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Genome-Wide Association Studies (GWAS)

• GWAS have identi-
fied > 1200 common
genetic variants (SNPs)
associated with human
diseases.

• Most currently used SNP arrays (Affymetrics and
Illumina) genotype 500K-1M SNPs/sample, with an
upcoming 5 million SNP array.



Single Nuclide Polymorphism (SNP)

We share 99.9% of our DNA. Small variations (SNPs) at
some locations make us different, about 1 in 1000
basepases (bps).



Common Approach in GWAS

I Discovery phase:

I Regress outcome (e.g. case/control) on each
individual SNP (AA=0, AB=1, BB=2) (Minor Allele
Frequency(MAF)=Pr(B)> 0.05).

I Rank p-values (Manhattan plot).

I Validation phase: Validate the top SNPs in
independent samples.



Common Approach in GWAS: Manhattan plot



Sequencing

Genotype all basepairs (bps) in the neighborhood of a
gene, the whole exome, or the whole genome (3 billion
bps).



Next-Generation Sequencing Gap

”There is a growing gap between the generation of
massively parallel sequencing output and the ability to
process and analyze the resulting data.
Bridging this gap is essential, or the coveted $1,000
genome will come with a $20,000 analysis price tag.”

John McPherson, Nature Methods, 2009



Gap Between Sequencing-Generation and Data
Analysis Capabilities

McPherson, 2009



Analysis of Next-Generation Sequencing Data

• NGS Platforms: Roche/454; Illumina/ Solexa; ABI
SOLiD; Helicos.
• Data storage.
• Low-level analysis: base calling, alignment,

assembly, SNP call.
• High-level analysis: (Re)sequencing association

studies.



How many subjects are needed to observe a rare
variant?

• Sample size required to observe a variant with
MAF=p with at least θ chance

n >
ln(1− θ)

2ln(1− p)

• For θ = 99.9%, the required minimum sample size is
MAF 0.1 0.01 0.001 0.0001

Minimum n 33 344 3453 34537



(Re)sequencing Association Studies

• Strategy:
I Identify all observed variants within a sequenced

(sub)-region.
I Region: gene, moving window, intron, exon, ...
I Test the joint effect of rare/common variants

while adjusting for covariates.



Regression Models

• Covariates Xi : age, gender, population stratification.
• Observed rare and common variants in a region:

S1, · · · ,Sp

• Model: continuous trait (linear) and binary
trait(logistic):

µi or logit(pi) = α0 + αXi + β1Si1 + · · ·+ βpSip

• Let the data speak about the true unknown β’s:
some might be 0, - or +.
• “True” non-zero β’s are “causal”



Understanding Collapsing Methods

• Suppose only rare variants (with MAF < some
threshould) are considered.
• If all β’s are the same, the model becomes

logit(pi) = α0 + αT Xi + βNi ,

where Ni = Si1 + · · ·+ Sic=total number of rare
variants in the region.



Understanding Collapsing Methods

• This means the collapsing method assumes (1) all
the rare variants are causal and (2) they have the
same effect (both in terms of direction and
magnitude).
• The collapsing method is optimal if this assumption

is true.
• If majority of rare variants have no effects or some

are in different directions, the collapsing methods will
have substantial power loss.



Sequence Kernel Association Test (SKAT)

Main idea:
• Let the data speak.
• Allow majority of rare variants to have no effects
• Allow variants to have different directions and

magnitudes
• Allow for epistatic effects
• Incorporate as much as prior knowledge as possible.
• Avoid thresholding
I Adjust for covariates



Sequence Kernel Association Test (SKAT)

• Recall logistic model:

logit(πi) = α0 + αXi + β1Si1 + · · ·+ βpSip (1)

• No SNP-set (region) effect: H0 : β1 = · · · = βp = 0
• Standard LR test is a p-df test, little power.
• Assume βj ∼ arbitrary distribution F (0,wjτ), where

wj is a weight for variant j .
• H0 : β1 = · · · = βp = 0⇔H0 : τ = 0 (score test for

variance component in mixed models)



Choices of Weights in Sequence Kernel
Association Test (SKAT)

• Upweight rarer variants.
• Assume weight wj = decreasing function of MAF πj

• Example: wj = Beta(πj , a1, a2), where Beta(·)=Beta
function.
• An optimal choice of wj is an indicator to indicate

whether the j-th marker is a causal variant.



Beta weights



SKAT Statistic (Variance Component Score Test)

• SKAT =weighted sum of individual score statistics,

Q =

p∑
j=1

wjU2
j

where Uj is the score statistic for SNP j .
• Calculations of Q only requires fitting the null model

logit(pi) = α0 + α1Xi

• P-value of Q can be calculated using a mixture of χ2

distributions, which is easy to calculate using the
Davies’ method.



Computational Speed of SKAT

Assume 1000 subjects

Sequence Size 300Kb 3Mb 3Gb (whole genome)
Time 2.5s 25s 7h

on a 2.33 GHz Laptop with 6Gb memory.



General SKAT

• Kernel K (Si ,Si ′) measures genetic similarity in a
region between subject i and i ′ using the p SNPs.
• Examples:

• Linear kernel=linear effect=Model (1):

K (Si ,Si ′) = w1Si1Si ′1 + · · ·wpSipSi ′p

i.e., K = SWST

• IBS Kernel (SNP-SNP interactions)

K (Si ,Sj) =

∑p
k=1 wk IBS(Sik ,Sjk )

2p



General SKAT

• General logistic model logit(p) = αX + h, where
h ∼ arbitrary F (0, τK).
• Example h(S) = β1S1 + · · ·+ βpSp.
• Variance component test for the effect of a SNP set:

H0 : h(S) = 0 ⇔ H0 : τ = 0

• SKAT for a genetic region effect (H0 : τ = 0):

Q(β̂0) = (y− p̂0)′K(y− p̂0)

• P-values calculated using a mixture of χ2

distributions with df often << p . If complete LD, DF
of SKAT=1.



Simulate Sequencing Data

• Generate sequencing data using a coalescent
population genetic model.
• Most variants are rare: for example, for a 30Kb

region:

# variants MAF
626 true

159 (25%) < 10−4

441 (71%) < 10−3

511 (88%) < 10−2



Simulation Set-up

• Simulation model for a given region:
I Continuous Trait:

Yi = α0 + Xiα + Scausal
i1 βcausal

1 + · · ·+ Scausal
ic βcausal

c + εi

where Xi are covariates, Scausal
1 , · · ·Scausal

c are
the genotypes for c rare causal variants and
εi ∼ N(0, 1)

I Binary trait (case-control):

logit(µi) = α0+Xiα+Scausal
i1 βcausal

1 +· · ·+Scausal
ic βcausal

c

I Note: Rare variants, including causal variants, are
often not observed in finite samples.



Simulation Study: Methods Compared

• SKAT using all the variants (SKAT)
• Collapsing method (C):

binary indicator for any variants w/ MAF <3%
• Count/dosing method (N):

number of variants w/ MAF <3%



Size of SKAT for genome-wide type I error
α = 10−6

Total Sample Size Continuous Trait Binary Trait
500 5.9× 10−7 1.0× 10−8

1000 8.0× 10−7 2.3× 10−7

2500 8.4× 10−7 5.6× 10−7

5000 8.8× 10−7 7.0× 10−7



Power

• 5% of variants with MAF < 3% are causal (15
randomly selected variants)
• In realized samples:

n 250 500 1000 2500 5000
p̄ 224 262 360 476 552
m̄ 3.1 4.9 7.1 10.5 12.8

p̄ = Average # of total observed variants
(p0 = 626)

m̄ = Average # of observed causal rare variants
(m0 = 15)



Power simulations α = 10−6 (GW − level)
(SKAT vs Collapsing Methods)



SKAT Extension - Correlated β

• Motivation: When βs are positively correlated and
most β 6= 0, collapsing methods can be more
powerful than SKAT.
• Goal: Extend SKAT to accommodate this case.
I Idea: Assume the working correlation matrix of β as

compound symmetric.

R(ρ) = (1− ρ)I + ρJJ′

• New kernel matrix

Kρ = SW1/2R(ρ)W1/2S.

• ρ = 0 : SKAT with linear weighted kernel.
• ρ = 1 : Weighted count/dosing method (W).



SKAT Extension - Optimal correlation test

• If ρ is known, test statistics

Qρ = (y− p̂0)′Kρ(y− p̂0).

• Qρ follows a mixture of chisq distribution under the
null, and p-values can be easily obtained.
• In practice, however, we do not know which ρ

maximizes power.
• Test Stat=Smallest p-value from different ρ’s

T = inf
0≤ρ≤1

Pρ,

where Pρ is the p-value of Qρ.



SKAT Extension - Optimal correlation test

• Calculate T using a simple grid search.

T = minbPρb , 0 = ρ1 < . . . < ρB = 1

• Null distribution of T uses the fact that Qρ is
asymptotically the same as

(1− ρ)A + γ(ρ)η, (1)

where η ∼ χ2
1 and A approximately follows a mixture

of chisq, and Corr(A, η) = 0.



Simulation

• Power simulation on 5kb randomly selected regions.
• Percentages of causal variants = 10%, 20%, or 50%.
• (βj > 0)% among causal variants = 100% or 80%.
• SKAT, Collasping (N, W) and the optimal correlation

SKAT (SKAT-R).



Power Simulations: All βs are positive, and
α = 10−6



20% of βs are negative, and α = 10−6



Analysis of the Dallas Heart Study Data

• 93 variants in ANGPTL3, ANGPTL4, and ANGPTL5
and 50% are singletons.
• 3476 subjects
• Three ethnicity groups: Black, Hispanic, or White.
I logTG: log of serum triglyceride



Analysis Results of the Dallas Heart Study

Continuous TG Level Binary TG Level
SKAT-R 1.8× 10−5 1.1× 10−4

SKAT 9.5× 10−5 1.3× 10−4

C 1.9× 10−3 3.2× 10−2

N 7.2× 10−5 2.2× 10−3



Selection of Causal Rare Variants

• Problem of Interest: For a top hit region, e.g., a gene
, how to select a subset of variants that are likely to
be causal and pushed for validation?
• Penalized likelihood has been used to select

possible causal variants for common variants, but
with limited power for uncommon/rare variants.
• We focus on selecting candidate causal uncommon

variants, with MAF of 1-5%.
• For very rare variants, e.g. MAF < 1%, very large

sample sizes are needed for variable selection.



Weighted Penalized Likelihood for Selecting
Causal Rare Variants

• Regression models: continuous trait (linear) and
binary trait(logistic):

µi or logit(pi) = α0 + αXi + β1Si1 + · · ·+ βpSip

I Interested in selecting a subset of Sj that are likely to
be associated with D.

I Idea: Incorporate the prior knowledge that rarer
variants are more likely to be causal and have a
larger effect in variable selection procedures.



Weighted Penalized Likelihood for Selecting
Causal Rare Variants

I Weighted Penalized Likelihood:

n∑
i=1

`(Yi ,β) + λ

p∑
j=1

w−1
j |βj |

where wj = Beta(MAFj , a1, a2).
I Rarer variants have less penalty for βj and are more

likely to be selected.
I This is equivalent to assuming βj follows a Laplace

distribution with variance (wjλ
−1), parallel to SKAT.



Beta(MAF ; a1, a2)
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Simulating Study

• Simulated sequence data using FREGENE
(Chadeau-Hyam et al., 2008)
• For each dataset:

I Considered a 30kb-long region (∼200 observed
variants)

I Simulated 20 causal variants with MAF of 1− 5%
I Set |βj | = − log 5

4 log10 MAF for causal variants.
• 500 such datasets were simulated for each scenario.



Simulation Results for Binary Traits
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• Beta(1,25) gives smaller model size, higher TPR &
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Analysis results of the Dallas Heart Study” TG level



Discussions

• Power and sample size calculations for designing
sequencing studies have been derived analytically.
• SKAT provides an attractive approach for sequencing

association studies for rare variant effects.
• If the percentage of causal variants is high with the

same direction, collapsing methods can have higher
power than SKAT.
• The optimal correlation SKAT test (SKAT-R)

accounts for correlation among β and outperforms
both collapsing methods and SKAT in all cases.

I Weighted penalized likelihood provides an attractive
way to select causal rare variants.
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