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Model

Motivation

Main risk factors for equity derivatives
@ stock returns
@ volatility
@ default risk of the underlying

@ interest rates

Assets needed for hedging all sources of risk
@ stock
@ vanilla options
@ corporate bonds (or CDS)

@ government bonds (or money market account)
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Model

Ingredients

State space D = R x R", N =m +n
Time-homogeneous Markov process (X¢,Py)i>02ep on D
P, = pricing measure given that Xg =x € D
I={l,....m}, J={m+1,...,N}

Standard Poisson Process (Ny):>o independent of X

e 6 6 6 ¢ ¢

(-,-): Euclidean scalar product on C%, i.e.

Vz,y e CN . Zl‘zyz
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Model

Stock price, interest rates and default

©

Stock price:

Sy = exp(st + Ry + M) Lory

©

Excess return: s; = e + (g, Xy)
Interest rates: ry = d+ (6, Xt 7) (d,9) € ]RTH, R, = fg reds
o Default intensity: A = ¢+ (v, Xy 1), (c,7) € RP*!
Ay = [ Asds,
@ Default time: 7 =inf{t > 0: Ny, = 1}

©
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Model

Affine Markov processes

@ Affine term structure models: Vasicek (1977),
Cox—Ingersoll-Ross (1985), Duffie-Kan (1996),
Dai-Singleton (2000)

@ Affine models of stochastic volatility: Stein-Stein (1991),
Heston (1993)

@ Reduced form affine models of credit default: Lando (1998)
@ Unified pricing model: Carr—Schoutens (2008)

@ General theory: Duffie-Pan—Singleton (2000),
Duffie-Filipovic-Schachermayer (2003),
Keller-Ressel-Teichmann—Schachermayer (2009)
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Model

Regular Affine Processes

Definition

(Xt,Py)i>02ep is regular affine if there exist functions ¢(t, u)
and 1 (t,u) such that

E, [exp ({(u, X3))] = exp (o(t, u) + (Y(t,u),z)), u € iR™ x iR"

and X; — X in probability as s — t.



X is a Feller process with infinitesimal generator

N 82
gf(z) = Z (akl + <agl,xz>) #g;)l
k=1

+ (b+ Bz, Vf(x))— (c+ (v,27))
+ / (F&+8) — F(@) — (Vs f (@), x7(€))) v(de)
D\{0}

T Z/D\{O}forf /@)
— (Vo f (@), xgugiy f(€))) i (dE).
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/ el (d¢) < 0o and / el pi(d) < o0, i€,
D\Q D\Q

where Q ={{e€D:|&| <1, k=1,...,N}.
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For all u € iR™ x iR™ the functions ¢ and v are solutions to a
coupled system of generalized Riccati equations involving the
coefficients a, , b, 5, ¢, v, v, i
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dX} =r1 (01 — X}) dt +m\/ X} AW}
AX? =ro (02 — X}P) dt + no/ XZdW?

1
X} = — §X§dt + 4/ X AW}

oe)

with correlation matrix of the Brownian motions

1
0
p

o = O
=~
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@ Excess log returns: s; = X}
o Interest rates: ry = d + 81 X} + 52 X7
@ Default intensity: A\; = ¢ + 1 X} + X7
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© Pricing
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@ We want to price payoffs of the form ¢(Sy)
@ Government bonds: ¢ =1

@ Corporate bonds: p(z) = 11550}

@ Call options: p(z) = (z — K)*

@ Power payoffs p(z) = 2P1,-0)
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Pricing

Fast Fourier transform methods

For stock price dynamics such that Sy > 0 there exists pricing
literature (Carr-Madan (1999) with extensions by Lee (2003)
and many others) that gives formulas for European option
prices in terms of the discounted characteristic function

E, [exp (—R; + izlog St)]
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Generalized discounted characteristic functions

Define
hig(2) :=E; [exp (—R¢ + zlog St) 1{T>t}] .

for all z € Uy o, where
Uiz ' ={2€C: hyyz(Re(z)) < oo} .

One can show that U; , is an open vertical strip, an open
vertical half-space or all of C.
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o D=R"?2xR"U{A}

Y . (Xt,Rt,At) lft <T
b A otherwise

@ (Y;)>o is still regular affine
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Generalized Riccati equations

8tA(t> u, v, ’LU) = F(B(tv u, v, w)> v, ’U))
8tBI(t> u, v, ’LU) = G(B(tv u, v, w)> v, ’U))
Bj(ta u,v, w) = exp(ﬁgjt)uj
A(O,U,U,’U}) = 07 BI(O,U,’U,UJ) = uz,
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Generalized Riccati equations

F(u,v,w) = (au,u) + (b,u) +dv+c(w —1)
w8 1 — (y v
[ (1 ) e
d
Gi(u,v,w) = (oyu,u)+ Zﬁkiuk + 0;v + v (w —1)

k=1

" /D\{O} <e<u’€> —1- <“Ju{z‘}a Xju{i}(§)>) wi(ds)

for: e 1.
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@ Define
liz(2) = exp(ze + A(t,ze, 2 — 1,2) + (B(t,ze, 2 — 1, 2),x))
for z € V, where
Vi:={z € C: B(t,ze,z — 1, 2) is finite for all i € Z}.

@ Since Y is affine, hy . (iy) = l; . (iy) for all y € R
@ [; := largest interval around 0 contained in V; N R

@ V) := connected component of V; containing 0
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Pricing

Main result

Theorem

For all (t,z) € Ry x D, Uz, is an open subset of C containing
{2 € C:Re(z) € It} and hy 4 (2) = l; ,(2) for each z € Uy, N V2.

Idea of the proof:
@ N, is a characteristic function

@ [; . is analytic on Vto.



Pricing

Martingale property of the discounted stock price

Corollary
The condition

F(£,0,1) =0, G(£,0,1) =0 and B77 =0 (M)

is sufficient for the discounted stock price exp(s; + A¢)l<ry to
be a martingale with respect to all P,, x € D.

If all components of £ are different from 0, then (M) is also
necessary.



Pr

Extension of Carr—Madan’s inverse Fourier transform
pricing formula

Call option with log strike k:

cra(k) = Eq [eRt (St - ek) +] .

Proposition
It 1 +pe U, for some p > 0. Then

e Pk _ e Pk [ i
et (k) = —- /Re k. (y)dy = - /0 Re (e y’“gc(y)) dy,

where .
ht,w(p + 1 + Zy)

CpP+p—yi+iy(2p+ 1)

9e(y)
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Pricing

Pricing of European options with arbitrary payoff ¢

Integrability condition

Liz ={¢:Ry >R :E,; [e_Rt|4p(St)H < o0}

Procedure:

00060

Let ¢ € Ly 4.
Take a set IC of strikes of European calls.
Take a set P of powers of power payoffs in Ly ,.

Use regression weighted by the heuristic density of S; in
order to find the best approximation. For better numerical
performance use Gram-Schmidt in order to orthogonalize
the power payoffs.
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Application: truncated log payoff

@ Payoff function: ¢(z) = log(x) V k.
o Example: Sp =1, k= —1.
@ Approximating assets:

@ call options with strikes £ = {0.02, 0.04, ,..., 2} (P =10)
© power payoffs of powers P = {0, 0.05, ,..., 4.95} (K =0)
@ using £ = {0.02, 0.06, ,..., 1.98} and

P={0,0.1,..., 4.9}.

@ Heuristic density for S;:

exp(—10z) x < 0.5
p(x) = exp(—10jz —1]) 05<z <15
exp(—5) x > 1.5.

28 /39



Pricing

Comparison of different approximation methods

Approximation using power payoffs only
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Pricing

Application: variance swap pricing

@ Variance swaps on futures on the stock with maturity ¢
e Future price dF,, = o, F,dW, (no jumps)

o S5 =F

@ Cap C > 0 (usually C = 2.5K)

@ Payoff at maturity:

1< F, \?
2 : t
Et = max (z <10g Ft. > — K, C)
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Application: variance swap pricing

Without default:
@ Neglect the cap (it is very unlikely to be hit)
@ Approximation by Dupire (1993) and Neuberger (1994):

I 2 +

S (leg) = [
log—"| ~ | o,du
<gF;5i—1 0

i=1

t
= 2</ —dFu—logSt+logF0>,
o Fu
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Application: variance swap pricing

With default:
@ Cap is important

@ Approximate price for k = log(Fy) — t(C + K)/2:

2

Q

1 t
1{T>t} {Z /0 aidu — K} + ]‘{TSt}C
2 tAT 1
- {/ dFu — (log(St) \Y ]{3) + log Fo}
t \Jy Fu

2 (M1
—K — 1{T<t}¥/0 KdFu

Q
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© Hedging
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Completing the market

Number of assets must match the number of sources of risk
and the sources of risk must be “hedgeable”

Jumps must be discrete
v= Zf;il Vg0z, for some v, > 0 2, € D\{0}
Wi = Zf;ﬁl Vig0z,, for all i € T with v;; € R\{0} and
Tiq € D\{O}
Assume X has a realization as
m N
dX; = p(Xy)dt + o(X)dW, + Y 74
i=0 k=1

Where W is an N-dimensional BM, N’ are Poisson
processes and Z7, Z,... are i.i.d.
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@ L=N+ M+ ", M;+1 instruments needed

@ Porfolio of basic instruments (European options):
® = {(tr, 1), -5 (tr, L)}
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Hedging

Sensitivities
@ Classical Greeks: For ¢ =1,..., N:

iEx lexp(—R¢)p(St)]

HI, =
t,x 81,(]

@ Sensitivity to jumps corresponding to v:
Forq=1,...,M:
Jio = Eota, lexp(—R)@(Sy)] — Exlexp(—Re)e(S)]

@ Sensitivity to jumps corresponding to p;:
Forq=1,..., M;:

th,:c = Ex-i—:z:iq [exp(_Rt)SO(St)] - Ex[exp(_Rt)]SO(St)]
@ Sensitivity to default:
D = Eglexp(—R)p(0)] — Exlexp(—Ri)p(5t)]
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L L

1 _ LN

HY, = Y 9(tx)Hy, ... HY,=> 9(tz)H;,
=1 =1

L L
1,1 1,M
It o= Y Ve, . TN =D 0t
=1 =1
' L
Dt,x = zﬁl(tv‘r)Dé,z
=1
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Completeness

@ The market is complete iff the system of linear equations
has a unique solution for all ¢ € L; ,.

@ In the Heston model with stochastic interest rates and
jump to default the market is complete if one can trade a
stock, a government bond, a corporate bond and a vanilla
option and the following holds for all 0 < s < ¢:

8flct,$(k)Bg(S7 0) — 81208,w(k)B?(57 0) #
[BY(5,0)Ba(s,0) — By(s,0)Bi(5,0)][Dry s 0 (k) = c5,2(F)]
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Conclusion

@ General affine model for equity derivatives that
incorporates stochastic volatility, stochastic interest rates
and jump to default

@ Notion of discounted characteristic function for cases when
Sy = 0 with positive probability
@ Pricing in semi-closed form for most common European

equity derivatives; otherwise: approximation

@ Under additional assumptions: completeness/hedging

39 /39



	Model
	Pricing
	Hedging

