# Variable Selection for Linear Transformation Models

Hao Helen Zhang

Department of Statistics North Carolina State University hzhang@stat.ncsu.edu

Fields Institute, June 10, 2011



#### Table of contents

- Background and motivation
  - Review of semi-parametric survival models
  - Review of variable selection methods for censored data
  - Shrinkage estimation for variable selection
- 2 Our new method
  - Variable selection for linear transformation models
  - Estimation for linear transformation models
  - PPS<sup>2</sup> estimation method
- 3 Numerical studies
  - Simulation studies
  - Three examples
- Discussion and future work



#### Background

In the context of censoring data for survival analysis,

- T is the failure time, or the time to event (e.g. death, relapse, cancer)
- C is the censoring time
- Z is the covariates or predictors
- Observe  $\tilde{T} = \min(T, C)$  and the censoring indicator  $\delta = I(T \leq C)$ . The observations  $(\tilde{T}_i, \delta_i, Z_i)$ ,  $i = 1, \dots, n$ .

Example: Lymphoma dataset (Rosenwald et al. 2002)

- n = 240 diffuse large B-cell lymphoma (DLBCL) patients, and p = 7,399 genes for each patient.
- Patients' survival times were recorded, 138 patients died during the follow-up method.



### Semi-parametric Survival Models

Widely-used survival models:

• Cox's proportional hazards (PH) model (Cox, 1972):

$$\lambda(t|Z) = \lambda_0(t) \exp(\beta_0' Z)$$

 Proportional odds (PO) model (Pettitt, 1982, 1984; Bennett, 1983):

$${1 - S(t|Z)}/{S(t|Z)} = [{1 - S_0(t)}/{S_0(t)}] \exp(\beta_0'Z)$$

Linear transformation (LT) models (Clayton and Cuzick, 1985;
 Cheng, Wei and Ying, 1995):

$$H_0(T) = -\beta_0' Z + \epsilon,$$

 $H_0$  is an unknown increasing function,  $\epsilon$  has a known continuous distribution and independent of **Z**.

#### Variable selection problems for censored data

- Write the regression coefficients  $\beta_0 = (\beta_{01}, \dots, \beta_{0p})'$ .
- Index set for important variables:  $I = \{1 \le j \le p : \beta_{i0} \ne 0\}$
- Index set for unimportant variables:

$$U = \{1 \le j \le p : \beta_{i0} = 0\}$$

• Assume  $|I| = p_0 < p$ . Write  $\beta_0 = (\beta'_{I0}, \mathbf{0}')'$ .

The main goals of a variable selection procedure are:

- to identify I and U correctly;
- to provide good estimators for  $\beta_{I0}$ .

#### Oracle properties

An ideal variable selection procedure should asymptotically satisfy:

produce parsimonious models automatically (with probability one)

$$\hat{\beta}_j \neq 0$$
 for  $j \in I$ 

$$\hat{\beta}_j = 0 \text{ for } j \in U;$$

achieve the optimal estimation rate

$$\sqrt{n}(\hat{\beta}_I - \beta_{I0}) \rightarrow_d N(0, \Sigma_{I0}),$$

where  $\Sigma_{I0}$  is the covariance matrix knowing the true model.

Oracle procedure performs as well as if the correct true model were known.



#### Existing variable selection methods for censored data

- Best subset selection and stepwise selection
- Asymptotic testing procedures, such as score test and Wald test
- Bootstrap sampling procedures (Sauerbrei and Schumacher 1992)
- Bayesian variable selection (Faraggi and Simon 1998; Ibrahim, Chen and MacEachern 1999)
- Shrinkage methods (LASSO: Tibshirani 1997; SCAD: Fan and Li 2002; Adaptive-LASSO: Zhang and Lu 2007)

### Penalized partial likelihood estimation for Cox's model

• Log partial likelihood (Cox 1975):

$$I_n(\beta) \equiv \sum_{i=1}^n \delta_i \left\{ \beta' Z_i - \log \left[ \sum_{j=1}^n I(\tilde{T}_j \geq \tilde{T}_i) \exp(\beta' Z_j) \right] \right\}.$$

The penalized log partial likelihood estimation

$$\min_{\beta} -\frac{1}{n} I_n(\beta) + \sum_{i=1}^{p} J_{\lambda}(\beta_i).$$

### Choices of penalty function

- Ridge regression (Hoerl and Kennard, 1970):  $J_{\lambda}(\beta_{j}) = \lambda \beta_{j}^{2}$ .
- Bridge regression (Frank and Friedman, 1993):  $J_{\lambda}(\beta_i) = \lambda |\beta_i|^q, \quad q \geq 0.$ 
  - If q=0, known as entropy penalty (Donoho and Johnstone, 1998).
  - If q = 1, known as LASSO (Tibshirani, 1996).
  - ullet For  $q \leq 1$ , it tends to shrink small  $|\beta|$ 's to exactly zero.
  - $J_{\lambda}$  is not convex for q < 1 while solutions are not sparse for q > 1.

Other examples: SCAD, adaptive LASSO

#### Adaptive LASSO estimation for Cox's model

We solve (Zhang and Lu, 2007)

$$\min_{\beta} -\frac{1}{n} I_n(\beta) + \lambda \sum_{j=1}^{p} |\beta_j| w_j,$$

where  $\mathbf{w} = (w_1, \dots, w_p)'$  are the data-dependent weights. Key Motivations:

- Large penalties are imposed on unimportant covariate effects, while small penalties for important ones. (Protect important covariates more)
- Let the data choose w<sub>i</sub>'s adaptively.

#### Extension to PO model

What if there is no partial likelihood available?

- For the PO model, Lu and Zhang (2007) considered the marginal likelihood.
- The marginal likelihood generally does not have a closed form, but it can be calculated using an importance sampling technique.
- We proposed to use the penalized marginal likelihood estimation:

$$\min_{\beta} -\frac{1}{n} I_{n,M}(\beta) + \lambda \sum_{j=1}^{p} |\beta_j| w_j,$$

where  $I_{n,M}(\beta)$  is log marginal likelihood function.



#### Linear Transformation Models

Linear transformation (LT) models form a rich class of models due to the flexibility of  $H_0$ .

$$H_0(T) = -\beta_0' Z + \epsilon.$$

They include PH and PO models as special cases

- ullet if  $\epsilon$  follows extreme value distribution, LT reduces to PH models
- ullet if  $\epsilon$  follows the logistic distribution, LT reduces to PO models
- ullet if  $\epsilon$  follows the standard normal distribution, LT generalizes the usual Box-Cox transformation models.

### Advantages and Challenges with LT

A unified estimation framework for survival data.

- can relax the independence assumption between the covariates and the censoring variable (needed for the validity of PH model).
- reduce to partial likelihood under PH models.

Variable selection for LT models is less studied in literature.

- Most estimation procedures for LT models are based on estimating equations (e.g., Chen et al., 1995; Fine et al., 1998; Chen et al., 2002).
- Challenge 1: a convenient loss function is not available for LT models.
- Challenge 2: involves a nonparametric component *H*.

Our proposal: construct a sensible loss function first!



#### Martingale based estimating equations

- For subject i, define the counting process  $N_i(t) = \delta_i I(\tilde{T}_i \leq t)$  and at-risk process  $Y_i(t) = I(\tilde{T}_i \geq t)$ .
- Mean-zero Martingale process:  $M_i(t) = N_i(t) \int_0^t Y_i(s) d\Lambda \{H_0(s) + \beta_0' Z_i\}$ , where  $\Lambda(\cdot)$  is the known cumulative hazard function of  $\epsilon$ .
- Martingale-based Estimating equations (Chen et al., 2002):

$$\sum_{i=1}^{n} [dN_{i}(t) - Y_{i}(t)d\Lambda\{\beta'Z_{i} + H(t)\}] = 0, \ t \ge 0.$$
 (1)

$$\sum_{i=1}^{n} \int_{0}^{\tau} Z_{i}[dN_{i}(t) - Y_{i}(t)d\Lambda\{\beta'Z_{i} + H(t)\}] = \mathbf{0}, \quad (2)$$

A joint estimation of parametric and nonparametric terms.



#### Computation

Let  $0 < t_1 < \cdots < t_K < \infty$  be the observed K failure times in the data.

• Step 1. Set  $\beta = \hat{\beta}^{(0)}$ . Compute  $\hat{H}^{(0)}$  as follows. First solve

$$\sum_{i=1}^{n} Y_i(t_1) \Lambda \{ H(t_1) + \beta' Z_i \} = 1,$$

for  $\hat{H}^{(0)}(t_1)$ . Then solve sequentially

$$\sum_{i=1}^{n} Y_i(t_k) [\Lambda \{ H(t_k) + \beta' Z_i \} - \Lambda \{ \hat{H}^{(0)}(t_k -) + \beta' Z_i \} ] = 1,$$

for  $\hat{H}^{(0)}(t_k)$ , where  $k=2,\cdots,K$ .



#### Computation algorithm

• Step 2. Solve equation

$$\sum_{i=1}^n Z_i[\delta_i - \Lambda\{\hat{H}^{(0)}(\tilde{T}_i) + \beta' Z_i\}] = 0.$$

for  $\hat{\beta}^{(1)}$ .

• Step 3. Set  $\beta = \hat{\beta}^{(1)}$  and repeat Steps 1 and 2 until prescribed convergence criteria are met.

#### Profiled score functions

- Given  $\beta$ , let  $\tilde{H}(\cdot; \beta)$  denote the solution of (1).
- $\bullet$  Plugging  $\tilde{H}$  into equation (2) and define the profiled score functions of  $\beta$

$$U_n(\beta) = \sum_{i=1}^n \int_0^\tau Z_i[dN_i(t) - Y_i(t)d\Lambda\{\beta'Z_i + \tilde{H}(t;\beta)\}]. \quad (3)$$

• Let  $\tilde{\beta}$  denote the solution of  $U_n(\beta) = 0$ .

# Asymptotic properties of $ilde{eta}$

- We have
  - (i)  $n^{-1/2}U_n(\beta_0) \to N(0, V)$  in distribution, as  $n \to \infty$ .
  - (ii)  $\sqrt{n}(\tilde{\beta} \beta_0) \to N(0, \Sigma)$  in distribution with  $\Sigma = A^{-1}V(A^{-1})'$ , as  $n \to \infty$ .
  - (iii) The asymptotic variance-covariance matrix  $\Sigma$  can be consistently estimated by  $\hat{\Sigma}_n = \hat{A}_n^{-1} \hat{V}_n (\hat{A}_n^{-1})'$  using the usual plugging method.
- See Chen et al. (2002) for the details.

#### Penalized profiled score squares

• We first define a weighted quadratic loss function as:

$$D_n(\beta) = (1/n)U'_n(\beta)\hat{V}_n^{-1}U_n(\beta).$$

Then propose to minimize

$$Q_n(\beta) = D_n(\beta) + \lambda_n \sum_{j=1}^p J(|\beta_j|). \tag{4}$$

- We use the adaptive Lasso penalty, using the weight  $w_i = 1/|\tilde{\beta}_i|$ .
- The PPS<sup>2</sup> estimator is defined as  $\hat{\beta}_n = \operatorname{argmin}_{\beta} Q_n(\beta)$ .



### Computation of PPS<sup>2</sup> estimators

• Consider the Taylor expansion of  $U_n(\beta)$  around  $\hat{\beta}^{[0]}$ ,

$$U_n(\beta) \approx U_n(\hat{\beta}^{[0]}) + n\hat{A}_n\{\hat{\beta}^{[0]}, \tilde{H}(\cdot; \hat{\beta}^{[0]})\}(\beta - \hat{\beta}^{[0]}),$$

•  $Q_n(\beta)$  can approximated by a quadratic form

$$n(\hat{\beta}^{[0]} + \mathbf{b} - \beta)' \hat{A}_n^{[0]'} \hat{V}_n^{-1} \hat{A}_n^{[0]} (\hat{\beta}^{[0]} + \mathbf{b} - \beta) + \lambda_n \sum_{j=1}^{p} w_j |\beta_j|, (5)$$

where 
$$\hat{A}_n^{[0]'} = \hat{A}_n \{ \hat{\beta}^{[0]}, \tilde{H}(\cdot; \hat{\beta}^{[0]}) \}$$
 and  $\mathbf{b} = (\hat{A}_n^{[0]'} \hat{V}_n^{-1} \hat{A}_n^{[0]})^{-1} \hat{A}_n^{[0]'} \hat{V}_n^{-1} U_n (\hat{\beta}^{[0]}) / n.$ 

### Computational algorithm

- Step 0: Compute the full model estimator:  $\tilde{\beta}$  and  $\tilde{H}(\cdot) = \tilde{H}(\cdot; \tilde{\beta})$ .
- Step 1: Choose an initial estimator  $\hat{\beta}^{[0]}$ . Set  $w_j = 1/|\tilde{\beta}_j|$  for all j.
- Step 2: Solve equation (1) to obtain  $\tilde{H}(\cdot; \hat{\beta}^{[0]})$ .
- Step 3: Minimize (5) and denote the shrinkage estimate as  $\hat{\beta}^{[1]}$ .
- Step 4: Set  $\hat{\beta}^{[0]} = \hat{\beta}^{[1]}$  and repeat Steps 2 and 3 until convergence.

Let  $\hat{\beta}_n$  denote the resulting sparse estimator.

#### One-step estimator

- full iteration: computationally intensive
- one-step estimator, i.e. choosing  $\hat{\beta}^{[0]} = \tilde{\beta}$ . Note that  $U_n(\tilde{\beta}) = 0$ . Then (5) becomes

$$n(\tilde{\beta} - \beta)'\hat{\Sigma}_n^{-1}(\tilde{\beta} - \beta) + \lambda_n \sum_{j=1}^{\rho} w_j |\beta_j|.$$
 (6)

• The minimization of (6) can be solved in R with the *lars* package (Efron et al., 2004). The entire solution path of the resulting PPS<sup>2</sup> estimator can be also obtained.

### Theoretical properties of PPS<sup>2</sup> estimators

Write the solution  $\hat{\beta}_n = (\hat{\beta}'_{I,n}, \hat{\beta}'_{U,n})'$ . In addition, write the limiting covariance matrix  $\Sigma$  accordingly.

- Theorem 1 (root-n Consistency). If  $\sqrt{n}\lambda_n = O_p(1)$ , then  $\|\hat{\beta}_n \beta_0\| = O_p(n^{-1/2})$ .
- Theorem 2 (Sparsity and normality). Assume that  $\sqrt{n}\lambda_n \to 0$  and  $n\lambda_n \to \infty$ , then
  - (i) (Sparsity)  $\hat{\beta}_{U,n} = \mathbf{0}$  with probability tending to one;
  - (ii) (Asymptotic normality)

$$\sqrt{n}(\hat{\beta}_{I,n}-\beta_{I0})\to N\{0,\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\}$$
 as  $n$  goes to infinity.

### Efficiency and tuning

• The efficiency of the PPS<sup>2</sup> estimator  $\hat{\beta}_{I,n}$  for nonzero components is better than that of the corresponding full model estimator  $\tilde{\beta}_I$  since

$$\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} < \Sigma_{11}.$$

• We use BIC for selecting  $\lambda$ , i.e.  $\mathrm{BIC}_{\lambda} = (\hat{\beta}_{\lambda} - \tilde{\beta})'\hat{\Sigma}_{n}^{-1}(\hat{\beta}_{\lambda} - \tilde{\beta}) + \log n \cdot \mathrm{df}_{\lambda}/n. \text{ Here df}_{\lambda} \text{ is the number of nonzero coefficients in } \hat{\beta}_{\lambda}, \text{ a simple estimate for the degree of freedom (Zou et al. 2007).}$ 

#### Variance estimation

Two approaches to estimate the variance of the estimator:

- estimates based on the asymptotic theory (Theorem 2)
- the sandwich variance estimation: For any nonzero  $\beta_j$ , we can approximate its weighted  $L_1$  penalty with a local quadratic function

$$\frac{|\beta_j|}{|\tilde{\beta}_j|} \approx \frac{\beta_j^2}{|\tilde{\beta}_j||\beta_j|}.$$

Details can found in Zhang, Lu and Wang (2010).

#### Simulation studies for LT models

- We consider both the PH and PO models.
- We choose  $\beta=(-1,-0.9,0,0,0,-0.8,0,0,0)'$ , and the nine covariates  $Z=(Z_1,...,Z_9)$  are marginally standard normal with the pairwise correlation  $\operatorname{corr}(Z_j,Z_k)=\rho^{|j-k|}$  with  $\rho=0.5$ .
- Censoring times are from uniform (0,c): 25% and 40% censoring rates
- Sample sizes n = 100, 200, simulation replications M = 500.
- We compare the PPS<sup>2</sup>, PPL (Zhang and Lu, 2007), PML (Lu and Zhang, 2007) estimates.

#### Simulation results for PH model

Table 1. Mean squared error and model selection results

| n   | Censored | Method           | Average MSE   | Model Size Number of zero coefficients |               |               |
|-----|----------|------------------|---------------|----------------------------------------|---------------|---------------|
|     |          |                  |               | oracle (3)                             | correct (6)   | incorrect (0) |
|     |          | EE               | 0.244 (0.161) | 9                                      | 0 (0)         | 0 (0)         |
|     | 25%      | PPS <sup>2</sup> | 0.122 (0.119) | 3.610 (0.920)                          | 5.390 (0.920) | 0.000 (0.000) |
| 100 |          | PPL              | 0.130 (0.121) | 3.136 (0.412)                          | 5.858 (0.403) | 0.006 (0.077) |
|     |          | EE               | 0.277 (0.186) | 9                                      | 0 (0)         | 0 (0)         |
|     | 40%      | PPS <sup>2</sup> | 0.143 (0.133) | 3.620 (0.885)                          | 5.380 (0.885) | 0.000 (0.000) |
|     |          | PPL              | 0.177 (0.161) | 3.150 (0.456)                          | 5.836 (0.435) | 0.014 (0.118) |
|     |          | EE               | 0.087 (0.052) | 9                                      | 0 (0)         | 0 (0)         |
|     | 25%      | PPS <sup>2</sup> | 0.051 (0.040) | 3.250 (0.557)                          | 5.750 (0.557) | 0.000 (0.000) |
| 200 |          | PPL              | 0.053 (0.050) | 3.034 (0.181)                          | 5.966 (0.181) | 0.000 (0.000) |
|     |          | EE               | 0.110 (0.066) | 9                                      | 0 (0)         | 0 (0)         |
|     | 40%      | PPS <sup>2</sup> | 0.063 (0.049) | 3.280 (0.604)                          | 5.720 (0.604) | 0.000 (0.000) |
|     |          | PPL              | 0.062 (0.055) | 3.048 (0.214)                          | 5.952 (0.214) | 0.000 (0.000) |

#### Simulation results for PO model

Table 2. Mean squared error and model selection results

| n   | Censored | Method           | Average MSE   | Model Size Number of zero coefficients |               |               |
|-----|----------|------------------|---------------|----------------------------------------|---------------|---------------|
|     |          |                  |               | oracle (3)                             | correct (6)   | incorrect (0) |
|     |          | EE               | 0.481 (0.262) | 9                                      | 0 (0)         | 0 (0)         |
|     | 25%      | PPS <sup>2</sup> | 0.377 (0.303) | 3.600 (0.932)                          | 5.230 (0.874) | 0.170 (0.403) |
| 100 |          | PML              | 0.436 (0.419) | 2.898 (0.684)                          | 5.856 (0.389) | 0.246 (0.539) |
|     |          | EE               | 0.575 (0.347) | 9                                      | 0 (0)         | 0 (0)         |
|     | 40%      | PPS <sup>2</sup> | 0.385 (0.314) | 3.490 (0.916)                          | 5.360 (0.811) | 0.150 (0.386) |
|     |          | PML              | 0.493 (0.484) | 2.834 (0.735)                          | 5.844 (0.400) | 0.322 (0.599) |
|     |          | EE               | 0.213 (0.109) | 9                                      | 0 (0)         | 0 (0)         |
|     | 25%      | PPS <sup>2</sup> | 0.122 (0.085) | 3.340 (0.670)                          | 5.660 (0.670) | 0.000 (0.000) |
| 200 |          | PML              | 0.231 (0.120) | 3.026 (0.193)                          | 5.968 (0.176) | 0.006 (0.077) |
|     |          | EE               | 0.258 (0.168) | 9                                      | 0 (0)         | 0 (0)         |
|     | 40%      | PPS <sup>2</sup> | 0.132 (0.086) | 3.310 (0.598)                          | 5.690 (0.598) | 0.000 (0.000) |
|     |          | PML              | 0.218 (0.142) | 3.030 (0.239)                          | 5.952 (0.214) | 0.018 (0.133) |

#### Variance estimation results

Table 3. Estimated standard errors for the PPS<sup>2</sup> nonzero estimates (n = 200).

|       |           |       | $\hat{eta}_1$ |                    |       | $\hat{eta}_2$ |                    |       | $\hat{\beta}_6$ |                    |
|-------|-----------|-------|---------------|--------------------|-------|---------------|--------------------|-------|-----------------|--------------------|
| Model | Censoring | SE    | SÈ            | $\widehat{SE}_{S}$ | SE    | SÈ            | $\widehat{SE}_{S}$ | SE    | SE              | $\widehat{SE}_{S}$ |
| PH    | 25%       | 0.113 | 0.109         | 0.105              | 0.121 | 0.105         | 0.100              | 0.110 | 0.092           | 0.088              |
|       | 40%       | 0.126 | 0.120         | 0.114              | 0.135 | 0.116         | 0.109              | 0.122 | 0.103           | 0.097              |
| PO    | 25%       | 0.187 | 0.165         | 0.152              | 0.211 | 0.164         | 0.147              | 0.165 | 0.146           | 0.131              |
|       | 40%       | 0.196 | 0.176         | 0.161              | 0.225 | 0.177         | 0.156              | 0.187 | 0.155           | 0.138              |

SE: sample standard deviation of the estimates;  $\widehat{SE}$ : the average of estimated standard error based on theory;  $\widehat{SE}_S$ : the average of estimated standard error based on the sandwich formula.

#### Primary biliary cirrhosis data

- Data gathered in the Mayo Clinic trial in primary biliary cirrhosis of liver conducted between 1974 and 1984 (Therneau and Grambsch 2000).
- 312 eligible subjects with 125 deaths
- 17 predictors: 10 continuous and 7 discrete.
- Goal: to study the dependence of survival times on 17 covariates.
- Zhang and Lu (2007) studied variable selection for this data in the PH model using the penalized partial likelihood method with the adaptive Lasso penalty.

### Analysis of PBC data

Table 4. Estimation and variable selection for PBC data with the PH model.

| Covariate | EE             | PPS <sup>2</sup> | PPL            |
|-----------|----------------|------------------|----------------|
| trt       | -0.109 (0.234) | 0 (-)            | 0 (-)          |
| age       | 0.029 (0.012)  | 0.017 (0.007)    | 0.019 (0.010)  |
| sex       | -0.386 (0.346) | 0 (-)            | 0 (-)          |
| asc       | 0.053 (0.469)  | 0 (0)            | 0 (-)          |
| hep       | 0.024 (0.263)  | 0 (-)            | 0 (-)          |
| spid      | 0.098 (0.279)  | 0 (-)            | 0 (-)          |
| oed       | 1.013 (0.486)  | 0.576 (0.241)    | 0.671 (0.377)  |
| bil       | 0.079 (0.024)  | 0.099 (0.018)    | 0.095 (0.020)  |
| chol      | 0.001 (0.000)  | 0 (-)            | 0 (-)          |
| alb       | -0.811 (0.286) | -0.755 (0.211)   | -0.612 (0.280) |
| сор       | 0.003 (0.001)  | 0.003 (0.001)    | 0.002 (0.001)  |
| alk       | 0.000 (0.000)  | 0 (-)            | 0 (-)          |
| sgot      | 0.004 (0.002)  | 0.002 (0.001)    | 0.002 (0.001)  |
| trig      | -0.001 (0.001) | 0 (-)            | 0 (-)          |
| plat      | 0.001 (0.001)  | 0 (-)            | 0 (-)          |
| prot      | 0.238 (0.103)  | 0.193 (0.066)    | 0.103 (0.108)  |
| stage     | 0.450 (0.171)  | 0.413 (0.121)    | 0.367 (0.142)  |

## Solution path for the PPS<sup>2</sup> estimates

• For PBC data using PH model



#### Lung cancer data

- Data is from the Veteran's Administration lung cancer trial (Kalbfleish and Prentice 2002).
- 137 males with advanced inoperable lung cancer were randomized to either a standard treatment or chemotherapy
- There are six covariates: Treatment (1=standard, 2=test),
   Cell type (1=squamous, 2=small cell, 3=adeno, 4=large),
   Karnofsky score, Months from Diagnosis, Age, and Prior therapy (0=no, 10=yes).
- Lu and Zhang (2007) studied variable selection for this data in the PO model using the penalized marginal likelihood method with the adaptive Lasso penalty.

#### Analysis of lung cancer data

Table 5. Estimation and variable selection results for lung cancer

data with the PO model.

| Covariate             | EE             | PPS <sup>2</sup> | PML            |  |
|-----------------------|----------------|------------------|----------------|--|
| Treatment             | 0.307 (0.317)  | 0 (-)            | 0 (-)          |  |
| squamous vs large     | -0.617 (0.482) | 0 (-)            | 0 (-)          |  |
| small vs large        | 0.972 (0.473)  | 0.483 (0.197)    | 0.706 (0.356)  |  |
| adeno vs large        | 1.418 (0.371)  | 1.139 (0.261)    | 0.841 (0.397)  |  |
| Karnofsky             | -0.055 (0.009) | -0.052 (0.008)   | -0.053 (0.008) |  |
| Months from Diagnosis | 0.000 (0.015)  | 0 (-)            | 0 (-)          |  |
| Age                   | -0.010 (0.017) | 0 (-)            | 0 (-)          |  |
| Prior therapy         | 0.008 (0.040)  | 0 (-)            | 0 (-)          |  |

# Solution path for the PPS<sup>2</sup> estimates

For lung cancer data using PO model



### Microarray Data (DLBCL) Analysis

#### About the dataset (Rosenwald et al. 2002)

- n = 240 diffuse large B-cell lymphoma (DLBCL) patients, and p = 7,399 genes for each patient.
- Patients' survival times were recorded, 138 patients died during the follow-up method.
- a common practice is to first conduct a preliminary gene filtering based on some univariate analysis. We choose the top 50 genes selected using univariate Cox score.

#### Results:

- randomly divide the data set into two sets: 160 for training and the remaining 80 for testing.
- The PEE selects totally 20 genes and the PPL selects 13 genes, and they share 9.

### Summary and Discussions

- a general class of survival models in a unified framework with desired theoretical properties
- the profiled score takes care of the nonparametric component in a natural fashion
- can improve efficiency over the original estimator from the estimation equations.

#### Future work:

 extensions to general methods of estimation equations (on-going work)



### References and acknowledgements

#### References:

- Zhang, H. H. and Lu, W. (2007). Adaptive-LASSO for Cox's Proportional Hazards Model. Biometrika, 94, 1-13.
- Lu, W. and Zhang, H. H. (2007). Variable Selection for Proportional Odds Model. Statistics in Medicine, 26, 3771-3781.
- Zhang, H. H., Lu, W. and Wang, H. (2010) On sparse estimation for semiparametric linear transformation models. Journal of Multivariate Analysis, 101, 1594-1606.
- Acknowledgements:
  - Collaborators: Wenbin Lu (NCSU), Hansheng Wang (Beijing University)
  - The research was partially supported by NSF and NIH grants.

