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Introduction

@ Lety = (y1,...,¥n)" € R” be a response vector and
X = (Xqy, - -+ Xp)) an n x p design matrix.

y=XB+e,

where ¢ = (1,...,en)" is such that E(¢;) = 0 and
E(¢2) = 02 > 0.

@ The true value for the coefficient vector
B=(Bi,.--,0p)" € RPis an unknown value

Bo = (Bo,---Bop)

@ Consider high-dimensional scenarios where p > n, and
consider the problem of estimating E(y) and 3.
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Many Difficulties

Collinearity Abounds

@ This problem poses unique obstacles for prediction and
estimation. Sample correlation between variables can be
sizeable as an artifact of dimensionality. Groups of
variables become highly correlated with other groups
sporadically - even if true design matrix is orthogonal (Fan
and Lv (2008), Cai and Lv (2007)).

@ Multicollinearity is further compounded as variables
collected in high-dimensional applications are often
naturally correlated (e.g gene expression arrays; SNP
arrays, etc).
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GRR
Back to the future

@ Almost 40 years ago, Hoerl and Kennard (1970a,b)
proposed generalized ridge regression (GRR), a method
specifically designed for correlated and ill-conditioned
settings.

@ Let A = diag{\«};_, be a p x p diagonal matrix with
diagonal entries A > 0. The GRR estimator with ridge
matrix A is

Ba=(Q+N) "Xy,
where Q = XT X.

@ An alternative representation for 3g is in terms of
/>-penalization:

p
Ba = afgmin{l!}/—xﬂllz + Zwﬁ},
BERP

k=1
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Some work already in a similar vein

@ Much of the recent effort to address high-dimensional
problems has focused on ¢1-based penalization methods;
i.e., lasso-type regularization (Tibshirani, 1996).

@ Some of these methods are similar to the GRR in that they
allow a unique regularization parameter for each
coefficient.

@ Examples include adaptive lasso for p < n (Zou, 2006) and
for diverging parameters problem (Huang et.al., 2008). Zou
and Zhang (2009) also developed adaptive elastic net.

@ Given GRR is naturally set up this way, it's natural to
wonder how things behave when p > n.
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A Geometric Approach

@ We first recast g as a rescaled ridge estimator. Let
X, = XA""2and Q, = X X,.
°

N

B = AV2(AT2QA12 4 Ip)‘1A_1/2XTy
— /\71/2(0* + Ip)f1X*Ty
N2, (1)
where 35 = (Q. + Ip) "Xy is the ridge estimator for the
design matrix X, with ridge parameter A = 1.
@ Let X, = U,D, V] be the SVD for X.. Let

di « > --- > dn« > 0 denote the diagonal elements of D..
@ lfp>nand A, >0fork=1,...,p, then

Be =N"2v,S 'Ry,

where S,y = diag{d?, + 1}{_; and R. = U.D.. Requires
O(pn?) operations.
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Geometry contd

@ A celebrated result, due to Penrose (1956), is that the
minimum least squares (MLS )estimator exists and is the
unique estimator

Aus = XTy = lim fr = VS Ry,
A—=0
where SJ = diag{s;}7_, is the Moore-Penrose
generalized inverse of So defined by

sf:{ 1/d? ifd;>0
0i

0 otherwise.
@ Define the modified MLS estimator as
Bus =N "2X Ty = N12V.SLRTy.

Observe in the special case when A = Al that
BMLS = BMLS
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Theorem

Bg is the solution to the following optimization problem:

migi%jpize Q(B, Biys) subjectto BTAS < L,
€
for some L > 0, where
. A \T A
QB Bins) = (8- Bins) (A2QuAY2) (8~ Bins)

is an ellipsoid with contours S(c) = {8 : Q(8, Biy.s) = ¢*}
centered at 3} s.
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GRR Shrinkage

Figure: lllustration of GRR geometry. Left figure corresponds to a
simulation where p = 100,n =25, and 5y x = 0 for k > 3 and Ay = o
for k > 4. Only the first 3 coordinates of BG are nonzero, and these
equal the point where the ellipsoid first touches the elliptical
constraint region.
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Some consequences

@ GRR estimator involves the contours of an ellipsoid
centered at the modified MLS. For GRR, the constraint
region is also an ellipsoid that depends upon A.

Theorem

Ba=N"1230_ 1 di Vi, wheren; = (a?, +1)~"uly. Thatis,
B¢ lies in the v-dimensional subspace

A7) = {N12v v e ¥}, whered = rank(X) < n and ¥, is
the span of {vy ., ..., Vo .}, i.e., ¥ is the span of the
eigenvectors of Q..

@ If 5y non-sparse, there is no guarantee that we can find a A
to force the distance between GRR estimator and 5 to
zero.
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Mixing for Improved Prediction

@ Finding a suitable orientation for the GRR may be difficult
in non-sparse settings.

@ In place of a single GRR estimator, we’ll instead use a
convex combination of GRR estimators.

@ The idea of mixing is widely used in statistics and machine
learning (e.g. bagging, random forests, BMA).

@ We will construct mixed GRR estimators based on
exponential weights and establish that under a
dimensionality constraint, that the risk for mixing GRR is at
least as small as that of any of its GRR components -
mixing GRR can achieve or even surpass the best model
without advance knowledge of what that model is.
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Mixing GRR

@ Let .# denote the space of linear models under
consideration and let M = #.# be its cardinality.

@ For each model m € .#, we assume there exists a fixed
probability 0 < 7, < 1 indicating the preference for the
model, where }"  mm = 1.

® A% = XmBE = Pmy where

Pm = Xm(Qm + /\m)qu-rrn
and Qn = X/ X. We refer to P,, as the GRR operator.
TmWm Am
M =
mix ng;/[ Zm’ Tm Wm’

where w;, = wp(y) are non-negative, data-adaptively
selected weights. Normalized weights
Wm = TmWm/ > (T Wy ). Then, finix can be rewritten as

fimix = Z WmPmy.

m
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Determining the wp,

@ Define
Pm = ||y — A&||? + o8 (2 trace(Pm) — n).

This is an unbiased estimator of the risk r, = E||a% — /2.
°

Vim = V |y (ln—Pu)2y-+0§ (2 tace( Pm)—n) | = 2(In—Pm)?y.

@ Theorem 5 of (Leung and Barron, 2006) describes a sharp
minimax bound for mixing of the OLS. To obtain a similar
result for GRR, it turns out that we need to use weights of
the form wy, = exp(—Fn/403), where r, is chosen to satisfy

VT’m — a1y - a2Pmy,

for some constants ay, a, such that a2/a1 > 0.
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Determining the w,, cont'd

@ E.g. this would hold for 7, = 7, if P, were a projection
matrix, since then

Vim=2(lm— Pm)zy =2(Im — Pm)y =2y — 2Pny.

@ In order to derive a minimax bound for GRR we must find a
'm that satisfies the gradient equality even when Pp, is not
a projection matrix.

@ Define,

Fn=Pm—Zm, where Zy =y (P%— Pn)y.

@ even if Py, is not a projection matrix, we have
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@ Hence, we define our weights to be:

1 1
0 0

where fy is any constant such that 0 < fp < 1.

@ Intuitively, the rationale for these weights is that it
down-weights models with large estimated risk 7p,.

@ The presence of Z, in wy; is an adjustment needed to
accommodate the GRR operator. Can show that Z, < 0.
Hence it down-weights GRR operators that are distant
from projection operators.

@ The constant fy acts as a “dampening” parameter that
spreads weights over models more evenly for small fy
values.
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Theorem

Assume that e ~ Nn(0, 0§ 1,) and that maxm{E(Vi|Ag,|)} < oo
fori=1,...,n. Ifrym =1/M, then for our wy, :

Ellfmy, — |2 < min E||g7— u||? 402 log M
HMmIX NH = ek HMG /‘H =+ 09,109

mixing GRR risk minimax risk dimensionality effect

fm — 402 ,Cm) exp(—C
\E Z (fm — 405 ;Cm) €xp(—Cm) )
Zm’e/[ exp(—Cm/)

me.#

GRR operator effect

where o8 ; = 031", Cn = (fm — Zm + Zs) /(408 ), and i is any
model achieving the minimum estimated risk ro = min,{7m}.
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The effect of GRR operator on risk

@ Many scenarios yield a negligible value without requiring
stringent constraints on Ap,.

@ Consequently in p > n problems, in order for the
dimensionality effect to be smaller than the risk, we should
choose 4f0‘1 log M to be smaller than n. This suggests that
M < exp(fon/4).

@ Large values of Cp, are exponentially down-weighted and
therefore cannot contribute substantially.

e If Z,, — Z;, is of order o(fr), then Cp, is of order 7,,. Thus, a
large value of 7,,, corresponding to a large value of Cp,, is
down-weighted, while a small value of 7, yields a small
tm— 402 ,C

m Uo,f m-

@ Other scenarios exist as well that make this term negligible.
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The various components: Diabetes data illustration

Diabetes data with 400 noise variables (n = 422, p = 464).
Models (¢)29%9 and ridge matrices (Am)2°%? used to define the
mixing GRR were obtained using a Bayesian computational
strategy.
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The effect of dimension on risk

@ By mixing over different estimators and down-weighting
those that are unfavorable in terms of empirical risk, we
improve stability, which improves risk behavior.

@ At the same time, if we mix over too many estimators,
there is a price to pay for dimension.

@ Typically, the risk for each model mis order no—g. Thus, it is
reasonable to anticipate that the minimax risk is also no3.

@ Consequently in p > n problems, in order for the
dimensionality effect to be smaller than the risk, we should
choose 4f0‘1 log M to be smaller than n. This suggests that
M < exp(fon/4).

@ A strategy for implementing this in practice, is to restrict X
to [nFp] columns for some constant Fy > 0, and to define
A 1o be the set of all possible subsets of the columns of
the constrained X matrix
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Bayesian Computational Strategy- Spike and Slab

Regression

@ For our Bayesian model, we rely on the class of rescaled
spike and slab models which have been shown to have
useful properties in linear regression settings (Ishwaran
and Rao, 2005).

(y*‘X,B,O'z) ~ Nn(xﬁanazln)> y*:n1/2.y

(Bh/) ~ NP(07 r)a = diag{’YK}llz:1
i ~ n()7 ’Y:('ﬁ,---,'}/p)T
02 ~ @ba,a(‘), 0 <ak 1,

where 1, 4,(-) denotes an inverse-gamma density with
shape parameter a; > 0 and scale parameter a> > 0.

Ishwaran and Rao (2011) Mixing Generalized Ridge Regressions



@ A continuous bimodal density is used for v, with a spike at
a small value vy and a right continuous tail - convenient
continuum of small and large values.

@ Allows for large values of v, which allows the posterior
mean for gy to be large for promising coefficients, and it
allows for small v, values which shrinks S, towards zero
for non-informative variables.
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0.025

0.000

0 4 8 12 16 20 24
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Calculating the mixing GRR

@ Consider the conditional draw for 3 :
o
(BIF, 0%, y*) ~ Np(pr, 0%%r)
where ur = L XTy* and Ir = (Q + no?r—1)~1. This
suggests setting Ay, = no?r 1.
@ Indices k where v, = v indicate variables being shrunk

towards zero. We shall classify such variables as being
excluded from the subset selection.

@ Using the mth draw of v from the Gibbs sampler, we define
%m to be the set of all indices k where ~x # vg.
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Calculating the mixing GRR cont'd

@ Correspondingly, we define A, using the diagonal values
of na?lr—1 with indices in .

@ Thus, if (T(m), a(2m)) is the mth draw for (I, 02),

where f(m) is the submatrix of I' ;) corresponding to €.

@ To calculate the mixing GRR we estimate ag by
Zﬂﬁ a(zm)/M and from this calculate 7. The mixing GRR

is then defined by setting 7, = 1/M and calculating the
weights as previously defined.
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Other issues

Efficient Gibbs sampling

@ We must reduce the computational burden of the draw for
B, which is quadratic in p.

@ We resolve this by using an SVD similar to what was done
in earlier theorem - enabling draw for 3 to be efficiently
calculated in a linear number of operations in p.

Filtering variables

@ Use a technique known as grouped complexity filtering
where have a separate complexity parameter per group
(details in paper).
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Hybrid mixing GRR

@ Also developed a hybrid mixing GRR where we used the absolute value of the
posterior mean of 3 to generate a sequence of nested models with which to mix.
The mth nested model, denoted by %, is defined to be the first m variables in
this ordering.

@ Let 3 = n—1/2E(B|y*) denote the rescaled posterior mean. We solve for A in the
following equation

B=(Q+A'XTy.
This yields the ridge matrix for the GRR closest to 3.

@ We define Am to be the submatrix of A corresponding to those indices in €. For
each m, let w, whyb denote our weights calculated using (Zm, Am).

@ Also, let Nhyb be the GRR predictor corresponding to model (Zm, Am) and let ?,ng
be its estimated risk. The hybrid mixing GRR is defined to be

i

~ M ~m i indem

figo = Y _ Wiy, Where M = arg min {rhyb} .
&= 1<m<M
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Correlated simulation illustration - hybrid mixing GRR

Correlated simulation n = p = 250. Left side: value of 7, for
each model m plotted against its model size, py, (these are
used to construct mixing GRR estimator). Right side: value of 7
for hybrid GRR mixing estimator in which GRR estimators were
constructed sequentially from variables ordered using the
posterior mean of 5.
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Ultra-high dimensional simulation

@ X that was simulated by drawing n = 200 rows

independently from a p-dimensional multivariate normal
with mean zero and covariance matrix, with correlations
that decayed according to px; = p/~/I. We sampled ¢ from
a Nj(0, 1) distribution.

5o, nonzero coefficients were clustered into ¢ distinct
clusters, with each cluster comprising five coefficients: one
strong coefficient, two moderately strong coefficients, and
one weak coefficient. Coefficient values were adjusted by
multiplying by a constant so that the theoretical %2 was
equal to 0.9. The theoretical 2? was defined as

2 _|IXBolP
[XBoll+n’
Looked at ¥ =9 (i.e. pp = 45) and 4 = 45 (i.e. py = 225).
Looked at p = 1000, 2000, 4000.
Looked at p = 0.25,.90.
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Ultra-high dimensional simulation

Table 1: Ultra-high dimensional simulations (averaged over 100 runs).

Sparse signal, low correlation (n = 200, po = 45, p = 0.25)

p=1000 p=2000 p = 4000

5 PE AUC MSE| p PE AUC MSE| 5 PE AUC MSE
mix 400 180 89.14 031 |400 1.93 8480 028 [400 197 8244 0.7
hyb 185 174 89.22 027 [255 1.90 8513 025 (285 195 8247 0.16
enet 116 174 9030 019 | 119 190 8692 013 | 117 217 8234 008
lasso 116 174 9031 0.9 | 119 190 8692 0.3 | 114 218 8231 0.08
anet 93 1.80 89.68 021 | 99 1.87 8594 0.4 | 98 194 79.98 0.09

Sparse signal, high correlation (n = 200, py = 45, p = 0.90)

p=1000 p=2000 p = 4000

5 PE AUC MSE| 5 PE AUC MSE| » PE AUC MSE
mix 400 125 9700 0.2 |400 126 9841 006 |400 130 99.04 0.03
hyb 47 127 9633 015 |52 126 9812 007 | 56 128 9887 0.04
cnet 70 126 8688 007 | 77 127 8688 004 | 75 131 8359 002
lasso 51 127 7944 0.0 | 57 128 7955 005 | 61 131 7850 0.03
anct 34 130 8772 0.1 | 45 130 8737 005 | 48 139 8406 0.03

Less sparse signal, low correlation (n = 200, po = 225, p = 0.25)

p=1000 p=2000 p = 4000

5 PE AUC MSE| p PE AUC MSE| p PE AUC MSE
mix 400 199 6344 098 |400 2.00 6204 051 [400 199 5972 025
hyb 336 201 63.53 095 |341 199 6203 050 [335 199 5972 025
enet 152 330 6282 0.52 | 248 420 60.83 028 |426 513 5867 0.5
lasso 78 428 6042 056 | 55 570 5793 029 | 44 650 5585 0.5
anet 109 302 6081 056 | 105 379 5865 031 | 77 458 5632 0.7

Less sparse signal, high correlation (n = 200, py = 225, p = 0.90)

p=1000 p=2000 p = 4000

5 PE AUC MSE| 5 PE AUC MSE| p PE AUC MSE
mix 400 140 9501 0.1 |400 144 9660 006 |400 146 9632 0.03
hyb 108 146 9461 0.17 |115 147 9641 009 118 148 9622 0.04
enet 177 139 79.89 0.06 204 143 80.65 003 |221 148 7947 002
lasso 93 144 6544 0.4 | 103 148 6527 007 |11l 152 6470 0.04

anet 89 152 79.82 0.10 | 119 149 80.66 004 |159 1.54 79.56 0.02




Ultra-high dimensional simulation - summary

@ Overall message for mixing GRR is that it is most adept in
high-dimensional correlated settings. This includes both
sparse and less sparse scenarios.

@ In such settings it has good PE performance and it
accurately ranks variables (AUC). The results for the hybrid
mixing GRR are interesting. Its PE is often as good as
mixing GRR and it is a much sparser estimator.

@ Note that AUC numbers are evaluated over the whole
solution path for each estimator in order to make results
comparable across methods.
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Benchmark performance

@ 33 datasets of different sample sizes and dimensions

@ Some datasets were related to one another. For example,
row entries named “x.I” indicate a dataset “x” that was
modified to include all pairwise interactions, as well as
B-spline basis functions (up to 6 degrees of freedom), for
all original variables.

@ Data with names “x.noise” indicate a dataset “x” with 1500
noises variables added (sampled independently from a
standard normal distribution).

@ Data with names “x.I!” were modified similar to x.I, but in
addition, all real valued variables were mapped to dummy
variables representing a factor with three levels and all
pairwise interactions of these dummy variables were
added to the design matrix.
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Benchmark performance - results

Table 2: Benchmark results: 10-fold test set prediction error and estimated model
size (rounded to the nearest integer).

Dataset n D Pmix Py Peret PEmix PEnyb PEcret

Air 111 5 5 5 4 0.28 028 0.29

Aicll 111 311 111 26 42 0.28 032 0.28

Auto 193 65 64 42 4 5.55 549 528
Autospline 193 135 134 72 76 5.08 548 5.58
Bodyfat 252 13 13 10 6 2058 20.67 2161
CMB 89 4 4 3 3 10.16 10.08 1022
CMBunoise 899 1504 676 43 15 10.35 1033 1041
Correlated 250 1000 249 21 40 1.20 1.28 131
Crime 47 15 15 13 7 6897426 6905654 93276.54
Diabetes 442 10 10 8 8 300497 301063 3015.13
Diabetes.] 442 64 64 14 20 202847 292947 295150
Diabetes.Lnoise ~ 442 1564 442 47 46 326338 326862 3314.50
Fitness 31 6 6 3 3 8.32 843 9.46
Friedman.! 100 50 50 1 8 145 138 145
Friedman2 100 10 10 1 1 1.36 136 137
Friedman3 100 6 6 1 1 1.36 137 137
Highway 39 11 11 7 6 0.28 031 024
Highway.! 39 110 39 15 19 0.18 016 0.43
Housing 506 13 13 12 12 2398 24.17 2435
Housingl! 506 658 506 82 40 1272 1345 15.40
Housing I!.noise 506 2158 506 73 48 12.09 1297 16.10
lowa 33 9 9 5 4 8962 84.00 90.90

lowal 33 9 33 9 11 7531 10378 85.43
Ozone 203 12 12 7 7 19.89 19.84 19.89
Ozomel 203 134 134 13 21 14.19 14.63 15.57
Ozone.Lnoise 203 1634 203 15 22 15.38 15.16 18.02
Pollue 60 15 15 8 7 154032 156301 1756.65
Prostate 97 8 8 4 4 053 053 0.54
Servo 167 19 19 14 13 071 074 0.79
Servo.ll 167 147 146 16 16 032 035 035
Servollnoise 167 1647 167 12 30 0.40 041 039
Tecator 215 22 22 22 20 711 742 7.93
Windmill 1114 12 12 1110 458 4.58 4.59
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The effect of data-adaptivity on the minimax rate

Correlated simulation from earlier (p = 0.9 equicorrelated data with

n =200, p =250, and py = 10). Blue horizontal lines are test set
estimated risk for the mixing GRR (thick, dashed, and dotted lines are
fo = 0.1,0.5,1.0, respectively).
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Minimax bound does not completely hold, but the results are very
close. Only a few models that surpass the mixing GRR.

Moreover, with increasing fy, the risk for the mixing GRR improves
and the bound becomes nearly exact.

A larger f improves the mixing GRR in this example due to the

sparsity of the problem because it concentrates the mixing GRR on
fewer models.
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Conclusions

@ Spurious correlations are a real problem in p >> n situations.
Hence wanted to study GRR in these problems.

@ GRR solution differs from classic n > p setting because it's
constrained to lie in a subspace containing the MLS of
dimension at most n. This implies that for accurate estimation,
the true parameter vector should be sparse. In non-sparse (or
less sparse) situations, no guarantee of accurate estimation.

@ Introduced mixing GRR ensemble predictor which has a nice
finite sample minimax bound which shows that the risk for mixing
GRR will never be larger than the risk for any of its constituent
components assuming dimensionality is properly constrained.

@ Developed Bayesian computational approaches for use in
practice.
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