for Barrier Options

Pricing function for barrier options: In diffusion models, there exists a deterministic function $q: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ such that:

- $P_t = q(T t, Y_t).$
- ▶ $\Delta_t = q'_y(T t, Y_t)$: hedging strategy in complete models.

Pricing and hedging becomes a problem of estimation of q and q_y' .

Prices and Hedges for Barrier Options

Pricing function for barrier options: In diffusion models, there exists a deterministic function $q: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ such that:

- $P_t = q(T-t, Y_t).$
- ▶ $\Delta_t = q'_y(T t, Y_t)$: hedging strategy in complete models.

Pricing and hedging becomes a problem of estimation of q and q_y' .

Remarks:

- **Even** in incomplete markets, q'_{y} is an interesting quantity.
- Other derivatives can be interesting; for example:
 - Gamma: q''_{vv} .
 - Rho: derivative with respect to interest rate.

Finite differences

PDE approach: Solve numerically for $(T, y) \in (0, \infty) \times (\ell, \infty)$:

$$q'_{T}(T,y) + b(y)q'_{y}(T,y) + \frac{1}{2}\sigma^{2}(y)q''_{yy}(T,y) = rq(T,y).$$

Boundary conditions: q(0, y) = g(y), $q(T, \ell) = 0$.

Finite differences

PDE approach: Solve numerically for $(T, y) \in (0, \infty) \times (\ell, \infty)$:

$$q_T'(T,y) + b(y)q_y'(T,y) + \frac{1}{2}\sigma^2(y)q_{yy}''(T,y) = rq(T,y).$$

Boundary conditions: q(0, y) = g(y), $q(T, \ell) = 0$.

Numerical issues: Near $(0,\ell)$, q and its derivatives are badly-behaved. This affects negatively numerical approximations. In fact, the following limits exist and depend on w>0:

- $\blacktriangleright \lim_{T\downarrow 0} q\left(T,\ell+w\sqrt{T}\right);$
- $\blacktriangleright \lim_{T\downarrow 0} \sqrt{T} q'_y \left(T, \ell + w\sqrt{T}\right).$

Finite differences

PDE approach: Solve numerically for $(T, y) \in (0, \infty) \times (\ell, \infty)$:

$$q'_{T}(T,y) + b(y)q'_{y}(T,y) + \frac{1}{2}\sigma^{2}(y)q''_{yy}(T,y) = rq(T,y).$$

Boundary conditions: q(0, y) = g(y), $q(T, \ell) = 0$.

Numerical issues: Near $(0,\ell)$, q and its derivatives are badly-behaved. This affects negatively numerical approximations. In fact, the following limits exist and depend on w>0:

- $\blacktriangleright \lim_{T\downarrow 0} q\left(T,\ell+w\sqrt{T}\right);$
- $\blacktriangleright \lim_{T\downarrow 0} \sqrt{T} q_y' \left(T, \ell + w\sqrt{T}\right).$

Analytical issues: If we replace $g(Y_T)$ by $G(T, (Y_t)_{t \in [0,T]})$, the PDE approach does not work.

Monte-Carlo: Based on simulation. Use expected value representation for price. Use some differentiation method for delta.

Monte-Carlo: Based on simulation. Use expected value representation for price. Use some differentiation method for delta.

Approximate simulation. Via discretization; for example, Euler:

$$\hat{Y}_{t_i} = \hat{Y}_{t_{i-1}} + b(\hat{Y}_{t_{i-1}})h + \sigma(\hat{Y}_{t_{i-1}})\sqrt{h}Z_i,$$

where $h = t_i - t_{i-1}$ and Z_1, \dots, Z_n are i.i.d. standard normals.

Approximating the payoff. Set $\hat{m}_T := \min_{i \in \{0,...,n\}} \hat{Y}_{t_i}$ and $\hat{P}_T := g(\hat{Y}_T)\mathbb{I}_{\{\hat{m}_T > \ell\}}$.

Monte-Carlo: Based on simulation. Use expected value representation for price. Use some differentiation method for delta.

Approximate simulation. Via discretization; for example, Euler:

$$\hat{Y}_{t_i} = \hat{Y}_{t_{i-1}} + b(\hat{Y}_{t_{i-1}})h + \sigma(\hat{Y}_{t_{i-1}})\sqrt{h}Z_i,$$

where $h = t_i - t_{i-1}$ and Z_1, \dots, Z_n are i.i.d. standard normals.

Approximating the payoff. Set $\hat{m}_T := \min_{i \in \{0,...,n\}} \hat{Y}_{t_i}$ and $\hat{P}_T := g(\hat{Y}_T)\mathbb{I}_{\{\hat{m}_T > \ell\}}$. There are two sources of bias:

- ▶ Numerically approximating the solution of Y: $\mathcal{O}(h)$.
- ▶ Discrete minimum as continuous-time proxy: $\mathcal{O}(\sqrt{h})$.

Monte-Carlo: Based on simulation. Use expected value representation for price. Use some differentiation method for delta.

Approximate simulation. Via discretization; for example, Euler:

$$\hat{Y}_{t_i} = \hat{Y}_{t_{i-1}} + b(\hat{Y}_{t_{i-1}})h + \sigma(\hat{Y}_{t_{i-1}})\sqrt{h}Z_i,$$

where $h = t_i - t_{i-1}$ and Z_1, \dots, Z_n are i.i.d. standard normals.

Approximating the payoff. Set $\hat{m}_T := \min_{i \in \{0,...,n\}} \hat{Y}_{t_i}$ and $\hat{P}_T := g(\hat{Y}_T)\mathbb{I}_{\{\hat{m}_T > \ell\}}$. There are two sources of bias:

- ▶ Numerically approximating the solution of Y: $\mathcal{O}(h)$.
- ▶ Discrete minimum as continuous-time proxy: $\mathcal{O}(\sqrt{h})$.

Partial remedy: In Euler scheme, we regard $(\hat{Y}_t)_{t \in [t_{i-1}, t_i]}$ given $\hat{Y}_{t_{i-1}}$ as Brownian motion, so we can use better estimators for \hat{m}_T .

Monte Carlo approach to hedging barrier options I

There are several ways of trying to estimate q'_{ν} for barrier options.

1. Finite differences: For "small" ϵ , use the estimator:

$$\frac{\hat{q}_N(T,y+\epsilon)-\hat{q}_N(T,y-\epsilon)}{2\epsilon}.$$

- ▶ Bias is $\mathcal{O}(\epsilon^2)$.
- ▶ In best-case scenario, variance is $\mathcal{O}(1/\epsilon)$.

Monte Carlo approach to hedging barrier options I

There are several ways of trying to estimate q'_{y} for barrier options.

1. Finite differences: For "small" ϵ , use the estimator:

$$\frac{\hat{q}_N(T,y+\epsilon)-\hat{q}_N(T,y-\epsilon)}{2\epsilon}.$$

- ▶ Bias is $\mathcal{O}(\epsilon^2)$.
- ▶ In best-case scenario, variance is $\mathcal{O}(1/\epsilon)$.
- **2. Pathwise differentiation:** Write Y^y for the (strong) solution of the SDE with $Y_0 = y$. Can we then write:

$$\frac{\partial}{\partial y} \mathbb{E}\left[g(Y_T^y)\mathbb{I}_{\{m_T^y > \ell\}}\right] \stackrel{?}{=} \mathbb{E}\left[\frac{\partial}{\partial y}g(Y_T^y)\mathbb{I}_{\{m_T^y > \ell\}}\right]$$

Monte Carlo approach to hedging barrier options I

There are several ways of trying to estimate q'_y for barrier options.

1. Finite differences: For "small" ϵ , use the estimator:

$$\frac{\hat{q}_N(T,y+\epsilon)-\hat{q}_N(T,y-\epsilon)}{2\epsilon}.$$

- ▶ Bias is $\mathcal{O}(\epsilon^2)$.
- ▶ In best-case scenario, variance is $\mathcal{O}(1/\epsilon)$.
- **2. Pathwise differentiation:** Write Y^y for the (strong) solution of the SDE with $Y_0 = y$. Can we then write:

$$\frac{\partial}{\partial y} \mathbb{E}\left[g(Y_T^y)\mathbb{I}_{\{m_T^y > \ell\}}\right] \stackrel{?}{=} \mathbb{E}\left[\frac{\partial}{\partial y}g(Y_T^y)\mathbb{I}_{\{m_T^y > \ell\}}\right]$$

NO! The indicator is not differentiable (not even continuous).

Monte Carlo approach to hedging barrier options II

3. Likelihood ratio differentiation: Differentiate the (approximate) density φ of $(\hat{Y}_{t_1}, \dots, \hat{Y}_{t_n})$ with respect to y:

$$q'_{y}(T,y) \approx \int_{\mathbb{R}^{n}} g(y_{n}) \frac{\partial}{\partial y} \varphi(y_{1}, \dots, y_{n}; y) dy_{1} \dots dy_{n}$$
$$= \mathbb{E}_{y} \Big[g(\hat{Y}_{T}) \frac{\partial}{\partial y} \log \varphi(\hat{Y}_{t_{1}}, \dots, \hat{Y}_{t_{n}}; y) \Big]$$

- ▶ Estimator is biased we are using *approximate* likelihood.
- ▶ The variance of the delta estimator is $\mathcal{O}(1/t_1)$.

Monte Carlo approach to hedging barrier options II

3. Likelihood ratio differentiation: Differentiate the (approximate) density φ of $(\hat{Y}_{t_1}, \dots, \hat{Y}_{t_n})$ with respect to y:

$$q'_{y}(T, y) \approx \int_{\mathbb{R}^{n}} g(y_{n}) \frac{\partial}{\partial y} \varphi(y_{1}, \dots, y_{n}; y) dy_{1} \dots dy_{n}$$
$$= \mathbb{E}_{y} \Big[g(\hat{Y}_{T}) \frac{\partial}{\partial y} \log \varphi(\hat{Y}_{t_{1}}, \dots, \hat{Y}_{t_{n}}; y) \Big]$$

- ▶ Estimator is biased we are using *approximate* likelihood.
- ▶ The variance of the delta estimator is $\mathcal{O}(1/t_1)$.
- **4. Malliavin calculus:** Efforts have been made, but estimators are complicated and not very efficient.

Aim of the present work

- 1. Find (as) unbiased (as possible) estimators for price and delta. We do this by transforming the problem:
 - First we make $\sigma = 1$.
 - Next we make b = 0. (Now we have a Brownian motion.)
 - ▶ Then we pass to a 3-d Bessel process and eliminate $\mathbb{I}_{\{m_T > \ell\}}$.
 - ▶ Lastly, we express this is terms of 3-d Brownian bridges.

Aim of the present work

- 1. Find (as) unbiased (as possible) estimators for price and delta. We do this by transforming the problem:
 - First we make $\sigma = 1$.
 - Next we make b = 0. (Now we have a Brownian motion.)
 - ▶ Then we pass to a 3-d Bessel process and eliminate $\mathbb{I}_{\{m_T > \ell\}}$.
 - ▶ Lastly, we express this is terms of 3-d Brownian bridges.
- 2. Enhance price and hedge estimators for small maturities. We want the variance to be very small when T is small.

Aim of the present work

- 1. Find (as) unbiased (as possible) estimators for price and delta. We do this by transforming the problem:
 - First we make $\sigma = 1$.
 - Next we make b = 0. (Now we have a Brownian motion.)
 - ▶ Then we pass to a 3-d Bessel process and eliminate $\mathbb{I}_{\{m_T > \ell\}}$.
 - ▶ Lastly, we express this is terms of 3-d Brownian bridges.
- 2. Enhance price and hedge estimators for small maturities. We want the variance to be *very small* when T is small.
- **3.** Use previous methods for first-passage-time density estimation. The wish is to do better then the usual kernel estimation of densities via CDF estimation.

Outline

Valuation and hedging of barrier options

A Monte-Carlo method based on 3-d Brownian bridges

Short maturities

Ramifications

Density of first-passage times for diffusions

Constant diffusion transformation

Original diffusion: $dY_t = b(Y_t)dt + \sigma(Y_t)dW_t$, $Y_0 = y$.

Constant diffusion transformation

Original diffusion: $dY_t = b(Y_t)dt + \sigma(Y_t)dW_t$, $Y_0 = y$.

Transformed diffusion: $dX_t = a(X_t)dt + dW_t$, $X_0 = x$, where

- $X := H(Y), x := H(y), \text{ with } H(y) := \int_{\ell}^{y} (1/\sigma(u)) du.$
- $ightharpoonup a := (b/\sigma \sigma'/2) \circ H^{-1}$

Constant diffusion transformation

Original diffusion: $dY_t = b(Y_t)dt + \sigma(Y_t)dW_t$, $Y_0 = y$.

Transformed diffusion: $dX_t = a(X_t)dt + dW_t$, $X_0 = x$, where

- $X := H(Y), x := H(y), \text{ with } H(y) := \int_{\ell}^{y} (1/\sigma(u)) du.$
- $ightharpoonup a := (b/\sigma \sigma'/2) \circ H^{-1}$

No loss of generality: For $f := g \circ H^{-1}$, define

$$p(T,x) := \mathbb{E}_{x}^{(a,1)}[f(X_T)\mathbb{I}_{\{m_T>0\}}].$$

- p(T,y) = p(T,H(y))

We focus on p from now on.

Eliminating the drift

Girsanov's theorem: $p(T,y) = \mathbb{E}_x^{(0,1)}[Z_T f(X_T) \mathbb{I}_{\{m_T>0\}}]$, where

$$Z_T := \exp\Big(\int_0^T a(X_s) \mathrm{d}X_s - \frac{1}{2} \int_0^T a^2(X_s) \mathrm{d}s\Big).$$

Eliminating the drift

Girsanov's theorem: $p(T,y) = \mathbb{E}_{x}^{(0,1)}[Z_{T}f(X_{T})\mathbb{I}_{\{m_{T}>0\}}]$, where

$$Z_T := \exp\Big(\int_0^T a(X_s) \mathrm{d}X_s - \frac{1}{2} \int_0^T a^2(X_s) \mathrm{d}s\Big).$$

Stochastic to Lebesgue: Set $\gamma := (a' + a^2)/2$. By Itô:

$$\int_0^T a(X_s) \mathrm{d}X_s = \int_x^{X_T} a(v) \mathrm{d}v - \frac{1}{2} \int_0^T a'(X_s) \mathrm{d}s.$$

Therefore,
$$Z_T = \exp\Big(\int_x^{X_T} a(v) dv - \int_0^T \gamma(X_s) ds\Big).$$

Eliminating the drift

Girsanov's theorem: $p(T,y) = \mathbb{E}_{x}^{(0,1)}[Z_{T}f(X_{T})\mathbb{I}_{\{m_{T}>0\}}]$, where

$$Z_T := \exp\Big(\int_0^T a(X_s) \mathrm{d}X_s - \frac{1}{2} \int_0^T a^2(X_s) \mathrm{d}s\Big).$$

Stochastic to Lebesgue: Set $\gamma := (a' + a^2)/2$. By Itô:

$$\int_0^T a(X_s) \mathrm{d}X_s = \int_x^{X_T} a(v) \mathrm{d}v - \frac{1}{2} \int_0^T a'(X_s) \mathrm{d}s.$$

Therefore,
$$Z_T = \exp\Big(\int_x^{X_T} a(v) dv - \int_0^T \gamma(X_s) ds\Big).$$

Putting everything together: p(T,x) is equal to

$$\mathbb{E}_{x}^{(0,1)}\left[\exp\left(\int_{x}^{X_{T}}a(v)\mathrm{d}v-\int_{0}^{T}\gamma(X_{s})\mathrm{d}s\right)f(X_{T})\mathbb{I}_{\{m_{T}>0\}}\right].$$

Eliminating the indicator

From Brownian Motion (BM) to 3-d Bessel (BES³). With τ_0 being the first passage time of X to zero, define $\mathbb{P}_x^{\text{BES}^3}$ via

$$\left. \frac{\mathrm{d} \mathbb{P}_{\mathsf{x}}^{\mathsf{BES}^3}}{\mathrm{d} \mathbb{P}_{\mathsf{x}}^{(0,1)}} \right|_{\mathcal{F}_{\mathcal{T}}} := \frac{\mathsf{X}_{\tau_0 \wedge \mathcal{T}}}{\mathsf{x}}.$$

- ▶ Under $\mathbb{P}_{X}^{\mathsf{BES}^3}$, X is BES^3 starting at X (Girsanov's theorem).
- ▶ $\mathbb{P}_{X}^{\mathsf{BES}^{3}}[m_{T}>0]=1.$

Eliminating the indicator

From Brownian Motion (BM) to 3-d Bessel (BES³). With τ_0 being the first passage time of X to zero, define $\mathbb{P}_x^{\text{BES}^3}$ via

$$\left. \frac{\mathrm{d} \mathbb{P}_{\mathsf{x}}^{\mathsf{BES}^3}}{\mathrm{d} \mathbb{P}_{\mathsf{x}}^{(0,1)}} \right|_{\mathcal{F}_{\mathcal{T}}} := \frac{X_{\tau_0 \wedge \mathcal{T}}}{\mathsf{x}}.$$

- ▶ Under $\mathbb{P}_{X}^{\mathsf{BES}^3}$, X is BES^3 starting at X (Girsanov's theorem).
- $\blacktriangleright \mathbb{P}_x^{\mathsf{BES}^3}[m_T>0]=1.$

New representation for price:

$$p(T,x) = x \mathbb{E}_x^{\mathsf{BES}^3} \left[\exp \left(\int_x^{X_T} a(v) \mathrm{d}v - \int_0^T \gamma(X_s) \mathrm{d}s \right) \frac{f(X_T)}{X_T} \right]$$

Eliminating the indicator

From Brownian Motion (BM) to 3-d Bessel (BES³). With τ_0 being the first passage time of X to zero, define $\mathbb{P}_X^{\mathsf{BES}^3}$ via

$$\frac{\mathrm{d}\mathbb{P}_{x}^{\mathsf{BES}^{3}}}{\mathrm{d}\mathbb{P}_{x}^{(0,1)}}\bigg|_{\mathcal{F}_{\mathcal{T}}} := \frac{X_{\tau_{0} \wedge \mathcal{T}}}{x}.$$

- ▶ Under $\mathbb{P}_{X}^{\mathsf{BES}^3}$, X is BES^3 starting at X (Girsanov's theorem).
- $\mathbb{P}_{X}^{\mathsf{BES}^{3}}[m_{T}>0]=1.$

New representation for price:

$$p(T,x) = x \mathbb{E}_{x}^{\mathsf{BES}^{3}} \left[\exp\left(\int_{x}^{X_{T}} a(v) dv - \int_{0}^{T} \gamma(X_{s}) ds\right) \frac{f(X_{T})}{X_{T}} \right]$$
$$= xA(x) \mathbb{E}_{x}^{\mathsf{BES}^{3}} \left[\exp\left(-\int_{0}^{T} \gamma(X_{s}) ds\right) \frac{f_{A}(X_{T})}{X_{T}} \right],$$

where
$$A(x) = \exp(-\int_0^x a(v) dv)$$
 and $f_A(x) = f(x)/A(x)$.

Issues...to be taken care of

1. We can use the MC method already from the representation

$$p(T,x) = xA(x)\mathbb{E}_{x}^{\mathsf{BES}^{3}} \left[\exp\left(-\int_{0}^{T} \gamma(X_{\mathsf{s}}) \mathrm{d}s\right) \frac{f_{A}(X_{T})}{X_{T}} \right].$$

▶ $f_A(x)$ is sometimes zero for many values of x. Can we profit from such a situation? Possibly by simulating X_T first?

Issues...to be taken care of

1. We can use the MC method already from the representation

$$p(T,x) = xA(x)\mathbb{E}_x^{\mathsf{BES}^3} \left[\exp\left(-\int_0^T \gamma(X_s) \mathrm{d}s\right) \frac{f_A(X_T)}{X_T} \right].$$

- ▶ $f_A(x)$ is sometimes zero for many values of x. Can we profit from such a situation? Possibly by simulating X_T first?
- **2.** We can find an estimator of p'_{\times} by writing

$$p(T,x) = \mathbb{E}_0^{\mathsf{BM}^3} \left[x A(x) \exp\left(-\int_0^T \gamma(|x e^1 + W_s|) \mathrm{d}s\right) \frac{f_A(|x e^1 + W_T|)}{|x e^1 + W_T|} \right]$$

and differentiating w.r.t. x inside the expectation.

Issues...to be taken care of

1. We can use the MC method already from the representation

$$p(T,x) = xA(x)\mathbb{E}_x^{\mathsf{BES}^3} \left[\exp\Big(-\int_0^T \gamma(X_s)\mathrm{d}s\Big) \frac{f_A(X_T)}{X_T} \right].$$

- ▶ $f_A(x)$ is sometimes zero for many values of x. Can we profit from such a situation? Possibly by simulating X_T first?
- **2.** We can find an estimator of p'_x by writing

$$p(T,x) = \mathbb{E}_0^{\mathsf{BM}^3} \left[x A(x) \exp\left(-\int_0^T \gamma(|x e^1 + W_s|) \mathrm{d}s\right) \frac{f_A(|x e^1 + W_T|)}{|x e^1 + W_T|} \right]$$

and differentiating w.r.t. x inside the expectation.

- ▶ Could be that *f* is not differentiable. . .
- ▶ ... but even if it is, this delta estimator has infinite variance.

Steps for Monte-Carlo simulation

1. Simulation of X_T **.** With ξ a 3-d standard normal,

$$X_T \stackrel{d}{=} \sqrt{T}|z\mathbf{e}_1 + \xi|, \quad \text{where } z = x/\sqrt{T}.$$

Steps for Monte-Carlo simulation

1. Simulation of X_T **.** With ξ a 3-d standard normal,

$$X_T \stackrel{d}{=} \sqrt{T}|z\mathbf{e}_1 + \xi|$$
, where $z = x/\sqrt{T}$.

2. Simulation of $(X_s)_{s \in [0,T]}$ **given** X_T . With β a BB³ — standard Brownian bridge, independent of ξ :

$$\left((X_s)_{s\in[0,T]}\mid X_T=\sqrt{T}\xi\right)\stackrel{d}{=}\left(\sqrt{T}\left|z\mathrm{e}_1+\frac{s}{T}\xi+\beta_{s/T}\right|\right)_{s\in[0,T]}.$$

Steps for Monte-Carlo simulation

1. Simulation of X_T **.** With ξ a 3-d standard normal,

$$X_T \stackrel{d}{=} \sqrt{T}|z\mathbf{e}_1 + \xi|$$
, where $z = x/\sqrt{T}$.

2. Simulation of $(X_s)_{s \in [0,T]}$ **given** X_T . With β a BB³ — standard Brownian bridge, independent of ξ :

$$\left((X_s)_{s \in [0,T]} \mid X_T = \sqrt{T}\xi \right) \stackrel{d}{=} \left(\sqrt{T} \left| z e_1 + \frac{s}{T}\xi + \beta_{s/T} \right| \right)_{s \in [0,T]}.$$

▶ With $z = x/\sqrt{T}$ and some change of variables, we get that $\left(\int_0^T \gamma(X_s) \mathrm{d}s \mid X_T = \sqrt{T}\xi\right)$ has the distribution of

$$T\int_0^1 \gamma \left(\sqrt{T}|z\mathbf{e}_1 + u\xi + \beta_u|\right) \mathrm{d}u$$

Monte-Carlo estimation for price

A final transformation. Set $\pi(T, z) := p(T, z\sqrt{T})$.

Monte-Carlo estimation for price

A final transformation. Set $\pi(T,z) := p(T,z\sqrt{T})$.

Notation: Under $\mathbb{P}^{(0,BB^3)}$, the pair (ξ,β) consists of two independent elements: $\xi \sim \mathcal{N}_3(0,Id)$ and $\beta \sim BB^3$.

The representation for the price.

$$\pi(T,z) = \mathbb{E}^{(0,BB^3)} \left[\frac{f_A(\sqrt{T}|ze_1 + \xi|)}{|ze_1 + \xi|} H^0(T,z;\,\xi,\beta) \right]$$

where

$$H^0(T,z;\,\xi,eta) \,:=\, A(\sqrt{T}z) \exp\Big(-T\int_0^1 \gamma \Big(\sqrt{T}|z\mathrm{e}_1+u\xi+eta_u|\Big)\mathrm{d}u\Big).$$

Monte-Carlo estimation for delta

Idea: Write the price as

$$\pi(T,z) = \mathbb{E}^{(z,BB^3)} \left[\frac{f_A(\sqrt{T}|\xi|)}{|\xi|} H^0(T,z;\xi - z\mathbf{e}_1,\beta) \right]$$
$$= \mathbb{E}^{(0,BB^3)} \left[\left(\frac{\mathrm{d}\mathbb{P}^{(z,BB^3)}}{\mathrm{d}\mathbb{P}^{(0,BB^3)}} \right) \frac{f_A(\sqrt{T}|\xi|)}{|\xi|} H^0(T,z;\xi - z\mathbf{e}_1,\beta) \right]$$

where $\mathbb{P}^{(z,BB^3)}$ is a new probability with

$$\frac{\mathrm{d}\mathbb{P}^{(z,\,\mathsf{BB}^3)}}{\mathrm{d}\mathbb{P}^{(0,\,\mathsf{BB}^3)}}\,=\,\exp\left(-\frac{|z|^2}{2}+z\xi^1\right).$$

Monte-Carlo estimation for delta

Idea: Write the price as

$$\pi(T,z) = \mathbb{E}^{(z,BB^3)} \left[\frac{f_A(\sqrt{T}|\xi|)}{|\xi|} H^0(T,z;\,\xi - z\mathbf{e}_1,\beta) \right]$$
$$= \mathbb{E}^{(0,BB^3)} \left[\left(\frac{\mathrm{d}\mathbb{P}^{(z,BB^3)}}{\mathrm{d}\mathbb{P}^{(0,BB^3)}} \right) \frac{f_A(\sqrt{T}|\xi|)}{|\xi|} H^0(T,z;\,\xi - z\mathbf{e}_1,\beta) \right]$$

where $\mathbb{P}^{(z,BB^3)}$ is a new probability with

$$\frac{\mathrm{d}\mathbb{P}^{(z,\,\mathsf{BB}^3)}}{\mathrm{d}\mathbb{P}^{(0,\,\mathsf{BB}^3)}}\,=\,\exp\left(-\frac{|z|^2}{2}+z\xi^1\right).$$

The representation for the delta. Differentiate, take then converse steps (pass to $\mathbb{P}^{(z,BB^3)}$) and then back to $\mathbb{P}^{(0,BB^3)}$):

$$\pi'_{z}(T,z) = \mathbb{E}^{(0,\,\mathsf{BB}^3)} \left[\frac{f_{\mathsf{A}}(\sqrt{T}|z\mathrm{e}_1 + \xi|)}{|z\mathrm{e}_1 + \xi|} H^1(T,z;\,\xi,\beta) \right], \;\; \mathsf{where} \; ...$$

Some facts to keep in mind.

- 1. Bias is not an issue, since:
 - Exact simulation of all stochastic quantities can be performed.
 - Only Riemann integrals have to be approximated.

Some facts to keep in mind.

- 1. Bias is not an issue, since:
 - Exact simulation of all stochastic quantities can be performed.
 - Only Riemann integrals have to be approximated.
- **2. Variance for long maturities** does not depend on the discretization steps we choose.

Some facts to keep in mind.

- 1. Bias is not an issue, since:
 - Exact simulation of all stochastic quantities can be performed.
 - Only Riemann integrals have to be approximated.
- **2. Variance for long maturities** does not depend on the discretization steps we choose.
- 3. Variance for short maturities close to barrier. We have:
 - ▶ Estimators for $\pi(T,z)$ and $\pi'_z(T,z)$ have $\mathcal{O}(1)$ variance.
 - Therefore, the estimator for:
 - $q(T, \ell + w\sqrt{T})$ has $\mathcal{O}(1)$ variance.
 - $q_y'(T, \ell + w\sqrt{T})$ has $\mathcal{O}(1/T)$ variance.

We need to improve on those.

Outline

Valuation and hedging of barrier options

A Monte-Carlo method based on 3-d Brownian bridges

Short maturities

Ramifications

Density of first-passage times for diffusions

General remarks on control variates

Control variates. Suppose we can jointly simulate (κ, λ) .

- ▶ $\mathbb{E}[\lambda]$ is *not* known, but $\mathbb{E}[\kappa]$ *is* known.
- ▶ With a sample $(\kappa_j, \lambda_j)_{j=1,...,N}$, regress λ on $\kappa \mathbb{E}[\kappa]$. Use the intercept from the regression as an estimator for $\mathbb{E}[\lambda]$.
- ▶ Comparison to naive sample-average estimator for $\mathbb{E}[\lambda]$: variance decreases by a factor of $1/(1-\rho_{\kappa,\lambda}^2)$.

General remarks on control variates

Control variates. Suppose we can jointly simulate (κ, λ) .

- ▶ $\mathbb{E}[\lambda]$ is *not* known, but $\mathbb{E}[\kappa]$ *is* known.
- ▶ With a sample $(\kappa_j, \lambda_j)_{j=1,...,N}$, regress λ on $\kappa \mathbb{E}[\kappa]$. Use the intercept from the regression as an estimator for $\mathbb{E}[\lambda]$.
- ► Comparison to naive sample-average estimator for $\mathbb{E}[\lambda]$: variance decreases by a factor of $1/(1-\rho_{\kappa,\lambda}^2)$.

Improving efficiency. Now consider (κ_T, λ_T) processes.

▶ Want to estimate $\mathbb{E}[\lambda_T]$ for small T; $\mathbb{E}[\kappa_T]$ is known.

Lemma: If
$$\lambda_T = \kappa_T + \mathcal{O}(h_T)$$
 for $h: \mathbb{R}_+ \mapsto \mathbb{R}_+$, then

$$\sqrt{1-
ho_{\kappa_T,\lambda_T}^2} = \mathcal{O}(h_T)$$

Back to our problem

Idea. Remember that for k = 0, 1 we have:

$$\pi(T,z) = \mathbb{E}^{(0,BB^3)} \left[\frac{f_A(\sqrt{T}|ze_1 + \xi|)}{|ze_1 + \xi|} H^0(T,z;\xi,\beta) \right]$$

$$\pi'_z(T,z) = \mathbb{E}^{(0,BB^3)} \left[\frac{f_A(\sqrt{T}|ze_1 + \xi|)}{|ze_1 + \xi|} H^1(T,z;\xi,\beta) \right]$$

• Expand the above quantities around T = 0.

Back to our problem

Idea. Remember that for k = 0, 1 we have:

$$\pi(T,z) = \mathbb{E}^{(0,BB^3)} \left[\frac{f_A(\sqrt{T}|ze_1 + \xi|)}{|ze_1 + \xi|} H^0(T,z;\xi,\beta) \right]$$

$$\pi'_Z(T,z) = \mathbb{E}^{(0,BB^3)} \left[\frac{f_A(\sqrt{T}|ze_1 + \xi|)}{|ze_1 + \xi|} H^1(T,z;\xi,\beta) \right]$$

- Expand the above quantities around T = 0.
- ▶ If the expectations of the expansions above are computable, we are in business.
- ► This will also give limits of price and delta for short maturities and near the barrier.

The expansions for $T \approx 0$

For k = 0, 1, we can write:

$$\frac{f_A(\sqrt{T}|ze_1+\xi|)}{|ze_1+\xi|}H^k(T,z;\,\xi,\beta) = \sum_{i=0}^2 \eta_i^k(z;\xi)T^{i/2} + \mathcal{O}(\sqrt{T^3})$$

Remarks.

- ▶ None of the η 's above involves β .
- ▶ Both η_0^k 's do *not* involve a (or γ).
- ▶ $\mathbb{E}^{(0,BB^3)}[\eta_i^k(z;\xi)]$ has closed form for k = 0, 1, i = 0, 1, 2.
- ▶ We can go further in the expansion. Alas, the η_3^k 's involve β and their expectations are not straightforward.

The expansions for $T \approx 0$

For k = 0, 1, we can write:

$$\frac{f_A(\sqrt{T}|ze_1+\xi|)}{|ze_1+\xi|}H^k(T,z;\,\xi,\beta) = \sum_{i=0}^2 \eta_i^k(z;\xi)T^{i/2} + \mathcal{O}(\sqrt{T^3})$$

Remarks.

- ▶ None of the η 's above involves β .
- ▶ Both η_0^k 's do *not* involve a (or γ).
- ▶ $\mathbb{E}^{(0,BB^3)}[\eta_i^k(z;\xi)]$ has closed form for k = 0, 1, i = 0, 1, 2.
- ▶ We can go further in the expansion. Alas, the η_3^k 's involve β and their expectations are not straightforward.

Original problem. We have managed to find estimators...

- ... of $q(T, \ell + \sqrt{T}w)$ with $\mathcal{O}(T^3)$ variance.
- ... of $q_v'(T, \ell + \sqrt{T}w)$ with $\mathcal{O}(T^2)$ variance.

Limiting behavior of price and delta for short maturities

Limits close to the barrier for short maturities:

$$\lim_{T\downarrow 0} q\left(T,\,\ell+\sqrt{T}z\sigma(\ell)\right) = g(\ell)\big(2\Phi(z)-1\big),$$

$$\lim_{T\downarrow 0} \sqrt{T}q_y'\left(T,\,\ell+\sqrt{T}z\sigma(\ell)\right) = \frac{2g(\ell)}{\sigma(\ell)}\bigg(\Phi(-z)(1+z) + \frac{e^{-\frac{z^2}{2}}}{\sqrt{2\pi}}\bigg)$$

Φ: standard normal CDF.

Outline

Valuation and hedging of barrier options

A Monte-Carlo method based on 3-d Brownian bridges

Short maturities

Ramifications

Density of first-passage times for diffusions

Other sensitivities

Gamma. We can also represent:

$$\pi''_{zz}(T,z) = \mathbb{E}^{(0,BB^3)} \left[\frac{f_A(\sqrt{T}|ze_1+\xi|)}{|ze_1+\xi|} H^2(T,z;\,\xi,\beta) \right].$$

- ▶ We get asymptotic expansions of same order as before. . .
- ▶ Estimators for $q''_{yy}(T, \ell + \sqrt{T}w)$ have $\mathcal{O}(T)$ variance.

Other sensitivities

Gamma. We can also represent:

$$\pi''_{zz}(T,z) = \mathbb{E}^{(0,BB^3)} \left[\frac{f_A(\sqrt{T}|ze_1+\xi|)}{|ze_1+\xi|} H^2(T,z;\,\xi,\beta) \right].$$

- ▶ We get asymptotic expansions of same order as before. . .
- ▶ Estimators for $q''_{yy}(T, \ell + \sqrt{T}w)$ have $\mathcal{O}(T)$ variance.

Rho. If underlying is traded (b(y) = ry), r appears in a (and γ):

$$a(y) = \frac{rH^{-1}(y)}{\sigma \circ H^{-1}(y)} - \frac{\sigma' \circ H^{-1}(y)}{2}.$$

With this in mind, we can carry the previous steps.

Smooth path-dependency; Non-homogeneity

1. More complicated payoffs. We consider:

$$P_T := G(T, (Y_t)_{t \in [0,T]}) \mathbb{I}_{\{m_T > \ell\}}.$$

- ▶ Price representation: Exactly same as before.
- ▶ **Delta representation:** *G* must be differentiable. Apart from extra work to differentiate *G*, no further problems.

Smooth path-dependency; Non-homogeneity

1. More complicated payoffs. We consider:

$$P_T := G(T, (Y_t)_{t \in [0,T]}) \mathbb{I}_{\{m_T > \ell\}}.$$

- Price representation: Exactly same as before.
- ▶ **Delta representation:** *G* must be differentiable. Apart from extra work to differentiate *G*, no further problems.

2. Non-homogeneous diffusions.

$$dY_t = b(t, Y_t)dt + \sigma(t, Y_t)dW_t.$$

- ▶ H, a (and γ) are now functions of (t, y).
- Results in more complicated integration, but doable.

Outline

Valuation and hedging of barrier options

A Monte-Carlo method based on 3-d Brownian bridges

Short maturities

Ramifications

Density of first-passage times for diffusions

First-passage time density estimation — the problem

Model: A diffusion Y with $Y_0 = y$ and dynamics

$$dY_t = b(Y_t)dt + \sigma(Y_t)dW_t, \ t \in \mathbb{R}_+.$$

First-passage time density estimation — the problem

Model: A diffusion Y with $Y_0 = y$ and dynamics

$$dY_t = b(Y_t)dt + \sigma(Y_t)dW_t, \ t \in \mathbb{R}_+.$$

First passage time to $\ell < y$: the stopping time defined as

$$\tau_{\ell} := \inf\{t \in \mathbb{R}_+ \mid Y_t = \ell\}.$$

First-passage time density estimation — the problem

Model: A diffusion Y with $Y_0 = y$ and dynamics

$$dY_t = b(Y_t)dt + \sigma(Y_t)dW_t, \ t \in \mathbb{R}_+.$$

First passage time to $\ell < y$: the stopping time defined as

$$\tau_{\ell} := \inf\{t \in \mathbb{R}_+ \mid Y_t = \ell\}.$$

Problem: Figure out the density $\phi_{y\to\ell}^{(b,\sigma)}$ of τ_ℓ under $\mathbb{P}_y^{(b,\sigma)}$:

$$\phi_{y\to\ell}^{(b,\sigma)}(T) = \frac{\mathrm{d}\,\mathbb{P}_y^{(b,\sigma)}[\tau_\ell \leq T]}{\mathrm{d}\,T}.$$

First-passage time density estimation — usual approach

CDF estimation: Simulate N discretized paths of Y.

- For each path $i=1,\ldots,N$, simulate \hat{Y}_{t_1},\ldots , until the first k such that $\hat{Y}_{t_k} \leq \ell$ and set $\hat{\tau}^i$ equal to t_k .
- ► Consider the (biased, in general) estimator of the CDF:

$$\hat{F}_N(T) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}_{\{\hat{\tau}^i \leq T\}}.$$

First-passage time density estimation — usual approach

CDF estimation: Simulate N discretized paths of Y.

- For each path $i=1,\ldots,N$, simulate \hat{Y}_{t_1},\ldots , until the first k such that $\hat{Y}_{t_k} \leq \ell$ and set $\hat{\tau}^i$ equal to t_k .
- ► Consider the (biased, in general) estimator of the CDF:

$$\hat{F}_N(T) = \frac{1}{N} \sum_{i=1}^N \mathbb{I}_{\{\hat{\tau}^i \leq T\}}.$$

Density estimation. $\phi = F'$; use a *kernel* estimator to get $\hat{\phi}_N$ from \hat{F}_N . Even if \hat{F}_N is unbiased, we *do not* get

$$\hat{\phi}_{N} = \phi + \mathcal{O}(N^{-1/2})$$

Can we do better?

Aim: Find an estimator of ϕ with $\hat{\phi}_N = \phi + \mathcal{O}(N^{-1/2})$.

Can we do better?

Aim: Find an estimator of ϕ with $\hat{\phi}_N = \phi + \mathcal{O}(N^{-1/2})$.

Representation with respect to Brownian bridge: Following the previous steps, with slight twists, we get with x = H(y):

$$\frac{\phi_{y\to\ell}^{(b,\sigma)}(T)}{\phi_{y\to\ell}^{(0,1)}(T)} = xA(x)\mathbb{E}^{\mathsf{BB}^3}\Big[\exp\Big(-T\int_0^T \gamma(|xue_1+\sqrt{T}\beta_u|)\mathrm{d}u\Big)\Big].$$

Can we do better?

Aim: Find an estimator of ϕ with $\hat{\phi}_N = \phi + \mathcal{O}(N^{-1/2})$.

Representation with respect to Brownian bridge: Following the previous steps, with slight twists, we get with x = H(y):

$$\frac{\phi_{y\to\ell}^{(b,\sigma)}(T)}{\phi_{y\to\ell}^{(0,1)}(T)} = xA(x)\mathbb{E}^{\mathsf{BB}^3}\Big[\exp\Big(-T\int_0^T \gamma(|xue_1+\sqrt{T}\beta_u|)\mathrm{d}u\Big)\Big].$$

▶ The representation and the CLT give an estimator such that

$$\widehat{\left(\phi_{y\to\ell}^{(b,\sigma)}\right)}_{N}(T) = \phi_{y\to\ell}^{(b,\sigma)}(T) + \mathcal{O}(N^{-1/2}).$$

▶ The convergence holds *uniformly* for (T, y) in compact sets.

The "rate" function: Write $\phi_{y\to\ell}^{(b,\sigma)}(T)=\exp\big(-T\lambda_{y\to\ell}^{(b,\sigma)}(T)\big)$, i.e,

$$\lambda_{y \to \ell}^{(b,\sigma)}(T) := -\frac{1}{T} \log \left(\phi_{y \to \ell}^{(b,\sigma)}(T) \right)$$

The "rate" function: Write $\phi_{y\to\ell}^{(b,\sigma)}(T)=\exp\left(-T\lambda_{y\to\ell}^{(b,\sigma)}(T)\right)$, i.e,

$$\lambda_{y \to \ell}^{(b,\sigma)}(T) := -\frac{1}{T} \log \left(\phi_{y \to \ell}^{(b,\sigma)}(T) \right)$$

Rate near zero: $\lim_{T\downarrow 0} \lambda_{y\to \ell}^{(b,\sigma)}(T) = \frac{1}{y-\ell} \int_{\ell}^{y} \gamma(u) du$.

The "rate" function: Write $\phi_{y\to\ell}^{(b,\sigma)}(T)=\exp\left(-T\lambda_{y\to\ell}^{(b,\sigma)}(T)\right)$, i.e,

$$\lambda_{y \to \ell}^{(b,\sigma)}(T) := -\frac{1}{T} \log \left(\phi_{y \to \ell}^{(b,\sigma)}(T) \right)$$

Rate near zero: $\lim_{T\downarrow 0} \lambda_{y\to \ell}^{(b,\sigma)}(T) = \frac{1}{y-\ell} \int_{\ell}^{y} \gamma(u) du$.

Rate at infinity: There is no explosion:

$$-\infty \, < \, \liminf_{T \to \infty} \lambda_{y \to \ell}^{(b,\sigma)}(T) \, \leq \, \limsup_{T \to \infty} \lambda_{y \to \ell}^{(b,\sigma)}(T) \, < \, +\infty.$$

The "rate" function: Write $\phi_{y\to\ell}^{(b,\sigma)}(T)=\exp\left(-T\lambda_{y\to\ell}^{(b,\sigma)}(T)\right)$, i.e,

$$\lambda_{y \to \ell}^{(b,\sigma)}(T) := -\frac{1}{T} \log \left(\phi_{y \to \ell}^{(b,\sigma)}(T) \right)$$

Rate near zero: $\lim_{T\downarrow 0} \lambda_{y\to \ell}^{(b,\sigma)}(T) = \frac{1}{y-\ell} \int_{\ell}^{y} \gamma(u) du$.

Rate at infinity: There is no explosion:

$$-\infty < \liminf_{T \to \infty} \lambda_{y \to \ell}^{(b,\sigma)}(T) \leq \limsup_{T \to \infty} \lambda_{y \to \ell}^{(b,\sigma)}(T) < +\infty.$$

Connection with 2nd order ODEs. For ergodic diffusions, $\lim_{T\to\infty}\lambda_{y\to\ell}^{(b,\sigma)}(T)=:\lambda_1$ exists, does *not* depend on y, and is the first eigenvalue of a certain Dirichlet problem on $[\ell,\infty)$.

- ▶ This fact can be used to improve the estimator for the density.
- ▶ Other direction: MC can help to numerically compute λ_1 .

Concluding discussion

- ▶ We propose a MC simulation method for approximating the price and sensitivities of barrier options in diffusion models.
- The method has very low bias because all stochastic quantities involved can be simulated exactly.
- The variance does not depend on dicretization.
- Via asymptotic expansions near maturity we obtain control variates that dramatically reduce variance, especially for short maturities (but that should be used for any maturity).
- We apply the method for estimation of the *density* of diffusion first-passage times, where we are able to beat the typical non-parametric rate of convergence.

Concluding discussion

- ▶ We propose a MC simulation method for approximating the price and sensitivities of barrier options in diffusion models.
- ► The method has very low bias because all stochastic quantities involved can be simulated *exactly*.
- ▶ The variance does not depend on dicretization.
- Via asymptotic expansions near maturity we obtain control variates that dramatically reduce variance, especially for short maturities (but that should be used for any maturity).
- ▶ We apply the method for estimation of the *density* of diffusion first-passage times, where we are able to beat the typical non-parametric rate of convergence.

THE END.

