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Model Pricing Hedging

Motivation

Main risk factors for equity derivatives

stock returns

volatility

default risk of the underlying

interest rates

Assets needed for hedging all sources of risk

stock

vanilla options

corporate bonds (or CDS)

government bonds (or money market account)
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Model Pricing Hedging

Ingredients

State space D = R
m
+ × R

n, N = m+ n

Time-homogeneous Markov process (Xt,Px)t≥0,x∈D on D

Px = pricing measure given that X0 = x ∈ D

I = {1, . . . ,m}, J = {m+ 1, . . . , N}

Standard Poisson Process (Nt)t≥0 independent of X

〈·, ·〉: Euclidean scalar product on C
N , i.e.

∀x, y ∈ C
N : 〈x, y〉 =

N
∑

i=1

xiyi.
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Model Pricing Hedging

Stock price, interest rates and default

Stock price:

St = exp(st +Rt + Λt)1{t<τ}

Excess return: st = e+ 〈ε,Xt〉

Interest rates: rt = d+ 〈δ,Xt,I〉 (d, δ) ∈ R
m+1
+ , Rt =

∫ t

0
rsds

Default intensity: λt = c+ 〈γ,Xt,I〉, (c, γ) ∈ R
m+1
+

Λt =
∫ t

0
λsds,

Default time: τ = inf{t > 0 : NΛt
= 1}
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Model Pricing Hedging

Affine Markov processes

Affine term structure models: Vasicek (1977),
Cox–Ingersoll–Ross (1985), Duffie–Kan (1996),
Dai–Singleton (2000)

Affine models of stochastic volatility: Stein–Stein (1991),
Heston (1993)

Reduced form affine models of credit default: Lando (1998)

Unified pricing model: Carr–Schoutens (2008)

General theory: Duffie–Pan–Singleton (2000),
Duffie–Filipovic–Schachermayer (2003),
Keller-Ressel–Teichmann–Schachermayer (2009)
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Model Pricing Hedging

Regular Affine Processes

Definition

(Xt,Px)t≥0,x∈D is regular affine if there exist functions φ(t, u)
and ψ(t, u) such that

Ex [exp (〈u,Xt〉)] = exp (φ(t, u) + 〈ψ(t, u), x〉) , u ∈ iRm × iRn

and Xs → Xt in probability as s→ t.
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Model Pricing Hedging

Infinitesimal generator

X is a Feller process with infinitesimal generator

Gf(x) =

N
∑

k,l=1

(

akl +
〈

αI
kl, xI

〉) ∂2f(x)

∂xk∂xl

+ 〈b+ βx,∇f(x)〉 − (c+ 〈γ, xI〉)

+

∫

D\{0}
(f(x+ ξ)− f(x)− 〈∇J f(x), χJ (ξ)〉) ν(dξ)

+

m
∑

i=1

∫

D\{0}
(f(x+ ξ)− f(x)

−
〈

∇J∪{i}f(x), χJ∪{i}f(ξ)
〉)

xiµi(dξ).
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Model Pricing Hedging

Additional technical assumption

∫

D\Q
e〈q,ξ〉ν(dξ) <∞ and

∫

D\Q
e〈q,ξ〉µi(dξ) <∞, i ∈ I,

where Q = {ξ ∈ D : |ξk| ≤ 1, k = 1, . . . , N}.
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Model Pricing Hedging

Generalized Riccati equations

For all u ∈ iRm × iRn the functions φ and ψ are solutions to a
coupled system of generalized Riccati equations involving the
coefficients a, α, b, β, c, γ, ν, µ
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Model Pricing Hedging

Example: Heston model with stochastic interest rates

and jump to default

dX1
t =κ1

(

θ1 −X1
t

)

dt+ η1

√

X1
t dW

1
t

dX2
t =κ2

(

θ2 −X2
t

)

dt+ η2

√

X2
t dW

2
t

dX3
t =−

1

2
X1

t dt+
√

X1
t dW

3
t

with correlation matrix of the Brownian motions




1 0 ρ
0 1 0
ρ 0 1




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Model Pricing Hedging

st, rt, λt

Excess log returns: st = X3
t

Interest rates: rt = d+ δ1X
1
t + δ2X

2
t

Default intensity: λt = c+ γ1X
1
t + γ2X

2
t

13 / 39



Model Pricing Hedging

Outline

1 Model

2 Pricing

3 Hedging

14 / 39



Model Pricing Hedging

Goal

We want to price payoffs of the form ϕ(St)

Government bonds: ϕ ≡ 1

Corporate bonds: ϕ(x) = 1{x>0}

Call options: ϕ(x) = (x−K)+

Power payoffs ϕ(x) = xp1{x>0}

...
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Model Pricing Hedging

Fast Fourier transform methods

For stock price dynamics such that St > 0 there exists pricing
literature (Carr–Madan (1999) with extensions by Lee (2003)
and many others) that gives formulas for European option
prices in terms of the discounted characteristic function

Ex [exp (−Rt + iz log St)]

16 / 39



Model Pricing Hedging

Generalized discounted characteristic functions

Define
ht,x(z) := Ex

[

exp (−Rt + z log St) 1{τ>t}

]

.

for all z ∈ Ut,x, where

Ut,x := {z ∈ C : ht,x(Re(z)) <∞} .

One can show that Ut,x is an open vertical strip, an open
vertical half-space or all of C.
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Model Pricing Hedging

Extension of the state space

D̂ = R
m+2 × R

n ∪ {∆}

Yt =

{

(Xt, Rt,Λt) if t < τ

∆ otherwise

(Yt)t≥0 is still regular affine
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Model Pricing Hedging

Generalized Riccati equations



























∂tA(t, u, v, w) = F (B(t, u, v, w), v, w)

∂tBI(t, u, v, w) = G(B(t, u, v, w), v, w)

BJ (t, u, v, w) = exp(βTJJ t)uJ

A(0, u, v, w) = 0, BI(0, u, v, w) = uI ,
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Model Pricing Hedging

Generalized Riccati equations

F (u, v, w) = 〈au, u〉 + 〈b, u〉+ dv + c(w − 1)

+

∫

D\{0}

(

e〈u,ξ〉 − 1− 〈uJ , χJ (ξ)〉
)

ν(dξ)

Gi(u, v, w) = 〈αiu, u〉+
d
∑

k=1

βkiuk + δiv + γi(w − 1)

+

∫

D\{0}

(

e〈u,ξ〉 − 1−
〈

uJ∪{i}, χJ∪{i}(ξ)
〉

)

µi(dξ)

for i ∈ I.
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Model Pricing Hedging

Candidate for ht,x

Define

lt,x(z) = exp(ze+A(t, zε, z − 1, z) + 〈B(t, zε, z − 1, z), x〉)

for z ∈ Vt, where

Vt := {z ∈ C : Bi(t, zε, z − 1, z) is finite for all i ∈ I}.

Since Y is affine, ht,x(iy) = lt,x(iy) for all y ∈ R

It := largest interval around 0 contained in Vt ∩ R

V 0
t := connected component of Vt containing 0
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Model Pricing Hedging

Main result

Theorem

For all (t, x) ∈ R+ ×D, Ut,x is an open subset of C containing
{z ∈ C : Re(z) ∈ It} and ht,x(z) = lt,x(z) for each z ∈ Ut,x ∩ V

0
t .

Idea of the proof:

1 ht,x is a characteristic function

2 lt,x is analytic on V 0
t .
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Model Pricing Hedging

Martingale property of the discounted stock price

Corollary

The condition

F (ε, 0, 1) = 0, G(ε, 0, 1) = 0 and βJJ = 0 (M)

is sufficient for the discounted stock price exp(st + Λt)1{t<τ} to
be a martingale with respect to all Px, x ∈ D.

If all components of εJ are different from 0, then (M) is also
necessary.

23 / 39



Model Pricing Hedging

Extension of Carr–Madan’s inverse Fourier transform

pricing formula

Call option with log strike k:

ct,x(k) = Ex

[

e−Rt

(

St − ek
)+
]

.

Proposition

If 1 + p ∈ Ut,x for some p > 0. Then

ct,x(k) =
e−pk

2π

∫

R

e−iykgc(y)dy =
e−pk

π

∫ ∞

0

Re
(

e−iykgc(y)
)

dy,

where

gc(y) =
ht,x(p+ 1 + iy)

p2 + p− y2 + iy(2p + 1)
.
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Model Pricing Hedging

Pricing in a Heston model with stochastic interest rates

and jump to default

Implied volatility surface: with and without default
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Model Pricing Hedging

Moment explosions
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Model Pricing Hedging

Pricing of European options with arbitrary payoff ϕ

Integrability condition

Lt,x = {ϕ : R+ → R : Ex

[

e−Rt |ϕ(St)|
]

<∞}.

Procedure:

1 Let ϕ ∈ Lt,x.

2 Take a set K of strikes of European calls.

3 Take a set P of powers of power payoffs in Lt,x.

4 Use regression weighted by the heuristic density of St in
order to find the best approximation. For better numerical
performance use Gram-Schmidt in order to orthogonalize
the power payoffs.
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Model Pricing Hedging

Application: truncated log payoff

Payoff function: ϕ(x) = log(x) ∨ k.

Example: S0 = 1, k = −1.

Approximating assets:
1 call options with strikes K = {0.02, 0.04, , . . . , 2} (P = ∅)
2 power payoffs of powers P = {0, 0.05, , . . . , 4.95} (K = ∅)
3 using K = {0.02, 0.06, , . . . , 1.98} and

P = {0, 0.1, . . . , 4.9}.

Heuristic density for St:

ρ(x) =











exp(−10x) x < 0.5

exp(−10|x− 1|) 0.5 ≤ x ≤ 1.5

exp(−5) x > 1.5.
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Model Pricing Hedging

Comparison of different approximation methods

0 0.5 1 1.5 2 2.5 3
−0.02

0

0.02

stock price

E
rr

or

Approximation using both

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

stock price

E
rr

or

Approximation using calls only

0 0.5 1 1.5 2 2.5 3
−0.1

0

0.1

stock price

E
rr

or

Approximation using power payoffs only

29 / 39



Model Pricing Hedging

Application: variance swap pricing

Variance swaps on futures on the stock with maturity t

Future price dFu = σuFudWu (no jumps)

St = Ft

Cap C > 0 (usually C = 2.5K)

Payoff at maturity:

Σt = max

(

1

t

I
∑

i=1

(

log
Fti

Fti−1

)2

−K,C

)
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Model Pricing Hedging

Application: variance swap pricing

Without default:

Neglect the cap (it is very unlikely to be hit)

Approximation by Dupire (1993) and Neuberger (1994):

I
∑

i=1

(

log
Fti

Fti−1

)2

≈

∫ t

0

σ2udu

= 2

(∫ t

0

1

Fu

dFu − logSt + log F0

)

,
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Model Pricing Hedging

Application: variance swap pricing

With default:

Cap is important

Approximate price for k = log(F0)− t(C +K)/2:

Σt ≈ 1{τ>t}

{

1

t

∫ t

0

σ2udu−K

}

+ 1{τ≤t}C

≈
2

t

{∫ t∧τ

0

1

Fu−
dFu − (log(St) ∨ k) + log F0

}

−K − 1{τ≤t}
2

t

∫ τ

0

1

Fu−
dFu
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Model Pricing Hedging

Completing the market

Number of assets must match the number of sources of risk
and the sources of risk must be “hedgeable”

Jumps must be discrete

ν =
∑M

q=1 vqδxq
for some vq > 0 xq ∈ D\{0}

µi =
∑Mi

q=1 viqδxiq
for all i ∈ I with viq ∈ R\{0} and

xiq ∈ D\{0}.

Assume X has a realization as

dXt = µ(Xt)dt+ σ(Xt)dWt +

m
∑

i=0

N i
t

∑

k=1

Zi
k

Where W is an N -dimensional BM, N i are Poisson
processes and Zi

1, Z
i
2... are i.i.d.
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Model Pricing Hedging

Completing the market

L = N +M +
∑m

i=1Mi + 1 instruments needed

Porfolio of basic instruments (European options):
Φ = {(t1, ϕ1), . . . , (tL, ϕL)}
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Model Pricing Hedging

Sensitivities

Classical Greeks: For q = 1, . . . , N :

Hq
t,x =

∂

∂xq
Ex[exp(−Rt)ϕ(St)]

Sensitivity to jumps corresponding to ν:
For q = 1, . . . ,M :

Jq
t,x = Ex+xq

[exp(−Rt)ϕ(St)]− Ex[exp(−Rt)ϕ(St)]

Sensitivity to jumps corresponding to µi:
For q = 1, . . . ,Mi:

Jq
t,x = Ex+xiq

[exp(−Rt)ϕ(St)]− Ex[exp(−Rt)]ϕ(St)]

Sensitivity to default:

D = Ex[exp(−Rt)ϕ(0)] − Ex[exp(−Rt)ϕ(St)]
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Model Pricing Hedging

Replicating portfolio

H1
t,x =

L
∑

l=1

ϑl(t, x)H l,1
t,x . . . HN

t,x =

L
∑

l=1

ϑl(t, x)H l,N
t,x

J1
t,x =

L
∑

l=1

ϑl(t, x)J l,1
t,x . . . JM

t,x =

L
∑

l=1

ϑl(t, x)J l,M
t,x

...

...

Dt,x =
L
∑

l=1

ϑl(t, x)Dl
t,x
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Model Pricing Hedging

Completeness

The market is complete iff the system of linear equations
has a unique solution for all ϕ ∈ Lt,x.

In the Heston model with stochastic interest rates and
jump to default the market is complete if one can trade a
stock, a government bond, a corporate bond and a vanilla
option and the following holds for all 0 ≤ s ≤ t:

∂x1
ct,x(k)B

0
2(s, 0)− ∂x2

cs,x(k)B
0
1(s, 0) 6=

[B0
1(s, 0)B2(s, 0) −B0

2(s, 0)B1(s, 0)][∂x3
cs,x(k)− cs,x(k)]
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Model Pricing Hedging

Conclusion

General affine model for equity derivatives that
incorporates stochastic volatility, stochastic interest rates
and jump to default

Notion of discounted characteristic function for cases when
St = 0 with positive probability

Pricing in semi-closed form for most common European
equity derivatives; otherwise: approximation

Under additional assumptions: completeness/hedging
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