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Background

In the context of censoring data for survival analysis,

T is the failure time, or the time to event (e.g. death, relapse,
cancer)

C is the censoring time

Z is the covariates or predictors

Observe T̃ = min(T ,C ) and the censoring indicator
δ = I (T ≤ C ). The observations (T̃i , δi ,Zi ), i = 1, · · · , n.

Example: Lymphoma dataset (Rosenwald et al. 2002)

n = 240 diffuse large B-cell lymphoma (DLBCL) patients, and
p = 7, 399 genes for each patient.

Patients’ survival times were recorded, 138 patients died
during the follow-up method.
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Semi-parametric Survival Models

Widely-used survival models:

Cox’s proportional hazards (PH) model (Cox, 1972):

λ(t|Z ) = λ0(t) exp(β′0Z )

Proportional odds (PO) model (Pettitt, 1982, 1984; Bennett,
1983):

{1− S(t|Z )}/S(t|Z ) = [{1− S0(t)}/S0(t)] exp(β′0Z )

Linear transformation (LT) models (Clayton and Cuzick, 1985;
Cheng, Wei and Ying, 1995):

H0(T ) = −β′0Z + ε,

H0 is an unknown increasing function, ε has a known
continuous distribution and independent of Z.
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Variable selection problems for censored data

Write the regression coefficients β0 = (β01, · · · , β0p)′.

Index set for important variables: I = {1 ≤ j ≤ p : βj0 6= 0}
Index set for unimportant variables:
U = {1 ≤ j ≤ p : βj0 = 0}
Assume |I | = p0 < p. Write β0 = (β′I0, 0

′)′.

The main goals of a variable selection procedure are:

to identify I and U correctly;

to provide good estimators for βI0.
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Oracle properties

An ideal variable selection procedure should asymptotically satisfy:

produce parsimonious models automatically (with probability
one)

β̂j 6= 0 for j ∈ I

β̂j = 0 for j ∈ U;

achieve the optimal estimation rate

√
n(β̂I − βI0)→d N(0,ΣI0),

where ΣI0 is the covariance matrix knowing the true model.

Oracle procedure performs as well as if the correct true model were
known.
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Existing variable selection methods for censored data

Best subset selection and stepwise selection

Asymptotic testing procedures, such as score test and Wald
test

Bootstrap sampling procedures (Sauerbrei and Schumacher
1992)

Bayesian variable selection (Faraggi and Simon 1998; Ibrahim,
Chen and MacEachern 1999)

Shrinkage methods (LASSO: Tibshirani 1997; SCAD: Fan and
Li 2002; Adaptive-LASSO: Zhang and Lu 2007)
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Penalized partial likelihood estimation for Cox’s model

Log partial likelihood (Cox 1975):

ln(β) ≡
n∑

i=1

δi
{
β′Zi − log[

n∑
j=1

I (T̃j ≥ T̃i ) exp(β′Zj)]
}
.

The penalized log partial likelihood estimation

min
β
−1

n
ln(β) +

p∑
j=1

Jλ(βj).
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Choices of penalty function

Ridge regression (Hoerl and Kennard, 1970): Jλ(βj) = λβ2
j .

Bridge regression (Frank and Friedman, 1993):
Jλ(βj) = λ|βj |q, q ≥ 0.

If q = 0, known as entropy penalty (Donoho and Johnstone,
1998).
If q = 1, known as LASSO (Tibshirani, 1996).
For q ≤ 1, it tends to shrink small |β|’s to exactly zero.
Jλ is not convex for q < 1 while solutions are not sparse for
q > 1.

Other examples: SCAD, adaptive LASSO
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Adaptive LASSO estimation for Cox’s model

We solve (Zhang and Lu, 2007)

min
β
−1

n
ln(β) + λ

p∑
j=1

|βj |wj ,

where w = (w1, · · · ,wp)′ are the data-dependent weights.
Key Motivations:

Large penalties are imposed on unimportant covariate effects,
while small penalties for important ones. (Protect important
covariates more)

Let the data choose wj ’s adaptively.
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Extension to PO model

What if there is no partial likelihood available?

For the PO model, Lu and Zhang (2007) considered the
marginal likelihood.

The marginal likelihood generally does not have a closed form,
but it can be calculated using an importance sampling
technique.

We proposed to use the penalized marginal likelihood
estimation:

min
β
−1

n
ln,M(β) + λ

p∑
j=1

|βj |wj ,

where ln,M(β) is log marginal likelihood function.
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Linear Transformation Models

Linear transformation (LT) models form a rich class of models due
to the flexibility of H0.

H0(T ) = −β′0Z + ε.

They include PH and PO models as special cases

if ε follows extreme value distribution, LT reduces to PH
models

if ε follows the logistic distribution, LT reduces to PO models

if ε follows the standard normal distribution, LT generalizes
the usual Box-Cox transformation models.
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Advantages and Challenges with LT

A unified estimation framework for survival data.

can relax the independence assumption between the covariates
and the censoring variable (needed for the validity of PH
model).

reduce to partial likelihood under PH models.

Variable selection for LT models is less studied in literature.

Most estimation procedures for LT models are based on
estimating equations (e.g., Chen et al., 1995; Fine et al.,
1998; Chen et al., 2002).

Challenge 1: a convenient loss function is not available for LT
models.

Challenge 2: involves a nonparametric component H.

Our proposal: construct a sensible loss function first!
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Martingale based estimating equations

For subject i , define the counting process Ni (t) = δi I (T̃i ≤ t)
and at-risk process Yi (t) = I (T̃i ≥ t).

Mean-zero Martingale process:
Mi (t) = Ni (t)−

∫ t
0 Yi (s)dΛ{H0(s) + β′0Zi}, where Λ(·) is the

known cumulative hazard function of ε.

Martingale-based Estimating equations (Chen et al., 2002):

n∑
i=1

[dNi (t)− Yi (t)dΛ{β′Zi + H(t)}] = 0, t ≥ 0. (1)

n∑
i=1

∫ τ

0
Zi [dNi (t)− Yi (t)dΛ{β′Zi + H(t)}] = 0, (2)

A joint estimation of parametric and nonparametric terms.
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Computation

Let 0 < t1 < · · · < tK <∞ be the observed K failure times in the
data.

Step 1. Set β = β̂(0). Compute Ĥ(0) as follows. First solve

n∑
i=1

Yi (t1)Λ{H(t1) + β′Zi} = 1,

for Ĥ(0)(t1). Then solve sequentially

n∑
i=1

Yi (tk)[Λ{H(tk) + β′Zi} − Λ{Ĥ(0)(tk−) + β′Zi}] = 1,

for Ĥ(0)(tk), where k = 2, · · · ,K .
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Computation algorithm

Step 2. Solve equation

n∑
i=1

Zi [δi − Λ{Ĥ(0)(T̃i ) + β′Zi}] = 0.

for β̂(1).

Step 3. Set β = β̂(1) and repeat Steps 1 and 2 until
prescribed convergence criteria are met.
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Profiled score functions

Given β, let H̃(·;β) denote the solution of (1).

Plugging H̃ into equation (2) and define the profiled score
functions of β

Un(β) =
n∑

i=1

∫ τ

0
Zi [dNi (t)− Yi (t)dΛ{β′Zi + H̃(t;β)}]. (3)

Let β̃ denote the solution of Un(β) = 0.
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Asymptotic properties of β̃

We have

(i) n−1/2Un(β0)→ N(0,V ) in distribution, as n→∞.
(ii)
√
n(β̃ − β0)→ N(0,Σ) in distribution with Σ = A−1V (A−1)′,

as n→∞.
(iii) The asymptotic variance-covariance matrix Σ can be

consistently estimated by Σ̂n = Â−1
n V̂n(Â−1

n )′ using the usual
plugging method.

See Chen et al. (2002) for the details.
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Penalized profiled score squares

We first define a weighted quadratic loss function as:

Dn(β) = (1/n)U ′n(β)V̂−1
n Un(β).

Then propose to minimize

Qn(β) = Dn(β) + λn

p∑
j=1

J(|βj |). (4)

We use the adaptive Lasso penalty, using the weight
wj = 1/|β̃j |.
The PPS2 estimator is defined as β̂n = argminβQn(β).
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Computation of PPS2 estimators

Consider the Taylor expansion of Un(β) around β̂[0],

Un(β) ≈ Un(β̂[0]) + nÂn{β̂[0], H̃(·; β̂[0])}(β − β̂[0]),

Qn(β) can approximated by a quadratic form

n(β̂[0] +b−β)′Â
[0]′
n V̂−1

n Â
[0]
n (β̂[0] +b−β) +λn

p∑
j=1

wj |βj |, (5)

where Â
[0]′
n = Ân{β̂[0], H̃(·; β̂[0])} and

b = (Â
[0]′
n V̂−1

n Â
[0]
n )−1Â

[0]′
n V̂−1

n Un(β̂[0])/n.
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Computational algorithm

Step 0: Compute the full model estimator: β̃ and
H̃(·) = H̃(·; β̃).

Step 1: Choose an initial estimator β̂[0]. Set wj = 1/|β̃j | for
all j .

Step 2: Solve equation (1) to obtain H̃(·; β̂[0]).

Step 3: Minimize (5) and denote the shrinkage estimate as
β̂[1].

Step 4: Set β̂[0] = β̂[1] and repeat Steps 2 and 3 until
convergence.

Let β̂n denote the resulting sparse estimator.
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One-step estimator

full iteration: computationally intensive

one-step estimator, i.e. choosing β̂[0] = β̃. Note that
Un(β̃) = 0. Then (5) becomes

n(β̃ − β)′Σ̂−1
n (β̃ − β) + λn

p∑
j=1

wj |βj |. (6)

The minimization of (6) can be solved in R with the lars
package (Efron et al., 2004). The entire solution path of the
resulting PPS2 estimator can be also obtained.
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Theoretical properties of PPS2 estimators

Write the solution β̂n = (β̂′I ,n, β̂
′
U,n)′. In addition, write the limiting

covariance matrix Σ accordingly.

Theorem 1 (root-n Consistency). If
√
nλn = Op(1), then

‖β̂n − β0‖ = Op(n−1/2).

Theorem 2 (Sparsity and normality). Assume that
√
nλn → 0

and nλn →∞, then
(i) (Sparsity) β̂U,n = 0 with probability tending to one;
(ii) (Asymptotic normality)√
n(β̂I ,n − βI0)→ N{0,Σ11 − Σ12Σ−1

22 Σ21} as n goes to
infinity.
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Efficiency and tuning

The efficiency of the PPS2 estimator β̂I ,n for nonzero
components is better than that of the corresponding full
model estimator β̃I since

Σ11 − Σ12Σ−1
22 Σ21 < Σ11.

We use BIC for selecting λ, i.e.
BICλ = (β̂λ − β̃)′Σ̂−1

n (β̂λ − β̃) + log n · dfλ/n. Here dfλ is the
number of nonzero coefficients in β̂λ, a simple estimate for
the degree of freedom (Zou et al. 2007).
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Variance estimation

Two approaches to estimate the variance of the estimator:

estimates based on the asymptotic theory (Theorem 2)

the sandwich variance estimation: For any nonzero βj , we can
approximate its weighted L1 penalty with a local quadratic
function

|βj |
|β̃j |
≈

β2
j

|β̃j ||βj |
.

Details can found in Zhang, Lu and Wang (2010).
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Simulation studies for LT models

We consider both the PH and PO models.

We choose β = (−1,−0.9, 0, 0, 0,−0.8, 0, 0, 0)′, and the nine
covariates Z = (Z1, ...,Z9) are marginally standard normal
with the pairwise correlation corr(Zj ,Zk) = ρ|j−k| with
ρ = 0.5.

Censoring times are from uniform (0,c): 25% and 40%
censoring rates

Sample sizes n = 100, 200, simulation replications M = 500.

We compare the PPS2, PPL (Zhang and Lu, 2007), PML (Lu
and Zhang, 2007) estimates.
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Simulation results for PH model

Table 1. Mean squared error and model selection results
n Censored Method Average MSE Model Size Number of zero coefficients

oracle (3) correct (6) incorrect (0)
EE 0.244 (0.161) 9 0 (0) 0 (0)

25% PPS2 0.122 (0.119) 3.610 (0.920) 5.390 (0.920) 0.000 (0.000)
100 PPL 0.130 (0.121) 3.136 (0.412) 5.858 (0.403) 0.006 (0.077)

EE 0.277 (0.186) 9 0 (0) 0 (0)

40% PPS2 0.143 (0.133) 3.620 (0.885) 5.380 (0.885) 0.000 (0.000)
PPL 0.177 (0.161) 3.150 (0.456) 5.836 (0.435) 0.014 (0.118)

EE 0.087 (0.052) 9 0 (0) 0 (0)

25% PPS2 0.051 (0.040) 3.250 (0.557) 5.750 (0.557) 0.000 (0.000)
200 PPL 0.053 (0.050) 3.034 (0.181) 5.966 (0.181) 0.000 (0.000)

EE 0.110 (0.066) 9 0 (0) 0 (0)

40% PPS2 0.063 (0.049) 3.280 (0.604) 5.720 (0.604) 0.000 (0.000)
PPL 0.062 (0.055) 3.048 (0.214) 5.952 (0.214) 0.000 (0.000)
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Simulation results for PO model

Table 2. Mean squared error and model selection results
n Censored Method Average MSE Model Size Number of zero coefficients

oracle (3) correct (6) incorrect (0)
EE 0.481 (0.262) 9 0 (0) 0 (0)

25% PPS2 0.377 (0.303) 3.600 (0.932) 5.230 (0.874) 0.170 (0.403)
100 PML 0.436 (0.419) 2.898 (0.684) 5.856 (0.389) 0.246 (0.539)

EE 0.575 (0.347) 9 0 (0) 0 (0)

40% PPS2 0.385 (0.314) 3.490 (0.916) 5.360 (0.811) 0.150 (0.386)
PML 0.493 (0.484) 2.834 (0.735) 5.844 (0.400) 0.322 (0.599)

EE 0.213 (0.109) 9 0 (0) 0 (0)

25% PPS2 0.122 (0.085) 3.340 (0.670) 5.660 (0.670) 0.000 (0.000)
200 PML 0.231 (0.120) 3.026 (0.193) 5.968 (0.176) 0.006 (0.077)

EE 0.258 (0.168) 9 0 (0) 0 (0)

40% PPS2 0.132 (0.086) 3.310 (0.598) 5.690 (0.598) 0.000 (0.000)
PML 0.218 (0.142) 3.030 (0.239) 5.952 (0.214) 0.018 (0.133)
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Variance estimation results

Table 3. Estimated standard errors for the PPS2 nonzero estimates
(n = 200).

β̂1 β̂2 β̂6

Model Censoring SE ŜE ŜES SE ŜE ŜES SE ŜE ŜES
PH 25% 0.113 0.109 0.105 0.121 0.105 0.100 0.110 0.092 0.088

40% 0.126 0.120 0.114 0.135 0.116 0.109 0.122 0.103 0.097
PO 25% 0.187 0.165 0.152 0.211 0.164 0.147 0.165 0.146 0.131

40% 0.196 0.176 0.161 0.225 0.177 0.156 0.187 0.155 0.138

SE: sample standard deviation of the estimates; ŜE: the average of
estimated standard error based on theory; ŜES : the average of
estimated standard error based on the sandwich formula.
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Primary biliary cirrhosis data

Data gathered in the Mayo Clinic trial in primary biliary
cirrhosis of liver conducted between 1974 and 1984 (Therneau
and Grambsch 2000).

312 eligible subjects with 125 deaths

17 predictors: 10 continuous and 7 discrete.

Goal: to study the dependence of survival times on 17
covariates.

Zhang and Lu (2007) studied variable selection for this data in
the PH model using the penalized partial likelihood method
with the adaptive Lasso penalty.
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Analysis of PBC data

Table 4. Estimation and variable selection for PBC data with the
PH model.

Covariate EE PPS2 PPL
trt -0.109 (0.234) 0 (-) 0 (-)
age 0.029 (0.012) 0.017 (0.007) 0.019 (0.010)
sex -0.386 (0.346) 0 (-) 0 (-)
asc 0.053 (0.469) 0 (0) 0 (-)
hep 0.024 (0.263) 0 (-) 0 (-)
spid 0.098 (0.279) 0 (-) 0 (-)
oed 1.013 (0.486) 0.576 (0.241) 0.671 (0.377)
bil 0.079 (0.024) 0.099 (0.018) 0.095 (0.020)

chol 0.001 (0.000) 0 (-) 0 (-)
alb -0.811 (0.286) -0.755 (0.211) -0.612 (0.280)
cop 0.003 (0.001) 0.003 (0.001) 0.002 (0.001)
alk 0.000 (0.000) 0 (-) 0 (-)

sgot 0.004 (0.002) 0.002 (0.001) 0.002 (0.001)
trig -0.001 (0.001) 0 (-) 0 (-)
plat 0.001 (0.001) 0 (-) 0 (-)
prot 0.238 (0.103) 0.193 (0.066) 0.103 (0.108)

stage 0.450 (0.171) 0.413 (0.121) 0.367 (0.142)
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Solution path for the PPS2 estimates

For PBC data using PH model
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Lung cancer data

Data is from the Veteran’s Administration lung cancer trial
(Kalbfleish and Prentice 2002).

137 males with advanced inoperable lung cancer were
randomized to either a standard treatment or chemotherapy

There are six covariates: Treatment (1=standard, 2=test),
Cell type (1=squamous, 2=small cell, 3=adeno, 4=large),
Karnofsky score, Months from Diagnosis, Age, and Prior
therapy (0=no, 10=yes).

Lu and Zhang (2007) studied variable selection for this data in
the PO model using the penalized marginal likelihood method
with the adaptive Lasso penalty.
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Analysis of lung cancer data

Table 5. Estimation and variable selection results for lung cancer
data with the PO model.

Covariate EE PPS2 PML
Treatment 0.307 (0.317) 0 (-) 0 (-)

squamous vs large -0.617 (0.482) 0 (-) 0 (-)
small vs large 0.972 (0.473) 0.483 (0.197) 0.706 (0.356)
adeno vs large 1.418 (0.371) 1.139 (0.261) 0.841 (0.397)

Karnofsky -0.055 (0.009) -0.052 (0.008) -0.053 (0.008)
Months from Diagnosis 0.000 (0.015) 0 (-) 0 (-)

Age -0.010 (0.017) 0 (-) 0 (-)
Prior therapy 0.008 (0.040) 0 (-) 0 (-)
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Solution path for the PPS2 estimates

For lung cancer data using PO model
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Microarray Data (DLBCL) Analysis

About the dataset (Rosenwald et al. 2002)

n = 240 diffuse large B-cell lymphoma (DLBCL) patients, and
p = 7, 399 genes for each patient.

Patients’ survival times were recorded, 138 patients died
during the follow-up method.

a common practice is to first conduct a preliminary gene
filtering based on some univariate analysis. We choose the top
50 genes selected using univariate Cox score.

Results:

randomly divide the data set into two sets: 160 for training
and the remaining 80 for testing.

The PEE selects totally 20 genes and the PPL selects 13
genes, and they share 9.
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Summary and Discussions

a general class of survival models in a unified framework with
desired theoretical properties

the profiled score takes care of the nonparametric component
in a natural fashion

can improve efficiency over the original estimator from the
estimation equations.

Future work:

extensions to general methods of estimation equations
(on-going work)
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