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Introduction

Preamble

Let y = (y1, . . . , yn)T ∈ Rn be a response vector and
X = (X(1), . . . ,X(p)) an n × p design matrix.

y = Xβ + ε,

where ε = (ε1, . . . , εn)T is such that E(εi) = 0 and
E(ε2

i ) = σ2
0 > 0.

The true value for the coefficient vector
β = (β1, . . . , βp)T ∈ Rp is an unknown value
β0 = (β0,1, . . . , β0,p)T .
Consider high-dimensional scenarios where p � n, and
consider the problem of estimating E(y) and β0.
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Many Difficulties

Collinearity Abounds
This problem poses unique obstacles for prediction and
estimation. Sample correlation between variables can be
sizeable as an artifact of dimensionality. Groups of
variables become highly correlated with other groups
sporadically - even if true design matrix is orthogonal (Fan
and Lv (2008), Cai and Lv (2007)).
Multicollinearity is further compounded as variables
collected in high-dimensional applications are often
naturally correlated (e.g gene expression arrays; SNP
arrays, etc).
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GRR

Back to the future
Almost 40 years ago, Hoerl and Kennard (1970a,b)
proposed generalized ridge regression (GRR), a method
specifically designed for correlated and ill-conditioned
settings.
Let Λ = diag{λk}pk=1 be a p × p diagonal matrix with
diagonal entries λk > 0. The GRR estimator with ridge
matrix Λ is

β̂G = (Q + Λ)−1X T y ,

where Q = X T X .
An alternative representation for β̂G is in terms of
`2-penalization:

β̂G = arg min
β∈Rp

{
||y − Xβ||2 +

p∑
k=1

λkβ
2
k

}
,
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Some work already in a similar vein

L1 alternatives
Much of the recent effort to address high-dimensional
problems has focused on `1-based penalization methods;
i.e., lasso-type regularization (Tibshirani, 1996).
Some of these methods are similar to the GRR in that they
allow a unique regularization parameter for each
coefficient.
Examples include adaptive lasso for p < n (Zou, 2006) and
for diverging parameters problem (Huang et.al., 2008). Zou
and Zhang (2009) also developed adaptive elastic net.
Given GRR is naturally set up this way, it’s natural to
wonder how things behave when p > n.
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A Geometric Approach

We first recast β̂G as a rescaled ridge estimator. Let
X∗ = XΛ−1/2 and Q∗ = X T

∗ X∗.

β̂G = Λ−1/2(Λ−1/2QΛ−1/2 + Ip)−1Λ−1/2X T y

= Λ−1/2(Q∗ + Ip)−1X T
∗ y

= Λ−1/2β̂∗R, (1)

where β̂∗R = (Q∗ + Ip)−1X T
∗ y is the ridge estimator for the

design matrix X∗ with ridge parameter λ = 1.
Let X∗ = U∗D∗V T

∗ be the SVD for X∗. Let
d1,∗ ≥ · · · ≥ dn,∗ ≥ 0 denote the diagonal elements of D∗.
If p ≥ n and λk > 0 for k = 1, . . . ,p, then

β̂G = Λ−1/2V∗S−1
∗1 RT

∗ y ,

where S∗1 = diag{d2
i,∗ + 1}ni=1 and R∗ = U∗D∗. Requires

O(pn2) operations.
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Geometry cont’d

A celebrated result, due to Penrose (1956), is that the
minimum least squares (MLS )estimator exists and is the
unique estimator

β̂MLS = X +y = lim
λ→0

β̂R = VS+
0 RT y ,

where S+
0 = diag{s+

0i}
n
i=1 is the Moore-Penrose

generalized inverse of S0 defined by

s+
0i =

{
1/d2

i if di > 0
0 otherwise.

Define the modified MLS estimator as

β̂∗MLS = Λ−1/2X +
∗ y = Λ−1/2V∗S+

∗0RT
∗ y .

Observe in the special case when Λ = λIp that
β̂∗MLS = β̂MLS.
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Theorem

β̂G is the solution to the following optimization problem:

minimize
β∈Rp

Q(β, β̂∗MLS) subject to βT Λβ ≤ L,

for some L > 0, where

Q(β, β̂∗MLS) =
(
β − β̂∗MLS

)T(
Λ1/2Q∗Λ1/2

)(
β − β̂∗MLS

)
is an ellipsoid with contours S(c) = {β : Q(β, β̂∗MLS) = c2}
centered at β̂∗MLS.
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GRR Shrinkage

Figure: Illustration of GRR geometry. Left figure corresponds to a
simulation where p = 100,n = 25, and β0,k = 0 for k ≥ 3 and λk =∞
for k ≥ 4. Only the first 3 coordinates of β̂G are nonzero, and these
equal the point where the ellipsoid first touches the elliptical
constraint region.
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Some consequences

GRR estimator involves the contours of an ellipsoid
centered at the modified MLS. For GRR, the constraint
region is also an ellipsoid that depends upon Λ.

Theorem

β̂G = Λ−1/2∑d
i=1 di,∗ηivi,∗, where ηi = (d2

i,∗ + 1)−1uT
i,∗y. That is,

β̂G lies in the d-dimensional subspace
Λ(V∗) = {Λ−1/2v : v ∈ V∗}, where d = rank(X ) ≤ n and V∗ is
the span of {v1,∗, . . . , vd,∗}; i.e., V∗ is the span of the
eigenvectors of Q∗.

If β0 non-sparse, there is no guarantee that we can find a Λ
to force the distance between GRR estimator and β0 to
zero.
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Mixing for Improved Prediction

Finding a suitable orientation for the GRR may be difficult
in non-sparse settings.
In place of a single GRR estimator, we’ll instead use a
convex combination of GRR estimators.
The idea of mixing is widely used in statistics and machine
learning (e.g. bagging, random forests, BMA).
We will construct mixed GRR estimators based on
exponential weights and establish that under a
dimensionality constraint, that the risk for mixing GRR is at
least as small as that of any of its GRR components -
mixing GRR can achieve or even surpass the best model
without advance knowledge of what that model is.
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Mixing GRR

Let M denote the space of linear models under
consideration and let M = #M be its cardinality.
For each model m ∈M , we assume there exists a fixed
probability 0 < πm < 1 indicating the preference for the
model, where

∑
m πm = 1.

µ̂m
G = Xmβ̂

m
G = Pmy where

Pm = Xm(Qm + Λm)−1X T
m ,

and Qm = X T
mXm. We refer to Pm as the GRR operator.

µ̂mix =
∑

m∈M

πmwm∑
m′ πm′wm′

µ̂m
G ,

where wm = wm(y) are non-negative, data-adaptively
selected weights. Normalized weights
wm = πmwm/

∑
m′(πm′wm′). Then, µ̂mix can be rewritten as

µ̂mix =
∑

m∈M

wmPmy .
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Determining the wm

Define

r̂m = ||y − µ̂m
G ||

2 + σ2
0
(
2 trace(Pm)− n

)
.

This is an unbiased estimator of the risk rm = E||µ̂m
G− µ||

2.

∇r̂m = ∇
[
yT (Im−Pm)2y+σ2

0
(
2 trace(Pm)−n

)]
= 2(Im−Pm)2y .

Theorem 5 of (Leung and Barron, 2006) describes a sharp
minimax bound for mixing of the OLS. To obtain a similar
result for GRR, it turns out that we need to use weights of
the form wm = exp(−r̃m/4σ2

0), where r̃m is chosen to satisfy

∇r̃m = a1y − a2Pmy ,

for some constants a1,a2 such that a2/a1 > 0 .
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Determining the wm cont’d

E.g. this would hold for r̃m = r̂m if Pm were a projection
matrix, since then

∇r̃m = 2(Im − Pm)2y = 2(Im − Pm)y = 2y − 2Pmy .

In order to derive a minimax bound for GRR we must find a
r̃m that satisfies the gradient equality even when Pm is not
a projection matrix.
Define,

r̃m = r̂m − Zm, where Zm = yT (P2
m − Pm)y .

even if Pm is not a projection matrix, we have

∇r̃m = ∇r̂m−∇Zm = 2(Im−Pm)2y−2(P2
m−Pm)y = 2y−2Pmy ,
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Hence, we define our weights to be:

wm = exp

(
−f0

[
1

4σ2
0

r̂m −
1

4σ2
0

Zm

])

where f0 is any constant such that 0 < f0 ≤ 1.
Intuitively, the rationale for these weights is that it
down-weights models with large estimated risk r̂m.
The presence of Zm in wm is an adjustment needed to
accommodate the GRR operator. Can show that Zm ≤ 0.
Hence it down-weights GRR operators that are distant
from projection operators.
The constant f0 acts as a “dampening” parameter that
spreads weights over models more evenly for small f0
values.
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Theorem

Assume that ε ∼ Nn(0, σ2
0In) and that maxm{E(∇i |µ̂m

G,i |)} <∞
for i = 1, . . . ,n. If πm = 1/M, then for our wm :

E||µ̂mix − µ||2︸ ︷︷ ︸
mixing GRR risk

≤ min
m∈M

E||µ̂m
G− µ||

2︸ ︷︷ ︸
minimax risk

+ 4σ2
0,f log M︸ ︷︷ ︸

dimensionality effect

+E

 ∑
m∈M

(r̂m − 4σ2
0,f Cm) exp(−Cm)∑

m′∈M exp(−Cm′)


︸ ︷︷ ︸

GRR operator effect

,(2)

where σ2
0,f = σ2

0f−1
0 , Cm = (r̂m − Zm + Zm̂)/(4σ2

0,f ), and m̂ is any
model achieving the minimum estimated risk r0 = minm{r̂m}.
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The effect of GRR operator on risk

Many scenarios yield a negligible value without requiring
stringent constraints on Λm.
Consequently in p > n problems, in order for the
dimensionality effect to be smaller than the risk, we should
choose 4f−1

0 log M to be smaller than n. This suggests that
M < exp(f0n/4).
Large values of Cm are exponentially down-weighted and
therefore cannot contribute substantially.
If Zm − Zm̂ is of order o(r̂m), then Cm is of order r̂m. Thus, a
large value of r̂m, corresponding to a large value of Cm, is
down-weighted, while a small value of r̂m yields a small
r̂m − 4σ2

0,f Cm.
Other scenarios exist as well that make this term negligible.
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The various components: Diabetes data illustration

Diabetes data with 400 noise variables (n = 422, p = 464).
Models (Cm)2000

m=1 and ridge matrices (Λm)2000
m=1 used to define the

mixing GRR were obtained using a Bayesian computational
strategy.
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The effect of dimension on risk

By mixing over different estimators and down-weighting
those that are unfavorable in terms of empirical risk, we
improve stability, which improves risk behavior.
At the same time, if we mix over too many estimators,
there is a price to pay for dimension.
Typically, the risk for each model m is order nσ2

0. Thus, it is
reasonable to anticipate that the minimax risk is also nσ2

0.
Consequently in p > n problems, in order for the
dimensionality effect to be smaller than the risk, we should
choose 4f−1

0 log M to be smaller than n. This suggests that
M < exp(f0n/4).
A strategy for implementing this in practice, is to restrict X
to [nF0] columns for some constant F0 ≥ 0, and to define
M to be the set of all possible subsets of the columns of
the constrained X matrix

19 / 34 Ishwaran and Rao (2011) Mixing Generalized Ridge Regressions



Bayesian Computational Strategy- Spike and Slab
Regression

For our Bayesian model, we rely on the class of rescaled
spike and slab models which have been shown to have
useful properties in linear regression settings (Ishwaran
and Rao, 2005).

(y?|X , β, σ2) ∼ Nn(Xβ,nσ2In), y? = n1/2y
(β|γ) ∼ Np(0, Γ), Γ = diag{γk}pk=1
γ ∼ Π(·), γ = (γ1, . . . , γp)T

σ2 ∼ ψa,a(·), 0 < a� 1,

where ψa1,a2(·) denotes an inverse-gamma density with
shape parameter a1 > 0 and scale parameter a2 > 0.
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A continuous bimodal density is used for γk with a spike at
a small value ν0 and a right continuous tail - convenient
continuum of small and large values.
Allows for large values of γk which allows the posterior
mean for βk to be large for promising coefficients, and it
allows for small γk values which shrinks βk towards zero
for non-informative variables.
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Calculating the mixing GRR

Consider the conditional draw for β :

(β|Γ, σ2, y?) ∼ Np(µΓ, σ
2ΣΓ)

where µΓ = ΣΓX T y? and ΣΓ = (Q + nσ2Γ−1)−1. This
suggests setting Λm = nσ2Γ−1.
Indices k where γk = ν0 indicate variables being shrunk
towards zero. We shall classify such variables as being
excluded from the subset selection.
Using the mth draw of γ from the Gibbs sampler, we define
Cm to be the set of all indices k where γk 6= ν0.
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Calculating the mixing GRR cont’d

Correspondingly, we define Λm using the diagonal values
of nσ2Γ−1 with indices in Cm.
Thus, if (Γ(m), σ

2
(m)) is the mth draw for (Γ, σ2),

Λm = nσ2
(m)Γ̃−1

(m),

where Γ̃(m) is the submatrix of Γ(m) corresponding to Cm.

To calculate the mixing GRR we estimate σ2
0 by∑M

m=1 σ
2
(m)/M and from this calculate r̃m. The mixing GRR

is then defined by setting πm = 1/M and calculating the
weights as previously defined.
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Other issues

Efficient Gibbs sampling
We must reduce the computational burden of the draw for
β, which is quadratic in p.
We resolve this by using an SVD similar to what was done
in earlier theorem - enabling draw for β to be efficiently
calculated in a linear number of operations in p.

Filtering variables
Use a technique known as grouped complexity filtering
where have a separate complexity parameter per group
(details in paper).
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Hybrid mixing GRR
Also developed a hybrid mixing GRR where we used the absolute value of the
posterior mean of β to generate a sequence of nested models with which to mix.
The mth nested model, denoted by Ĉm, is defined to be the first m variables in
this ordering.

Let β̂ = n−1/2E(β|y?) denote the rescaled posterior mean. We solve for Λ̂ in the
following equation

β̂ = (Q + Λ̂)−1X T y .

This yields the ridge matrix for the GRR closest to β̂.

We define Λ̂m to be the submatrix of Λ̂ corresponding to those indices in Cm. For
each m, let wm

hyb denote our weights calculated using (Ĉm, Λ̂m).

Also, let µ̂m
hyb be the GRR predictor corresponding to model (Ĉm, Λ̂m) and let r̂m

hyb
be its estimated risk. The hybrid mixing GRR is defined to be

µ̂hyb =
M̂∑

m=1

wm
hybµ̂

m
hyb, where M̂ = arg min

1≤m≤M

{
r̂m
hyb

}
.
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Correlated simulation illustration - hybrid mixing GRR

Correlated simulation n = p = 250. Left side: value of r̂m for
each model m plotted against its model size, pm (these are
used to construct mixing GRR estimator). Right side: value of r̂
for hybrid GRR mixing estimator in which GRR estimators were
constructed sequentially from variables ordered using the
posterior mean of β.
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Ultra-high dimensional simulation

X that was simulated by drawing n = 200 rows
independently from a p-dimensional multivariate normal
with mean zero and covariance matrix, with correlations
that decayed according to ρk ,l = ρ|k−l|. We sampled ε from
a Nn(0, In) distribution.
β0, nonzero coefficients were clustered into G distinct
clusters, with each cluster comprising five coefficients: one
strong coefficient, two moderately strong coefficients, and
one weak coefficient. Coefficient values were adjusted by
multiplying by a constant so that the theoretical R2 was
equal to 0.9. The theoretical R2 was defined as

R2 =
||Xβ0||2

||Xβ0||2 + n
.

Looked at G = 9 (i.e. p0 = 45) and G = 45 (i.e. p0 = 225).
Looked at p = 1000,2000,4000.
Looked at ρ = 0.25, .90.
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Ultra-high dimensional simulation
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Ultra-high dimensional simulation - summary

Overall message for mixing GRR is that it is most adept in
high-dimensional correlated settings. This includes both
sparse and less sparse scenarios.
In such settings it has good PE performance and it
accurately ranks variables (AUC). The results for the hybrid
mixing GRR are interesting. Its PE is often as good as
mixing GRR and it is a much sparser estimator.
Note that AUC numbers are evaluated over the whole
solution path for each estimator in order to make results
comparable across methods.
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Benchmark performance

33 datasets of different sample sizes and dimensions
Some datasets were related to one another. For example,
row entries named “x.I” indicate a dataset “x” that was
modified to include all pairwise interactions, as well as
B-spline basis functions (up to 6 degrees of freedom), for
all original variables.
Data with names “x.noise” indicate a dataset “x” with 1500
noises variables added (sampled independently from a
standard normal distribution).
Data with names “x.I!” were modified similar to x.I, but in
addition, all real valued variables were mapped to dummy
variables representing a factor with three levels and all
pairwise interactions of these dummy variables were
added to the design matrix.
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Benchmark performance - results
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The effect of data-adaptivity on the minimax rate
Correlated simulation from earlier (ρ = 0.9 equicorrelated data with
n = 200, p = 250, and p0 = 10). Blue horizontal lines are test set
estimated risk for the mixing GRR (thick, dashed, and dotted lines are
f0 = 0.1,0.5,1.0, respectively).

Minimax bound does not completely hold, but the results are very
close. Only a few models that surpass the mixing GRR.
Moreover, with increasing f0, the risk for the mixing GRR improves
and the bound becomes nearly exact.
A larger f0 improves the mixing GRR in this example due to the
sparsity of the problem because it concentrates the mixing GRR on
fewer models.
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Conclusions

Spurious correlations are a real problem in p >> n situations.
Hence wanted to study GRR in these problems.

GRR solution differs from classic n > p setting because it’s
constrained to lie in a subspace containing the MLS of
dimension at most n. This implies that for accurate estimation,
the true parameter vector should be sparse. In non-sparse (or
less sparse) situations, no guarantee of accurate estimation.

Introduced mixing GRR ensemble predictor which has a nice
finite sample minimax bound which shows that the risk for mixing
GRR will never be larger than the risk for any of its constituent
components assuming dimensionality is properly constrained.

Developed Bayesian computational approaches for use in
practice.
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